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L’APPLICATION D’UME METHODE GEOMETRIQUE
A LETUDE DES EQUATIONS DIFFERENTIELLES ORDINAIRES
DU SECOND ORDRE

1. Introduction
Soit une fonction

(1.41) f = f(t,x,Z)

définie et continue dans 1'ensemble H* 3= <O+ o) » <kj1>x
x (=00 34 00), oW k <1 sont deux nombres réels. Supposons

qutelle vérifie la condition de Lipschitz. Alors l'équation
différentielle ordinaire du second ordre

(1.2) X = £{Jyx,%)

(ou j désigne la fonction-identité, cl'est-a-dire une fonc-
tion telle que j(t) = t pour tous les t) a des solutions
saturées déterminées univoquement par leurs conditions ini-
tiales.

Le travail présent est consacré & l'étude des solutions
x = x(t) de l'équation (1.2) qui wérifient la condition

(1.3) k< x(t)< 1 pour t > O,

Nos démonstrations seront basées sur les résultats de no-
tre travail [9]. En citant les numéros de résultats de ce
travail nous les ferons accompagner des lettres “FGC".
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2 K.Tatarkiewicz

Le dernier paragraphe est consacré & un cas particulier de
l'équation (1.2), & savoir & l'équation linéaire

1.4) X - 2a(t)x - b(t)x = g(t),

ol les fonoctions & = a(t), b = b(t) et g = g(t) sont dé-
finies et continues pour t+ > 0.

2. Le théoréme fondamental

Considérons le plan des variables (u,v). Nous allons
étudier l‘'ensemble des points (u,v) tel que les solutions
x = x(t) de 1l*éguation (1.2) qui vérifient les conditions
initiales

(2.1) x(0) =u, x(0) = v

(qui les déterminent - vu les hypothéses gue nous avons ad-
mises - d'une fagon univoque), vérifient la condition (1.3).
Nous avons le théoréme suivant,

Théoréme III. Si

(2.2) £(t,k,0) < 0 et 0O< £(%t,1,0)

pour tous les +t > 0, alors il existe des solutions saturées
x = x(t) de 1l'équation (1.2) telles qu'on a (1.3) dans leurs
domaines d'existence. L'ensemble W de leurs valeurs initia-
les (u,v) = (x(0),%(0)) est fermé et coupe l'ensemble
U t=<k3l>x (=00 §+m) en deux ensembles disjoints, dont un
contient la demi-droite u = k, v< 0 et l'autre la demi-
droite u =1, v > 0.

Démonstration. I. Considérons une courbe
continue donnée paramétriquement dans le plan (u,v) &
1l'aide des formules

(2.3) u = n(s), v = n(s8),
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Ltapplication d'une méthode géometrique

ol m ét n sont deux fonotions continues, définies dans
l'intervalle < 031> telles que

n(0) = k, n(0) < 0,
(2.4)
n(1) =1, n(1) >0
et
(2.5) k<m(s)<l pour s e (0;1).
Posons
£(t,k,2) x<k,0<%, zeR
£(t,x,2) = pour
£(t,1,2) l<x,0< ¢t, ze€eR
et

£(t,x,2) = £f(-t,x,2) pour +t <O.

C'est un.prolongement continu de la fonction £ de
l'ensemble H dans RB' Remarquons que les solutions sa-
turées de 1l'équation (1.2) prolongée restent définies uni-
voquement par leurs valeurs x(0) et x(0). En effet, si
la fonction f vérifie dans l'ensemble H* 1la condition
de Lipschitz (comme nous l'avons supposé), alors notre fonc-
tion prolongée vérifie cette condition aussi.

Désignons par

(2.6) x = x(t,s)

(pour s e <031>) cette solution de 1l'équation (1.2) qui
vérifie les conditions initiales

(2.7) x(C,ys) = m(s), x(0,8) = n(s).
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La famille des fonoctions x = x(t,8), vérifie les hypo-
théses du corrollaire FC 4.1.

En effet,pour démontrer que les conditions FC 42 et 52
sont vérifiées, supposons que 8 8o0it un nombre fixe appar-
tenant & l'intervalle (031) donc qu'on a (2.5). Alors on
a ou bien x(t,s8) ¢ (k3l) pour +t =0, ou bien il exisve
un t(s) >0 t2l que x(t(sl),s) ¢ {l,k}. Supposons qu un
tel t(s) existe et - pour fixer les idées - supposons que

(2.8) x(t(s)’s) = 1.

Nous avons déja remarqué que si s € (031), alors on a
(2.5), donc t(8)> 0. Le nombre +(s) east le plus petit
de tous pour lesquels on a (2.8), donc
(2.9) x(ty8) <1 pour t e <O0;3;t(s)).

Il s'ensuit que Xx(t(s),s) = O pour l'ensemble 1 des
s ¢ (031) tels qu'on a (2.8). Supposons que x{(t(s),s) = O.
Vu (2.2), on a

X(t(s),8) = £(t(s),x(t(s),s),0) >0,

done t = t(s) est un minimum stricte local de la fonction
x = x(t,8). Il s’ensui¢ qu'il existe un ¢ > O tel que

1l < x(t,s) pour t e (t(s) - e;5(8)) + (t(s);t(s) + ¢),

ce qui est contraire & (2.9). Donc il doit 8tre x(t(s),s) > O.
Mais alors il existe un r(s) > 0 tel que

x(t,8) >0 pour te < t(s);t(s) + r(s))
et - vu (2.8) - de plus

x(t,s) >1 pour t e (t(s);t(s) + r(s)),
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L'application d'une méthode géometrique

Vu (2.4), nous avons x(0,1) = 0. Un raisonnement sem-
blable & celui domnné ci-dessus nous montre qu on a alors
x(t,1) > 0 pour t e (03r(0)), ou r(0) >0 (mais la so-
lution x = x(t,1) de l'équation prolongée peut avoir un
minimum au point t = 0) et de plus on a x(t,1) > 1 pour
+t e (0;r(0)).

Ainsi nous avons démontré gue si x(t(s),s) = 1, alors
la courbe x = x(t,s8) "sort" au point t = t(s) de l'en-
semble U, De méme, si x(t(s8),s) = k, on démontre gque la
courbe == = x(t,s) "sort" au point +t = t(s) de l'ensemble
Ue

Le lecteur voudra bien déterminer analytiquement un en-
semble ouvert G tel gque H* c G et tel que toutes les
courbes correspondantes aux solutlons apartenant & notre fa-
mille, aprés avoir été rétrécies dans G ont au plus un
point commun avec les droites x =k et x = 1.

Ainsi nous avons démontré que la condition FC 4% est vé-
rifiée. La méme démonstration montre, que dans le cas ou
n(0) = O ou bien n(1) = 0 1la condition FC 5% est yvéri-
fiée., Elle est vérifiée d'une fagon évidente si l'on a
n(0) < 0 et n(1) > 0.

La vérification des conditions FC 1%, 22 et 3® est immé-
diate. Donc il existe un nombre s = S(m,n) (dépendant de
la courbe (2.7)) tel que

k < x(t,S(m,n)) <1

pour tous les ¢ > 0 appertenant au domaine de l'existence
de la fonction x = x(t,S(m,n)).

Pour chaque couple ¢e fonctions m,n soit Z(m,n) l'en-
semble de tous les s tels gque 1a condition (1.3) soit véri-
fiée pour tous les t > (0 apparsenant au domaine d'existence
de la fonction x = x(t,s). Ncus avons démontré gque pour les
courbes (2.3) quli vérifient les conditions {(2.4) et (2.5)
ona Z(mn) £ @ (voir la fig.4). Svidemment Z{(m,n) c (031).
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Soit %, ltensemble des points (u,v) qui est formé
per tous les points (m(s),n(s)) pour lesquels s e Z(m,n)
pour toutes les courbes (2.3) qui vérifient les conditions
(2.4) et (2.5). Comme d'ordinaive désignons par I'U 1'in-
térieur de l'ensemble U (c'est-a~-dire que I'U=(k;l)x R).
Ona W,cI'U. '

BEtant donné que chaque courbe continue (2.3) qui vérifie
les conditions (2.4) a des points communs avec l'ensemble Wy
ce dernier coupe I'U en deux ensembles disjoints (ils con-
tiennent respectivement les demi-droites u =k, v< 0 et
u=1, v =0). »

Par définition de l'ensemble W on a W,c V. LEtant
donné que par chague point (u,v) € I'U passe au moins une
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Ltapplication d'une méthode géometrigue 7

courbe (2.3) qui vérifie les conditions (2.4) et (2.5) on a
W.I'UCW, donc W.I'U=W,. _

II. Soit (uh,vn) €W, B =1,2,ees une suite de points
convergente vers (uo,vb). Soit x = xn(t), n =120
la suite des solutions de 1l'équation (1.2) telles que

xn(O) = Wy ﬁn(O) = Ve

Supposons que (uo,vo) € W. Alors il existerait un plus
petit t, =0 tel que xo(to) =k ou xo(to) = l. Pour
fixer les idées supposons que xo(to) = k. Alors il existe
un ¢>0 tel que xo(t) <k pour t e (to;to+c). Mais les
solutions d'une équation différentielle (qui vérifie nos hy-
pothéses) dépendent d'une fagon continue des conditions ini-
tiales - donc on aura xn(to + £) < k pour presque tous
les n, contrairement & la supposition que (un,vh) e W
Donc (uo,vo) e W et l'ensemble W est fermé.

IIT. De I et de II il s'ensuit que la fermeture
WH C W. Donc l'ensemble W coupe U en deux ensembles dis-
joints qui contiennent les demi-droites u =k, v <0 et
u=1, v >0 respectivement. Csqe.f.d.

La premiére partie de ce théoréme (c'est-a-dire l'existen-
‘ce d'une infinité de solutions bornées de ltéguation (1.2},
si les conditions (2.2) sont vérifiées) fut démontré par
I.Barb¥lat [1] par la méthode de rétracte de T.Wazewski [10].

Remarquons que l'ensemble W peut ne pas &tre connexe
et qu'il peut &tre W; # W .

Nous avons supposé que la condition de Lipschitz soit
vérifiée. Cette supposition entraine l'unicité deé l'équation
(1.2). Cela signifie, que par chaque point de l'espace
(t,x,%) passe au plus une (donc exactement une) solution sa-
turée de l'équation (1.2). Cependant par chaque point du plan
(t,x) passe une infinité de courbes qui sont des images des
solutions saturées de cette éguation. Et méme par un point
du plar (t,x) peut passer une infinité de ccurbes qui sont
des images des solutions appartenant i la sous-famille de
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8 K.Tatarkiewicz

solutions considérées par nous (c'est-a-dire définies par les
conditions (2,7)). L'exemple 3.1 le démontrera.

D'ailleurs cette hypothése de la condition de Lipschitz
et - méme - la supposition de l'univocité de 1l'équation (1.2)
n'est pas nécessaire. Elle nous garantit seulement la dépen-
dance continue des solutions de leurs valeurs initiales.
Dans les théorémes (et dans le corollsire FC 4.,1) du travail
[9] que nous employons, nous ne supposons pas que les courbes
de la famille considérée sont unionuement déterminées par
leurs "valeurs initiales". Il est assez facile de démontrer
le théoréme III (le lecteur voudra bien le falre ) non pas en
supposant que la condition de Lipschitz soit vérifiée, mais
en supposant l'unicité de l'équation (1.2). On peut méme
forauler un théoréme analogue sans méme l'hypothése de l'uni-
vocité de l'équation considérée (1.2). Il faut alors renoncer
4 ce que le paramétre s correspond bi-univoguement A des
valeurs initiales de la famille considérée, et il faut assu-
rer par une hypothése supplémentaire la dépendance ccntinue
.des solutions du paramétre s.

3. Les résultats plus précis

I1 est évident que l'ensemble W défini au paragraphe
précédent ne peut pas avoir des points communs avec les deux
demi-droites u =k, v<0 et u=1, v =20, L'exemple sui-
vant montre que W peut ne pas avoir des points communs
avec les demi-droites ouvertes wu =k, v>0 ou u=1, v<0
(et méme sa projection sur l'axe- Ou peut former un intervalle
qui ne contient pas l'intervalle (k;l)).

Le m8me exemple a - d'ailleurs - des applications au Cal-
cul des Variations (voir K.Tatarkiewicz (6], §7.8,p.84). En
effet 11 démontre qu’il existe des équations de second ordre
¥ = £(J,xsx) (ou la fonction f est définie dans l'espéce
R3 entier) et de points (a,b) tels que pour chaque ¢ >0

.

il existe au moins un point (c¢,d), ou ¢ # & et (d-a)2 +

+ (a-b)2 < 52, tel -qu'il n'existe pas de solutions de cette
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L'application d'une méthode géometrique

équation qui vérifient les conditions aux limites x(a) =D

et x(c) = 4.

ZTxzemple 3.1, Qonsidérons la famille de courbes

1
4 e ¢ <
2 ¥t + ¢
g(t,e) = pour
S - ¢ >
2Vt + 1

définie pour t <0 et ¢ ¢ R (voir la fig.2).

rig.2
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10 K.Tatarkiewicz

Cette famille vérifie l'équation différentielle de premier
ordre

y = 8(3y¥)»
ou
1
2(1 - )’)3 V=1
2Vt + 1
g(t,y) = pour
— + y > - — e
4 2 Ve + 1

est une fonction continue et vérifiant la condition de Lips-
Chitz.
On a évidemment

(3.1) g(t,0) > ©

pour t = 0O,
Posons pour tous les 2z et tous les t =20

g(t,2) 1/2 <« x
h(t,x,2) =¢x ~ -12—,- + 2x g(t,z2) pour O <x <1/2
- 1/2 x < 0.

La fonction h est continue gt vérifie la condition
locale de Lipschitz. Vu (3.1), on a

h(%,0,0) < O, 0 < h(t,1,0).
Jonsidérons les solutions de 1'équation de second ordre
(3.2) ¥ = h(§,%,x)
qui vérifient la condition initisle
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Lt'application d'une méthode géometrigue 11

(3.5) x(0) = 1.

Elles sont données par la formule (voir la fig.3)

t -Vt +c +1 + Ve 0 <c <
x(t,c) = pour
’ ct -Vt +1 + 2 1 < c.
X N E ‘;/V
1 ';— (,"0

[PV U

-y

L o e e e

Figo3

Cette famille est définie pour ¢ > ¢ et - vu l'unicité de
1'équation (3.2) - contient toutes ses solutions saturées qui
vérifient la condition (3.3). Tar exemple pour ¢ ¢ (0;1 >
ona ¢ =411~ %(0))"2,

ttant donné que %(t,c) = y(t,c), les solutions agparte-
nent & cette famille telles que x(0,c) = 0 (c'est-a-dire
telles que ¢ » 1/4) sont fortement croissantes pour t > C,
et les solutions x = x(t,c) telles que %x(0,c) < O
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12 K.Tatarkiewicz

(ctest-a~dire telles que ¢ < 1/4) ont un minimum,exactement
t, = -c + 1/4. On peut calculer facilement que

X(tc,c) =-c +Vc + 3/4

pour ¢ e (031/4), La fonction x = x(t,c) étant croissante
par rapport & ¢ (pour tout t > 0 fixe), il s ensuit que pour
toutes les solutions qui vérifient la condition (3.3) on a

x{t,e) >t =Yt + 1 =: x(t,0) > /4 pour ¢ >0 et t >0

et: 1) il n"est pas vrai qu’il existe un ¢>0 tel gque bour
chague couple E,b tel que t ¢ (0,¢),]b = 1< ¢ il existe

une solution de 1’équation (3.2) gui vérifie les conditions
(3.3, et x(t) = b, 2) pour toutes les solutions de 1 équa-
tion (3.2) qui vérifient la condition (3,3) on a x{(t)>3/4 >0,
3) toutes les solutions de 1°éguation (3.2) qui vérifient la
condition (3.3) sont non bornées, unfin, 1 ensemble W et la
droite u = 1 n’ont pas de points communs.

La fonction h est continue et vérifie la condition lo-~
cale de Lipschitz, mais ne vérifie pas une condition de
Lipschitz avec une constante intégrale. Il est connu, gu'un
tel exemple avec une équation vérifisnt la condition de
Lipschitz avec une constante intégrale est impossible.

Il est facile (mais exige beaucoup de calculs) de modi-
fier la construction de la fonction h (en "l'asrrondissant"
dans ses points de non différentiabilité) de facon qu'elle
solt de classe Ck, ou k =1.

L'exenple 3.1 nous montre que sous les hypothéses du
théoréme IIT toutes les solutions vérifiant la c¢ondition
(3.3) peuvent &4tre non bornées. Cependant il est possible
dtétablir un théoréme sur l'existence des solutions bornées
dans une femillie vérifiant la condition (3.%) des solutions
de l'équation (4.2), ou la fonction f vérifie la condition
(2.2). Il com:l2te d'une facon essentielle le théoréme III:

Théorc¢ae IV, 3i la condition (2.2) est véri-
fiée et il existe une solution x = x.(t) de ltéguation
(#+2) et un nombre t. tels que
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L'appiication d'une méthode géometrigue 13

x (0) = 1, X, (t,) =k,

alors 11 existe une solution au moins x = xo(t) de 1l'équa-
tion (1.2) telle gue xo(O) =1 et pour tous les t >0
sppartenant 2u domeine d'existence de cette sclution x =
= Xo(t) on a k< xo(t) < 1, L'ensemble des valeurs initia-
les de ces solutions est fermé.

Démons tration. Frolongeons la fonction £
cans R3 coumme dans la démonstration du théoréme III et con-
sidérons la famille des solutions x '= x(t,p) telles que

x(0,p) = 1, x(0,p) = p.

4videmment les solutions x = x(t,~¢) pour des ¢ >0
assez petits aboutissent dans la droite x = 1 et vérifient
la condition FC 5%. Il s'ensuit de nos hypothéses gqu'il exis-
te un p; < C tel que x = x(t,pq) = xq(t) aboutit dans
la droite x = k. Nous pouvons donc applijuer le corrollaire
PC 4,7 - 11 s'ensuit la conclusion de notre théoréme. c.q.f.d.

Ce théoréme résulte aussi (d'une fagon relativement assez
simple) du théoréme 9.3 du travail Cz. Kluczny [3].

4, Encore d'autres résultats

Supposons maintenant que la fonction f = f(t,x,z) est
définie et continue pour tous les t =20 et pour tous les
X,z. De plus supposons que la fonction f vérifie la condi-
tion de Lipschitz, donc gque l'équation (1.2) a des solutions
saturées déterminées univoquement (& gauche et & droite) par
leurs coaditions initiales.

Nous dirons qu'une fonction x = x(t) est fortement
croissante dans l'ensembie connexe I ¢ R, si X(t) >0
pour tous les t € I, fortement décroissante, s8i X(t) < 0
et fortement monotone, si x(t) # O.

Dans la suite nous aurons besoin du lemme suivant.

Lemme 4.1, S'il existe un nombre b > 0 tel que
la condition
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14 K.Tatarkiewicz

(&.1) X £(t,%,0) > 0

est vérifiée pour chague t =0 et chague |x| = b, alors
toutes les solutions x = x(%) de l'équation (1.2) telles
que

(4.2) x(0) > b, x(0) = 0

sont fortement croissantes (et les solutions telles que
x(0)< -b et x(0) < 0 sont fortement décroissantes) pour
t > 0.

Une démonstration de ce lemme peut &tre trouvée dans
Fh. Hartman et A. Wintner [2]. Une autre - plus simple - est
donnée ci-dessous.

Démonstration. Supposons qu'une solution
x = x(t) vérifie les conditions initiales x(0) = Db et
x(0) = 0. 4lors, vu (4.1),

X(0) = £(0,b,0) >0

et il existe un t >0 tel que *x(t) > 0 pour + ¢ (0;%).
Maintenant supposons que la solution x = x(t) vérifie
les conditions (4.2). Il existe alors un t >0 tel que
%(t) > 0 pour t e (0,t) (si x(0) = O, nous avons démontré
ci-dessus l'existence dfun tel %, et si x(0) > 0, c'est
une conséquence de la continuité de la fonction x = x(%)).
Si T = + », le lemme est démontré. Supposons donc qufil
existe un t > O tel que i(to) = 0, Soit t, 1le plus
petit de ces t (ils existent sous nos suppositions).
Clest-a~dire que

() >0 pour t e (Cyt)

et i(to) = 0. Donc, vu (4.2), ona x(t))>b et

E(5,) = E(bgsx(b,),k(E)) = £(t,,x(t,),0) > O.

- 866 -



Ltapplicavion d'une méthode géometrique 15

Il s'ensuit que pour les t < to assez proches de to
on a x(t) < C. Ainsi on a obtenu une comtradiction. Donc
x(t) >0 pour tous les t >0. c.q.f.d.

Lemme 4.2. Si la condition (4.1) est vérifiée pour
tous les x # 0, alors les solutions de-l'éguation (1.2) qui
vérifient les conditions initiales x(0) = 0, X(0) # O sont
fortement monotones.

Démonstration., Nous avons supposé que
%(0) # 0 - pour fixer les idées - soit x(0) > O, Par con-
tinuité il existe alors un t > O tel que x(t) > 0 pour
t € <0;t>. En appliquant le lemme 4.1. nous obtenons la
thése de notre lemme., c.q.f.de '

Théoréme. BSila condition (4.1) est vérifiée
pour tous les x # 0, alors les solutions de l'équation
(1.2) n'oscillent pas.

Démonstration. Soit x = x(t) wune solu-
tion de 1l'équation (1.2). Alors ou bien c'est une solution
banale (x(t) = 0), ou bien pour t > 0O elle ne change pas
de signe, ou blien - enfin - elle le change. Dans ce dernier
cas il existe un plus petit t,> 0 tel que x(t) £ 0 pour
t ¢ (O;to) et x(to) = 0. Mais x = x(t) n'est pas alors
la solution banale, donc il doit é&tre k(to) A0 et, vu
le lemme 4.2, cette solution sera pour t > to fortement
monotone.

Donc chaque solution non banale a au plus un zéro et
aucune solution n'oscille pase. Ce.qefede

Désignons par B(k) pour k # O l'ensemble des solu-
tions de l'équation (1.2) pour lesquelles il existe un ty > 0,
tel que

(#.3) x(0) = k, x(tk) =0 et x(t) #0 pour t e < 05t,).

Lemme 4.3, 51 la condition (4.1) est vérifiée
pour tous les x # 0, le nombie k > 0 et la solution
x = x(t) de ltéquation (1.2) appartient & la classe B(k),
alors
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16 K.Taterkiewicz
(4.4) _ %(t) < 0

pour t e <03t,> (et si k <90, =zlors x(t) >0 pour
t e <O;tk>). N

Dénmonstration. Joit t, le plus petis noii-
bre = 0 tel gue x(fk) = 0. 2'il éteit T < t,, elors
- vu le lemme 4.2 - nous aurions x(t) < O pour te (tk;tk>>,
et x(t, )< 0 contrairement & nos hypothéses. Donc T, = tp. €.
x(t) > 0 pour +t e <:O;tk). Il s'ensult que i(tk)=s C.

Vu l'unicité de l'éguation (1.2),0n a k(tk)-< 0. Donec il
existent des ¥ e <Ojt, > tels que x(t) < 0, 3Jil existait
des t tels que (t) = O alors - vu la propriété de Darboux
des dérivées - 1l existeralt des t ¢ <0Cjt,) tels que

%(t) = 0. Supposons jue t est le plus grand nombre t < Ty
tel que x(%) = O, Alors étant donné que x(t) < O pour

t e (E;tk > et x(t,) =0 ona x(t) >0 et - vu (4.1) -
on a X(%t) > 0. Il s'ensuit que le nombre % est un minimum
propre de la fonction x = x(t) dans < E;tk> « Donec

0 = x(t,) < x(¥) < x(t) pour +t ¢ (E;tk> « En particulier

0 < x(%,) et nous sommes arrivés a une contradiction. Donc
on a (4.4). c.qg.f.d.

Supposons - comme ci~dessus - que la condition (4.1) est
vérifiée pour tous les x # O, En se basant sur les lemmes
4.2 et 4.3 on peut facilement démontrer que si une solu-
tion de l'équation (1.2) change de signe, alors elle est
fortement monotone. Et si une solution non banale a un signe
constant, alors elle est ou bien fortement monotone, ou bien
elle a au plus un extremum (si elle est positive, c'est un
minimum et si elle est négative, c¢'est un maximum). Il s'en-
suit encore une fois le théoréme précédant. Mais ce résultat
ne nous gaerantit pas l'existence des solutions de divers ty-
pes considérés (analogiquement aux résultats du n° 3).
Toutefois nous avons le théoréme suivant.

Théoréme V. Supposons que la condaition (4.1)
soit vérifiée pour chagque x # 0, Alors les valeurs initia-~
les (u,v) = (x(0),%(0)) des solutions saturées de 1l!'équa-
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tion (1.2) qui sont bornées dans leurs domaines d'existence
forment un ensemble non vide, fermé dans le plan (u,v).

Désignons par A l'ensemble des nombres réels k tels
gu'il existe une solution x = xk(t) de l'équation (1.2) et
un nombre tk tel que

(4.5) 5 (0) =k,  x(t) = 0.

Pour chaque ke A% := A.(0j+%) il existe au moins ume
solution x = x(t) de l'éguation (1.2) qui vérifie la condi-
tion x(0) =k et qui est dans son domaine d'existence po-
sitive et fortement décroissante (et pour chaque k e A~ :=
t= A.(—e0 j0) il existe au moins une solution qui vérifie la
condition x(0) = k et qui est dans son domaine d'existemce
négative et fortement croissante).

Démonstration. La premiére partie est ume
suite immédiate du théoréme III. Evidemment O € A.

Vu le théoréme IV, pour chaque k e AY et chaque ¢ >0
il existe une solution au moins telle que x(0) =k et
-t<x(t)< k pour t > 0, Pour chaque ¢ >0 leur ensemble
est fermé, donc il existe au moins une golution X = xo(t)
telle que xo(O) =k et O0<x,(t)<k pour % 20. Jde
dis que xo(t) > O. En effet,'dans le cds contraire il exis-
terait un plus petit t, > 0 tel que go(to) = 0. Alors ou
bien io(to) = 0 - dans ce cas l& nous aurons une contradic-
tion avec l'unicité de l'équation (1.2). Ou bien ko(to) <0
- dans ce cas la on pourrait prolonger optte solution au-deléa
de t, et la condition 0 < xo(t) ne pourrait pas dtre vé-
rifiée dans le domaine d'existemce de la solution x = xo(t).
De méme nous démontrerons que xo(t)-< k pour t > O,

Soit x = x(t,q) 1la solution de 1l'équation (1.2) qui
vérifie les conditions

x(0,q) = k, x(0,q) = Qe

- 869 -
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Nous avons démontré qu'il existe des ¢q tels que
(4.6) 0 < x(t,q) <k

pour t > O. Désignons par Q leur ensemble. Du théoréme III
il s'ensuit qu'il est fermé. Posons q, = Inf Q. Evidemment
do ¢ Q) donc la solution x = x(t,qo) vérifis la condition
(446). Je dis que cette solution x = x(t,qo) est une fonction
fortement décroissante. En effet, s'il existait un t,> 0

tel que i(to,qo) = 0, alors, vu le lemme 4.1 (ou bien le
théoréme I du travail Ph. Hartman, A. Wintner [2]), la fonc~
tion x = x(t,q,) seraeit fortement croissante pour +t >t

et pour chaque a > 0 tel que t, +a appartient au champs
de la solution x = x(t,qo) on aura

(4.7) o< ha i= x(to + a, qo) - x(to9qo)°,

Vu la continuité de la famille de fonctions x = x(t,q)
par rapport 4 son paramétre gq, il existe un p >0 tel
que, si |q - qo|<? , alors

lx(tODQ) - x(to.qo) < %hao

Du lemme 4.3 il s'ensuit que si g < g,y alors les fonc-
tions x = x(t,q) sont fortement décroissantes pour +t >t
Donc pour q e (qo —q;qo) on aura

x(t,+a,q) + %—ha < x(t,+a,q,)

en contradiction avec (4.7). Nous voyons que la fonction
X = x(t,qo) est positive et fortement décroissante pour
t >0 ce.qefede.

Ce théoréme ressemble un peu au théoréme III dqu travail
Ph. Hartman, A. Wintner [2]. Mais il a des conclusions (et
les suppositions) un peu plus fortes et sa démonstration est
beaucoup plus simple que celle des M.M.Hartman et Wintner.

- 870 ~



L'application d'une méthode géometrigue 19

5. Applications aux équations linéaires

Supposons que les fonctions a = a(t), b = b(t) et
g = g(t) sont définies et continues pour tous les t = 0.
Alors toutes les solutions saturées de 1l'équation (1.4) li-
néaire du second ordre sont définies pour tous les +t >0 et
sont déterminées biunivoquement par leurs valeurs initialese

Théoréme VI. L'éguation différentielle linéaire
sans second membre

(5.1) X - 2a(t)x - v(t)x = 0,
ou
b(t) > 0,

admet une famille & un paramétre au moins de solutions bor-
nées.,

Démonstretion. Posons f£(t,x,z) = b(t)x +
+ 2a(t)z. Nous voyons que

X.£(t,x,0) = b(t)x® >0

pour t»0 et x £ O, En vertu du théoréme V, il existe
au moins une solution bornée non banale, donc gussi une fa-
mille 4 un varamétre au moins de solutions bornées. c.gef.de

Ce résultat peut 8tre obtenu aussi & l'aide de calouls
élémentaires des estimations de Cz. Olech [4].

Si la famille de solutions bornées de 1l'éguation (5.1)
est A4 un paramétre exactement, alors l'ensemble W des va-
leurs initiales (u,v) = (x(0),x(0)) des fonctions lui ap-
partenant est formée par une droite ayant comme é&quation
u=1xv, O r <0,

On peut démontrer & l'aide des exemples (voir K.Tatar-
kiewicz [7], n® 5 et [8]) que. sous les suppositions du théo-
réme VI toutes les solutions de l'équation (5.1) peuvent
&8tre bornées; alors l'ensemble W est formé par tout le
plan (u,v).
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Pour les équations linéaires avec second membre (1.4)
on obtient le théoréme suivant-s.
Théoréme VII. Supposons gu'il existe une con-

stante k >0 telle que
(542) |g(t)| < xb(t)

pour tous les t = 0. Alors ltéquation (1.4) admet une fa~
mille & un paramétre aur moins de solutions bornées. Elle ad-
met méme des solutions gui vérifient la condition |x(t)| < k
pour tous les t =0, '

Démonstration. Vu(5.2), nous avons
b(t) > 0. Posons
£(t,x,2) = b(t)x + 2a(t)z + g(t).

Nous voyons que pour x > k nous avons

£(t,x,0) = b(t)x + g(t) > (x - K)b(%) =0
et pour x < -k

£(t,%,0) = b(t)x + g(t) < (x + k)b(t) < 0Of,

H

En vertu du théoréme III et de propriétés des équations
linéaires il existe la famille des solutions exigées. c.q.f.d.
Du théoréme VII il s'ensuit immédiatement le théoréme

suivant (dont l'enoncé est assez simple).

Théoréme VIII. Si b(t) 2b, >0 et la fonc-
tion g = g(t) est bornée, alors l'égquation (1.4) admet une
famille & un paramétre au moins de solutions bornées.

Ce dernier théoréme peut aussi étre obtenu des résultats
de Z. Opial [5] & ltaide des calculs relativement faciles.
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