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L'APPLICATION D'UNE MÉTHODE GÉOMÉTRIQUE 
À L'ÉTUDE DES ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES 

DU SECOND ORDRE 

1. Introduction 
Soit une fonction 

(1.1) f = f ( t , x , z ) 

déf inie et continue dans l'ensemble H* :=<0;+oc) * < k j l > x 
x (-00 ;+<» ) , où k <• 1 sont deux nombres rée ls . Supposons 
qu'e l le v é r i f i e la condition de Lipschitz. Alors l 'équation 
d i f f é ren t i e l l e ordinaire du second ordre 

(1.2) x = f ( 0 , x , x ) 

(où j désigne la fonction-identité, c 'est-à-dire une fonc-
tion t e l l e que j ( t ) = t pour tous les t ) a des solutions 
saturées déterminées univoquement par leurs conditions in i -
t i a l es . 

Le travai l présent est consacré à l 'étude des solutions 
x = x ( t ) de l 'équation (1.2) qui vér i f i ent la condition 

(1.5) k «t x ( t ) < 1 pour t > 0. 

Nos démonstrations seront basées sur les résultats de no-
tre travai l [ 9 j . En citant les numéros de résultats de ce 
travai l nous les ferons accompagner des le t t res "FC". 
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2 K. Tatarkiewicz 

Le dernier paragraphe est consacré à un cas particulier de 
l'équation (1.2), à savoir à l'équation linéaire 

(1.4) x - 2a(t)i - b(t)x = g(t), 

où les fonctions a = a(t), b = b(t) et g = g(t) sont dé-
finies et continues pour t > 0. 

2. Le théorèjne fondamental 
Considérons le plan des variables (u,v). Nous allons 

étudier l'ensemble des points (u,v) tel que les solutions 
x = x(t) de l'équation (1.2) qui vérifient les conditions 
initiales 

(2.1) x(0) = u, x(0) = v 

(qui les déterminent - vu les hypothèses que nous avons ad-
mises - d'une façon univoque), vérifient la condition (1.3). 
Nous avons le théorème suivant» 

T h é o r è m e III. Si 

(2.2) f(t,k,0) < 0 et 0 < f(t,l,0) 

pour tous les t » 0, alors il existe des solutions saturées 
x = x(t) de l'équation (1.2) telles qu'on a (1.3) dans leurs 
domaines d'existence. L'ensemble W de leurs valeurs initia-
les (u,v) = (x(0),x(0)) est fermé et coupe l'ensemble 
U :=<k;l>* (-ooj+oo) en deux ensembles disjoints, dont un 
contient la demi-droite u = k, v é 0 et l'autre la demi-
droite u = 1, v > 0. 

D é m o n s t r a t i o n . I. Considérons une courbe 
continue donnée paramètriquement dans le plan (u,v) à 
l'aide des formules 

(2.3) u = m(s), v = n(s), 
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L'application d'une méthode géometrjque 3 

où m ét n sont deux fonctions continues, définies dans 

l'intervalle < 0 j 1 > telles que 

(2.4) 
m(0) = k, n(0) < 0, 

m(1) = 1, n(1) > 0 

et 

(2.5) k < m(s) < -1 pour s e (0;1). 

Posons 

f(t,x,z) = 
f(t,k,z) x < k, 0 < t, z e R 

pour 
f(t,l,z) 1 < x, 0 « t, z e R 

et 

f(t,x,z) = f(-t,x,z) pour t < 0. 

C'est un-prolongement continu de la fonction f de 
l'ensemble H dans Rj. Remarquons que les solutions sa-
turées de l'équation (1.2) prolongée restent définies uni-
voquament par leurs valeurs x(0) et x(0). En effet, si 
la fonction f vérifie dans l'ensemble H* la condition 
de Lipschitz (comme nous l'avons supposé), alors notre fonc-
tion prolongée vérifie cette condition aussi. 

Désignons par 

(2.6) X = x(t,s) 

(pour se <0;1> ) cette solution de l'équation (1.2) qui 
vérifie les conditions initiales 

(2.7) x(C,s) =m(s), x(0,s) = n(s). 
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'4 K.Tatarkiewicz 

La famille des fonotions x = x(t,s), vérifie les hypo-
thèses du corrollaire FG 4.1. 

En effetipour démontrer que les conditions FC 4 a et 5 a 

sont vérifiées, supposons que s soit un nombre fixe appar-
tenant à 1•intervalle (0|1) dono qu'on a (2.5). Alors on 
a ou bien x(t,s) e (k;l) pour t >0, ou bien il exisxe 
un t(s) > 0 t9l que x(t(s),s) e {1 . ¡Supposons qu'un 
tel t(s) existe et - pour fixer les idées - supposons que 

(2.8) x(t(s),s) = 1. 

Nous avons déjà remarqué que si s e (0j1), alors on a 
(2.5), donc t(s) > 0. Le nombre t(s) est le plus petit 
de tous pour lesquels on a (2.8), donc 

(2.9) x(t,s) -c 1 pour t e <Ojt(s)). 

Il s'ensuit que x(t(s),s) > 0 pour l'ensemble L des 

s e (0;1) tels qu'on a (2.8). Supposons que x(t(s),s) = 0. 

Vu (2.2), on a 

x(t(s),s) = f(t(s),x(t(s),s),0) > 0 , 

donc t = t(s) est un minimum stricte local de la fonction 
x = x(t,s). Il s'ensuis qu'il existe un c > 0 tel que 

1 c x(t,s) pour t e (t(s) - e;t(s)) + (t(s)jt(s) + t), 

ce qui est contraire à (2.9). Donc il doit être x(t(s),s) > 0. 
Mais alors il existe un r(s) > 0 tel que 

x(t,s) > 0 pour t e < t(s);t(s) + r(s)) 

et - vu (2.8) - de plus 

x(t,s) > 1 pour t e (t(s)jt(s) + r(s)). 
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L'application d'une méthode géométrique 5 

Vu (2.4), nous avons x(0,1) > 0. Un raisonnement sem-
blable à celui donné ci-dessus nous montre qu'on a alors 
x(t,1) > 0 pour t e (0;r(0)), où r(0) > 0 (mais la so-
lution x = x(t,1) de l'équation prolongée peut avoir un 
minimum au point t = 0) et de plus on a x(t,1) > 1 pour 
t € (0;r(0)). 

Ainsi nous avons démontré que si x(t(s),s) = 1, alors 
la courbe x = x(t,s) "sort" au point t = t(s) de l'en-
semble U. De même, si x(t(s),s) = k, on démontre que la 
oourbe x = x(t,s) "sort" au point t = t(s) de l'ensemble 
U. 

Le lecteur voudra bien déterminer analytiquement un en-
semble ouvert G tel que H* C G et tel que toutes les 
courbes correspondantes aux solutions apartenant à notre fa-
mille, après avoir été rétrécies dans G ont au plus un 
point commun avec les droites x = k et x = 1. 

Ainsi nous avons démontré que la condition FC 4 a est vé-
rifiée. La même démonstration montre, que dans le cas où 
n(0) = 0 ou bien n(1) = 0 la condition FC 5 a est véri-
fiée. Elle est vérifiée d'une façon évidente si l'on a 
n(0) < 0 et n(1) > 0. 

La vérification des conditions FC 1 a, 2 a et 3 a est immé-
diate. Donc il existe un nombre s = S(m,n) (dépendant de 
la courbe (2.7)) tel que 

k < x(t,S(m,n)) < 1 

pour tous les t > 0 appartenant au domaine de l'existence 
de la fonction x = x(t,S(m,n)). 

Pour chaque couple c"e fonctions m,n soit Z(m,n) l'en-
semble de tous les s tels que la condition (1.5) soit véri-
fiée pour tous les t > û appartenant au domaine d'existence 
de la fonction x = x(t,s). Ne us avons démontré que pour' les 
courbes (2.3) qui vérifient les conditions (2.4) et (2.5) 
on a Z(m,n) ^ 0 (voir la fig.*). évidemment Z(m,n) c (0|1). 

- 857 -



6 K.Tatarkiewic z 

Fig.1 

Soit Ŵ j l'ensemble des points (u,v) qui est formé 
par tous les points (m(s),n(s)) pour lesquels s e Z(m,n) 
pour toutes les courbes (2.3) qui vérifient les conditions 
(2.4) et (2.5)« Comme d'ordinaire désignons par l'U l'in-
térieur de l'ensemble U (c'est-à-dire que l'U=(kjl)* R). 
On a W1 C l'U. 

Étant donné que chaque courbe continue (2.3) qui vérifie 
les conditions (2.4) a des points communs avec l'ensemble W^, 
ce dernier coupe l'U en deux ensembles disjoints (ils con-
tiennent respectivement les demi-droites u = k, v s£ 0 et 
u = 1, v » 0). 

Par définition de l'ensemble W on a W^ c W. Étant 
donné que par chaque point (u,v) e l'U passe au moins une 
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L'application d'une méthode géométrique 7 

courbe (2.5) qui vérifie les conditions (2.4) et (2.5) on a 
W.I'U C W„ donc W.I'U = W,,. 

II. Soit (^»VQ) ê n = 1»2»»*» une suite de points 
convergente vers (u0»v0)* Soit x = x ^ t ) , n = 1,2,... 
la suite des solutions de l'équation (1.2) telles que 

xn<°> = "n- V ° > = vn* 

Supposons que ( u
0i

v
0) ® Alors il existerait un plus 

petit t » 0 tel que ^Î^Q) = k o u = 1* •Pour 

fixer les idées supposons que x
0("t0) = k. Alors il existe 

un c > 0 tel que xQ(t) < k pour t e ('koJ'
t
o
+0« Mais les 

solutions d'une équation différentielle (qui vérifie nos hy-
pothèses) dépendent d'une façon continue des conditions ini-
tiales - donc on aura x

n('t0 + £) < k pour presque tous 
les n, contrairement à la supposition que (un»vn) e W. 
Donc ( u

0i
v
0) e W et 1'ensemble W est fermé. 

III. De I et de II il s'ensuit que la fermeture 
W^ c W. Donc l'ensemble W coupe U en deux ensembles dis-
joints qui contiennent les demi-droites u = k, v < 0 et 
u = 1, v > 0 respectivement, c.q.f.d. 

La première partie de ce théorème (c'est-à-dire l'existen-
ce d'une infinité de solutions bornées de l'équation (1.2), 
si les conditions (2.2) sont vérifiées) fut démontré par 
I.Barbalat [l] par la méthode de rétracte de T.Wazewski [10]. 

Remarquons que l'ensemble W peut ne pas être connexe 
et qu'il peut être W,, i W. , 

Nous avons supposé que la condition de Lipschitz soit 
vérifiée. Cette supposition entraîne l'unicité de l'équation 
(1.2). Cela signifie, que par chaque point de l'espace 
(t,x,x) passe au plus une (donc exactement une) solution sa-
turée de l'équation (1.2). Cependant nar chaque point du plan 
(t,x) passe une infinité de courbes qui sont des images des 
solutions saturées de cette équation. Et même par un point 
du plan (t,x) peut passer une infinité de courbes qui sont 
des images des solutions appartenant à la sôus-famille de 
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8 K.Tatarkiewicz 

solutions considérées par nous (c'est-à-dire définies par les 
conditions (2.7)). L'exemple 3.1 le démontrera. 

D'ailleurs cette hypothèse de la condition de Lipschitz 
et - même - la supposition de l'univocité de l'équation (1.2) 
n'est pas nécessaire. Elle nous garantit seulement la dépen-
dance continue des solutions de leurs valeurs initiales. 
Dans les théorèmes (et dans le corollaire FC 4.1) du travail 
[9] que nous employons, nous ne supposons pas que les courbes 
de la famille considérée sont univoquement déterminées par 
leurs "valeurs initiales". Il est assez facile de démontrer 
le théorème III (le lecteur voudra bien le faire ) non pas en 
supposant que la condition de Lipschitz soit vérifiée, mais 
ën supposant l'unicité de l'équation (1.2). On peut même 
formuler un théorème analogue sans même l'hypothèse de l'uni-
vocité de l'équation considérée (1.2). Il faut alors renoncer 
à ce que le paramètre s correspond bi-univoquement à des 
valeurs initiales de la famille considérée, et il faut assu-
rer par une hypothèse supplémentaire la dépendance continue 
des solutions du paramètre s. 

3. Les résultats plus précis 
Il est évident que l'ensemble W défini au paragraphe 

précédent ne peut pas avoir des points communs avec les deux 
demi-droites u = k, v é 0 et u = 1, v ss 0. L'exemple sui-
vant montre que W peut ne pas avoir des points communs 
avec les demi-droites ouvertes u = k, v > 0 ou u = 1, v < 0 
(et môme sa projection sur l'axe Ou peut former un intervalle 
qui ne contient pas l'intervalle (kjl)). 

Le même exemple a - d'ailleurs - des applications au Cal-
cul des Variations (voir K.Tatarkiewicz [ê], §7.8,p.84). En 
effet il démontre qu'il existe des équations de second ordre 
x = f(j,x,x) (où la fonction f est définie dans l'espace 
R, entier) et de points (a,b) tels que pour chaque c >0 P . 2 il existe au moins un point (c,d), où c £ & et (d-a) + 

2 2 • + (d-b) < e , tel qu'il n'existe pas de solutions de cette 
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L'application d'une méthode géométrique 9 

équation qui vér i f i ent les conditions aux limites x(a) = b 
et x (c ) = d. 

E x e m p l e 3.1. Considérons la famil le de courbes 

! -
2 f t + c 

pour 

c - 1 

C « 1 

c > 
2 Vt~+~T 

définie pour t <• 0 et c e R (voir la f i g . 2 ) . 

y 

Fig. 2 
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10 K.Tatarkiewicz 

Ce t te f a m i l l e v é r i f i e l ' é q u a t i o n d i f f é r e n t i e l l e de premier 
ordre 

y = gCd.y) . 

ou 

6 ( t , y ) 

2(1 - y ) 5 

2T ( t + 1 ) 
-3/2 

pour 

7 -

7 > 1 -

2 Vt + 1' 

1 
2 Vt + 1" 

e s t une f o n c t i o n cont inue e t v é r i f i a n t l a cond i t i on de Lips-
c h i t z . 

On a évidemment 

( 5 . 1 ) g ( t , 0 ) > 0 

pour t > 0. 
Posons pour tous l e s z e t t ous l e s t > 0 

h ( t , x , z ) = 

g ( t , z ) 

x - j + 2x g ( t , z ) 

- 1 / 2 

1/2 « x 

pour 0 < x < 1 / 2 

x « 0. 

La f o n c t i o n h e s t cont inue e t v é r i f i e l a cond i t i on 
loca l e de L i p s c h i t z . Vu (3.1 ) , on a 

h ( t , 0 , 0 ) < 0 , 0 < h ( t , 1 , 0 ) . 

Considérons l e s s o l u t i o n s de l ' é q u ^ t i o i j de secon4 ordre 

(3 .2 ) x = h ( j , x , x ) 

qui v é r i f i e n t l a cond i t ion i n i t i a l e 
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x(0) = 1. 

11 

Elles sont données par la formule (voir la fig.3) 

0 < c 
x(t,c) = 

t - Vt + c + 1 + Vc 

et - V t + 1 + 2 
pour 

1 < c. 

Fig.3 

Cette famille est définie pour c > 0 et - vu l'unicité de 
l'équation (3»2) - contient toutes ses solutions saturées qui 
vérifient la condition (3»3)« ?ar exemple pour c e (0;1 > 
on a c = 4~1(1 - x(0))~2. 

¿tant donné que x(t,c) = y(t,c), les solutions apparte-
nant à cette famille telles que x(0,c) 3* 0 (c'est-à-dire 
telles que c >1/4) sont fortement croissantes pour t > 0, 
et les solutions x = x(t,c) telles que x(0,c) <• 0 
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(c 'est-à-dire telles que c < 1/4) ont an minimum.,exactement 
t := -c + 1/4. On peut calculer facilement que 

x(tc,c) = -c + VcT + 3/4 
pour c e (0;1/4). La fonction x = x(t,c) étant croissante 
par rapport à c (pour tout t > 0 fixe), il s'ensuit que pour 
toutes les solutions qui vérifient la condition (3.3) on a 

x(t,c) > t - Vt + 1 =: x(t,0) > 3j/4 pour c > 0 et t > 0 
et: 1) il n'est pas vrai qu'il existe un e> 0 tel que pour 
chaque couple t,b tel que t e (0,c),|b - 1[<£ il existe 
une solution de l'équation (3.2) qui vérifié les conditions 
(3.3/ et x(t) = b, 2) pour toutes les solutions de l'équa-
tion (3.2) qui vérifient la condition (3.3) on a x(t)>3/4>u, 
3) toutes les solutions de l'équation (3.2) qui vérifient la 
condition (3.3) sont non bornées, ¡¡¿nfin, l'ensemble W et la 
droite u = 1 n'ont pas de points communs. 

La fonction h est continue et vérifie la condition lo-
cale de Lipschitz, mais ne vérifie pas une condition de 
Lipschitz avec une constante intégrale. Il est connu, qu'un 
tel exemple avec une équation vérifiant la condition de 
Lipschitz avec une constante intégrale est impossible. 

Il est facile (mais exige beaucoup de calculs) de modi-
fier la construction de la fonction h (en "l'arrondissant" 
dans ses points de non différentiabilité) de façon qu'elle 

k 
soit de classe C , ou k > 1 . 

L'exemple $.1 nous montre que sous les hypothèses du 
théorème III toutes les solutions vérifiant la condition 
(3«5) peuvent être non bornées. Cependant il est possible 
d'établir un théorème sur l'existence des solutions bornées 
dans une famille vérifiant la condition (3.3) des solutions 
de l'équation (1.2), où la fonction f vérifie la condition 
(2.2). Il como.]~3te d'une façon essentielle le théorème III: 

T h é o r è m e IV. Si la condition (2.2) est véri-
fiée et il existe une solution x = x^(t) de l'équation 
('.2) et un nombre t„ tels que 
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L'application d'une méthode géométrique 13 

x,.(0) = 1, x^t,,) = k, 

alors il existe une solution au moins x - xQ(t) de l'équa-
tion (1.2) telle que x (C) = 1 et pour tous les t > 0 
appartenant au domaine d'existence de cette solution x = 
= x (t) on a k ̂  x (t) 1. L'ensemble des valeurs initia-o o 
les de ces solutions est fermé. 

D é m o n s t r a t i o n . Prolongeons la fonction f 
dans R, comme dans la démonstration du théorème III et con-3 sidérons la famille des solutions x '= x(t,p) telles que 

x(0,p) = 1, x(0,p) = p. 

évidemment les solutions x = x(t,-t) pour des t >0 
assez petits aboutissent dans la droite x = 1 et vérifient 
la condition PC 5a» H s'ensuit de nos hypothèses qu'il exis-
te un p^ < 0 tel que x = x(t,p^) = x^(t) aboutit dans 
la droite x = k. Nous pouvons donc appliquer le corrollaire 
PC 4.1 - il s'ensuit la conclusion de notre théorème, c.q.f.d. 

Oe théorème résulte aussi (d'une façon relativement assez 
simple) du théorème 9.3 du travail Cz. Kluczny [ 3 ] . 

4. Encore d'autres résultats 
Supposons maintenant que la fonction f = f(t,x,z) est 

définie et continue pour tous les t » 0 et pour tous les 
x,z. De plus supposons que la fonction f vérifie la condi-
tion de Lipschitz, donc que l'équation (1.2) a des solutions 
saturées déterminées univoquement (à gauche et à droite) par 
leurs conditions initiales. 

Nous dirons qu'une fonction x = x(t) est fortement 
croissante dans l'ensemble connexe I c R, si x(t) > 0 
pour tous les t e l , fortement décroissante, si x(t) 0 
et fortement monotone, si x(t) ̂  0. 

Dans la suite nous aurons besoin du lemme suivant. 
L e m m e 4.1. S'il existe ion nombre b > 0 tel que 

la condition 
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(4.1) x.f(t,x,0) > 0 

est vérifiée pour chaque t 3*0 et chaque |x| >- b, alors 

toutes les solutions x = x(t) de l'équation (1.2) telles 

que 

(4.2) x(0) > b, x(0) 0 

sont fortement croissantes (et les solutions telles que 

x(0) < -b et x(0) «S 0 sont fortement décroissantes) pour 

t > 0. 

Une démonstration de ce lemme peut être trouvée dans 

rh. Hartman et À. ïïintner [2]. Une autre - plus simple - est 

donnée ci-dessous. 

D é m o n s t r a t i o n . Supposons qu'une solution 

x = x(t) vérifie les conditions initiales x(0) = b et 

x(0) = 0. Alors, vu (4.1), 

x(C) = f(0,b,0) > 0 

et il existe un t > 0 tel que x(t) > 0 pour t e (0;t). 

Maintenant supposons que la solution x = x(t) vérifie 

les conditions (4.2). Il existe alors un t > 0 tel que 

x(t) > 0 pour t e (0,t) (si x(0) = 0, nous avons démontré 

ci-dessus l'existence d'un tel t, et si x(0) > 0, c'est 

une conséquence de la continuité de la fonction x = x(t)). 

Si t = + » , le lemme est démontré. Supposons donc qu'il 

existe un t Q > 0 tel que x(t0) = 0. Soit t Q le plus 

petit de ces t (ils existent sous nos suppositions). 

C'est-à-dire que 

x(t) > 0 pour t e (0,tQ) 

et x(tQ) = 0. Donc, vu (4.2), on a x ( t Q ) > b et 

x(tQ) = f(t0,x(tQ),i(t0)) = f(to,x(tQ),0) > 0. 
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Il s'ensuit que pour les t < tQ assez proches de tQ 
on a x(t) < 0. Ainsi on a obtenu une contradiction. Donc 
x(t) > 0 pour tous les t > 0. c.q.f.d. 

L e m m e 4.2. Si la condition (4.1) est vérifiée pour 
tous les x ^ 0, alors les solutions de-l'équation (1.2) qui 
vérifient les conditions initiales x(0) = 0, x(0) £ 0 sont 
fortement monotones. 

D é m o n s t r a t i o n . Nous avons supposé que 
x(0) ̂  0 - pour fixer les idées - soit x(0) > 0. Par con-
tinuité il existe alors un t > 0 tel que x(t) > 0 pour 
t e <0;t> . En appliquant le lemme 4.1. nous obtenons la 
thèse de notre lemme, c.q.f.d. 

T h é o r è m e . Si la condition (4.1) est vérifiée 
pour tous les x ^ 0, alors les solutions de l'équation 
(1.2) n'oscillent pas. 

D é m o n s t r a t i o n . Soit x = x(t) une solu-
tion de l'équation (1.2). Alors ou bien c'est une solution 
banale (x(t) s 0), ou bien pour t > 0 elle ne change pas 
de signe, ou bien - enfin - elle le change. Dans ce dernier 
cas il existe un plus petit tQ > 0 tel que x(t) ^ 0 pour 
t 6 (0}tQ) et x(tQ) = 0. Mais x = x(t) n'est pas alors 
la solution banale, donc il doit être x(tQ) ¿ 0 et, vu 
le lemme 4.2, cette solution sera pour t > tQ fortement 
monotone * . 

Donc chaque solution non banale a au plus un zéro et 
aucune solution n'oscille pas. c.q.f.d. 

Désignons par B(k) pour k ^ 0 l'ensemble des solu-
tions de l'équation (1.2) pour lesquelles il existe un tk > 0, 
tel que 

(4.5) x(0) = k, x(tk) = 0 et x(t) t 0 pour t e <0jtk). 

L e m m e 4.3. Si la condition (4.1) est vérifiée 
pour tous les x ^ 0, le nombre k > 0 et la solution 
x = x(t) de l'équation (1.2) appartient à la classe B(k), 
alors 
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16 K.Tatarkiewic z 

(4.4) ¿(t) < 0 

pour t e <0;t v> (et si k < 0 , alors x(t) > 0 pour 
t e < 0;tk>). 

D é m o n s t r a t i o n . Soit t k le plus petit nom-
bre > 0 tel que x(tk) =0« S'il était t k < tk, alors 
- vu le lernme 4.2 - nous aurions x(t) < 0 pour te ('tjcitjî;> , 
et x(tk)< 0 contrairement à nos hyjjothèses. Donc t k = t^. e j 
x(t) > 0 pour t e <Cjtk). Il s'ensuit que x(tk) si 0. 
Vu l'unicité de l'équation (1.2),on a x(tk) < 0. Donc il 
existent des t e < 0 } t k > tels que x(t) < 0. 3/il existait 
des t tels que x(t) ̂  0 alors - vu la propriété de Darboux 
des dérivées - il existerait des t 6 < Ojtk) tels que 
x(t) = 0. Supposons ¿ue t est le plus grand nombre t < t k 
tel que x(t) = 0. Alors étant donné que x(t) < 0 pour 
t e (t;tk > et x(tk) = 0 on a x(t) > 0 et - vu (4.1) -
on a x(t) > 0. Il s'ensuit que le nombre t est un minimum 
propre de la fonction x = x(t) dans <. ̂ »^k5* * Donc 
0 = x(tk) < x(t) < x(t) pou? t e (t;tk> . En particulier 
0 < x(tk) et nous sommes arrivés à une contradiction. Donc 
on a (4.4). c.q.f.d. 

Supposons - comme ci-dessus - que la condition (4.1) est 
vérifiée pour tous les x à 0. En se basant sur les lemmes 
4.2 et 4.3 on peut facilement démontrer que si une solu-
tion de l'équation (1.2) change de signe, alors elle est 
fortement monotone. Et si une solution non banale a un signe 
constant, alors elle est ou bien fortement monotone, ou bien 
elle a au plus un extremum (si elle est positive, c'est un 
minimum et si elle est négative, c'est un maximum). Il s'en-
suit encore une fois le théorème précédant. Mais ce résultat 
ne nous garantit pas l'existence des solutions de divers ty-
pes considérés (analogiquement aux résultats du n° 3). 
Toutefois nous avons le théorème suivant. 

T h é o r è m e V. Supposons que la condition (4.1) 
soit vérifiée pour chaque x ^ 0. Alors les valeurs initia-
les (u,v) = (x(0),x(0)) des solutions saturées de l'équa-
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tion (1.2) qui sont bornées dans leurs domaines d'existence 

forment un ensemble non vide, fermé dans le plan (u,v). 
Désignons par A l'ensemble des nombres réels k tels 

qu'il existe une solution x = x^Xt) de l'équation (1.2) et 
un nombre "b̂  tel que 

(4.5) *k(0) = k» W = 0« 

Pour chaque k e A + s= A.(Oj+oo) il existe au moins une 
solution x = x(t) de l'équation (1.2) qui vérifie la condi-
tion x(0) = k et qui est dans son domaine d'existence po-
sitive et fortement décroissante (et pour chaque k e A~ := 
:= A . ( — ; 0 ) il existe au moins une solution qui vérifie la 
condition x(0) = k et qui est dans son domaine d'existence 
négative et fortement croissante). 

D é m o n s t r a t i o n . La première partie est une 
suite immédiate du théorème III. évidemment 0 e A. 

Vu le théorème IV, pour chaque k e A + et chaque £ > 0 
il existe une solution au moins telle que x(0) = k et 
- c ^x(t) c k pour t > 0. Pour chaque e > 0 leur ensemble 
est fermé, donc il existe au moins une solution x = xQ(t) 
telle que xQ(0) = k et 0 ^ xQ(t) < k pour t > 0. Je 
dis que xQ(.t) > 0 . En effet,'dans le cas contraire il exis-
terait un plus petit tQ > 0 tel que x0(tQ) = 0. Alors ou 
bien xQ(t0) = 0 - dans ce cas là

: nous aurons une contradic-
tion avec l'unicité de l'équation (1.2).^ Ou. bien x0(tQ) *

 0 

- dans ce cas là) on pourrait prolonger oette solution au-delà 
de tQ et la condition 0 ̂  x

Q(t) ne pourrait pas êftre vé-
rifiée dans le domaine d'existence de la solution x = xQ(t). 
De même nous démontrerons que xQ(t) < k pour t > 0. 

Soit x = x(t,q) la solution de l'équation (1.2) qui 
vérifie les conditions 

x(0,q) = k, i(Q,q) = q. 
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Nous avons démontré qu'il existe des q tels que 

(4.6) 0 «c x(t,q) < k 

pour t > 0. Désignons par Q leur ensemble. Du théorème III 
il s'ensuit qu'il est fermé. Posons qQ = Inf Q. Évidemment 
40 t Q» donc la solution x = x(t,q0) vérifie la condition 
(4.6). Je dis que cette solution x = x(t,q0) est une fonction 
fortement décroissante. En effet, s'il existait un tQ > 0 
tel que x(tQ,q0) = 0, alors, vu le lemme 4.1 (ou bien le 
théorème I du travail Ph. Hartman, A. Wintner [2J), la fonc-
tion x = x(t,qQ) serait fortement croissante pour t > tQ 
et pour chaque a > 0 tel que tQ + a appartient au champs 
de la solution x = x(t,qQ) on aura 

(4.7) 0 < ha 1= x(tQ + a, q0) - x(tQ,q0)., 

Vu la continuité de la famille de fonctions x = x(t,q) 
par rapport à son paramètre q, il existe un p > 0 tel 
que, si |q - qQ|< p , alors 

|x(tQ,q) - x(t0,qQ)| < Jh a. 

Du lemme 4.3 il s'ensuit que si q c qQ, alors les fonc-
tions x = x(t,q) sont fortement décroissantes pour t > tQ. 
Donc pour q e (qQ on aura 

x(tQ+a,q) + \ ha c x(t0+a,qQ) 

en contradiction avec (4.7). Nous voyons que la fonction 
x = x(t,qQ) est positive et fortement décroissante pour 
t > 0. c.q.f.d. 

Ce théorème ressemble un peu au théorème III du travail 
Ph. Hartman, A. Wintner [2]. Mais il a des conclusions (et 
les suppositions) un peu plus fortes et sa démonstration est 
beaucoup plus simple que celle des M.M.Hartman et Wintner. 
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5. Applications aux équations linéaires 
Supposons que les fonctions a « a(t), b = b(t) et 

g = g(t) sont définies et continues pour tous les t > 0. 
Alors toutes les solutions saturées de l'équation (1.4) li-
néaire du second ordre sont définies pour tous les t > 0 et 
sont déterminées biunivoquement par leurs valeurs initiales» 

T h é o r è m e VI. L'équation différentielle linéaire 
sans second membre 

(5.1) x - 2a(t)i - b(t)x = 0, 

où 

b(t) > 0, 

admet une famille à un paramétre au moins de solutions bor-
nées. 

D é m o n s t r a t i o n . Posons f(t,x,z) = b(t)x + 
• 2a(t)z. Nous voyons que 

x.f(t,xt0) = b(t)x2 > 0 

pour t > 0 et x / 0. En vertu du théorème V, il existe 
au moins une solution bornée non banale, donc aussi une fa-
mille à un paramètre au moins de solutions bornées, c.q.f.d. 

Ce résultat peut être obtenu aussi à l'aide de calculs 
élémentaires des estimations de Cz. Olech [4]. 

Si la famille de solutions bornées de l'équation (5.1) 
est à un paramètre exactement, alors l'ensemble W des va-
leurs initiales (u,v) = (x(0),x(0)) des fonctions lui ap-
partenant est formée par une droite ayant comme équation 
u = rv, où r <. 0. 

On peut démontrer à l'aide des exemples (voir K.Tatar-
kiewicz [ 7 ] , n° 5 et [8]) que sous les suppositions du théo-
rème VI toutes les solutions de l'équation (5*1) peuvent 
être bornées) alors l'ensemble W est formé par tout le 
plan (u,v). 
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Pour les équations linéaires avec second membre (1.4) 
on obtient le théorème suivant« 

T h é o r è m e VII. Supposons qu'il existe une con-
stante k > 0 telle que 

(5.2) |g(t)| < kb(t) 

pour tous les t » 0. Alors l'équation (1.4) admet une fa-
mille à un paramètre au moins de solutions bornées. Elle ad-
met môme des solutions qui vérifient la condition |x(t)| k 
pour tous les t > 0, 

D é m o n s t r a t i o n . Vu (5.2), nous avons 
b(t) > 0. Posons 

f(t,x,z) »= b(t)x + 2a(t)z + g(t). 

Nous voyons que pour x > k nous avons 

f(t,x,0) = b(t)x + g(t) > (x - k)b(t) > 0 

et pour x < -k 

f(t,x,0) = b(t)x + g(t) (x + k)b(t) < 0|. 

En vertu du théorème III et de propriétés des équations 
linéaires il existe la famille des solutions exigées, c.q.f.d. 

Du théorème VII il s'ensuit immédiatement le théorème 
suivant (dont l'énoncé est assez simple). 

T h é o r è m e VIII. Si b(t) > b Q > 0 et la fonc-
tion g = g(t) est bornée, alors l'équation (1.4) admet une 
famille à un paramètre au moins de solutions bornées. 

Ce dernier théorème peut aussi être obtenu des résultats 
de Z. Opial [5] à l'aide des calculs relativement faciles. 
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