

Edmund Pluciński

PIECEWISE MONOTONIC TRANSFORMATIONS
OF THE DISCRETE STOCHASTIC PROCESSES

Let (Ω, \mathcal{S}, P) be a probability space, $T = \langle 0, \infty \rangle$ and let $X: \Omega \times T \rightarrow \mathcal{X} \subset \mathbb{R}^1$ be a stochastic process. We assume that $\mathcal{X} = \{x_1, x_2, \dots\}$.

Let $t_{n-1} = (t_1, t_2, \dots, t_{n-1})$, $x_{n-1} = (x_1, x_2, \dots, x_{n-1})$, $X(t_{n-1}) = (X(t_1), X(t_2), \dots, X(t_{n-1}))$ and let

$$P_1(t_{n-1}, x_{i_{n-1}}, t_n, \{x_{i_n}\}) = P(X(t_n) \in \{x_{i_n}\} \mid X(t_{n-1}) = x_{i_{n-1}}),$$

where $t_1, t_2, \dots, t_n \in T$, $t_1 \leq t_2 \leq \dots \leq t_n$, $x_{i_1}, x_{i_2}, \dots, x_{i_n} \in \mathcal{X}$,

be the transition probabilities of the process X .

We assume that the process X satisfies the conditions:
1°.

$$(1) \quad \lim_{t_n \rightarrow t_{n-1}} P(X(t_1) = x_{i_1}, \dots, X(t_n) = x_{i_n}) = \\ = \lim_{t_n \rightarrow t_{n-1}} P(X(t_n) = x_{i_n}) = \begin{cases} 0 & \text{for } x_{i_n} \neq x_{i_{n-1}} \\ P(X(t_{n-1}) = x_{i_{n-1}}) & \text{for } x_{i_n} = x_{i_{n-1}} \end{cases}$$

and the convergence is uniform with respect to $x_{i_{n-1}}, x_{i_n}$.

2^o. There exists a finite limit

$$(2) \lim_{t_n \rightarrow t_{n-1}} \frac{P(X(t_n) = x_{i_n}) - \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})} P(X(t_{n-1}) = x_{i_{n-1}})}{(t_n - t_{n-1}) P(X(t_{n-1}) = x_{i_{n-1}})} = \\ = q(t_{n-1}, x_{i_{n-1}}, \{x_{i_n}\}),$$

and the convergence is uniform with respect to t_{n-1} , $x_{i_{n-1}}$, $\{x_{i_n}\}$.

3^o. We assume that q is a continuous function with respect to t_{n-1} .

From (1) it follows that

$$(3) \lim_{t_n \rightarrow t_{n-1}} P_1(t_{n-1}, x_{i_{n-1}}, t_n, \{x_{i_n}\}) = \chi_{\{x_{i_n}\}}^{(x_{i_{n-2}})}$$

and the convergence is uniform with respect to $x_{i_{n-1}}$, $\{x_{i_n}\}$, i.e. process X satisfies the continuity condition.

From (2) it follows that

$$(4) \lim_{t_n \rightarrow t_{n-1}} \frac{P_1(t_{n-1}, x_{i_{n-1}}, t_n, \{x_{i_n}\}) - \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})}}{t_n - t_{n-1}} = \\ = q(t_{n-1}, x_{i_{n-1}}, \{x_{i_n}\})$$

and the convergence is uniform with respect to t_{n-1} , $x_{i_{n-1}}$, $\{x_{i_n}\}$.

D e f i n i t i o n. We say that a process X is a discrete stochastic process if its phase space \mathbb{Z} is a denumerable set and conditions 2⁰, 3⁰ are satisfied.

Let us consider a stochastic process $Z = f(X)$, where f is a piecewise monotonic function. Denote by Z the phase space of the process Z and the transition probabilities of the process Z by $P_2(t_{n-1}, z_{j_{n-1}}, t_n, \{z_{j_n}\})$.

We shall prove the following theorem.

T h e o r e m. If X is a discrete stochastic process, f is a piecewise monotonic function, then $Z = f(X)$ is a discrete stochastic process.

P r o o f. Denote

$$A_n = \left\{ (i_1, \dots, i_n) : f(x_{i_1}) = z_{j_1}, \dots, f(x_{i_n}) = z_{j_n} \right\},$$

then we have

$$(5) \quad P(Z(t_n) = z_{j_n}) = \sum_{A_n} P(X(t_n) = x_{i_n})$$

and passing to the limit under sum sign, we get

$$(6) \quad \lim_{t_n \rightarrow t_{n-1}} P(Z(t_n) = z_{j_n}) = \sum_{A_n} \lim_{t_n \rightarrow t_{n-1}} P(X(t_n) = x_{i_n}) =$$

$$= \begin{cases} 0 & \text{if } \bigwedge_{i_n \in A_n} x_{i_n} \neq x_{i_{n-1}} \\ \sum_{A_n} P(X(t_{n-1}) = x_{i_{n-1}}) & \text{if } \bigvee_{i_n \in A_n} x_{i_n} = x_{i_{n-1}} \end{cases} =$$

$$= \begin{cases} 0 & \text{if } z_{j_n} \neq z_{j_{n-1}} \\ P(Z(t_{n-1}) = z_{j_{n-1}}) & \text{if } z_{j_n} = z_{j_{n-1}}. \end{cases}$$

and the convergence is uniform with respect to $z_{j_{n-1}}, \{z_{j_n}\}$. Therefore the process Z satisfies condition 1°.

Now we shall show that the process Z satisfies condition 2°.

Taking into account (5) we can write

$$(7) \lim_{t_n \rightarrow t_{n-1}} \frac{P(Z(t_n) = z_{j_n}) - \chi_{\{z_{j_n}\}}(z_{j_{n-1}})P(Z(t_{n-1}) = z_{j_{n-1}})}{(t_n - t_{n-1})P(Z(t_{n-1}) = z_{j_{n-1}})} =$$

$$= \frac{1}{P(Z(t_{n-1}) = z_{j_{n-1}})} \lim_{t_n \rightarrow t_{n-1}} \frac{1}{t_n - t_{n-1}} \times$$

$$\times \left[\sum_{A_n} P(X(t_n) = x_{i_n}) - \chi_{\{z_{j_n}\}}(z_{j_{n-1}}) \sum_{A_{n-1}} P(X(t_{n-1}) = x_{i_{n-1}}) \right].$$

Since

$$\chi_{\{z_{j_n}\}}(z_{j_{n-1}}) = \sum_{i_n: f(x_{i_n}) = z_{j_n}} \chi_{\{x_{i_n}\}}(x_{i_{n-1}})$$

we can write (7) in the form

$$(8) \lim_{t_n \rightarrow t_{n-1}} \frac{P(Z(t_n) = z_{j_n}) - \chi_{\{z_{j_n}\}}(z_{j_{n-1}})P(Z(t_{n-1}) = z_{j_{n-1}})}{(t_n - t_{n-1})P(Z(t_{n-1}) = z_{j_{n-1}})} =$$

$$= \frac{1}{P(Z(t_{n-1}) = z_{j_{n-1}})} \lim_{t_n \rightarrow t_{n-1}} \frac{1}{t_n - t_{n-1}} \left[\sum_{A_n} P(X(t_n) = x_{i_n}) - \right.$$

$$\left. - \sum_{\{i_n : f(x_{i_n}) = z_{j_n}\}} \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})} \sum_{A_{n-1}} P(X(t_{n-1}) = x_{i_{n-1}}) \right] =$$

$$= \frac{1}{P(Z(t_{n-1}) = z_{j_{n-1}})} \lim_{t_n \rightarrow t_{n-1}} \frac{1}{t_n - t_{n-1}} \times$$

$$\times \sum_{A_n} \left[P(X(t_n) = x_{i_n}) - \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})} P(X(t_{n-1}) = x_{i_{n-1}}) \right] =$$

$$= \frac{1}{P(Z(t_{n-1}) = z_{j_{n-1}})} \times$$

$$\times \sum_{A_n} \lim_{t_n \rightarrow t_{n-1}} \frac{P(X(t_n) = x_{i_n}) - \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})} P(X(t_{n-1}) = x_{i_{n-1}})}{t_n - t_{n-1}}.$$

From (2), (5) and (8) we have

$$(9) \lim_{t_n \rightarrow t_{n-1}} \frac{P(Z(t_n) = z_{j_n}) - \chi_{\{z_{j_n}\}}^{(z_{j_{n-1}})} P(Z(t_{n-1}) = z_{j_{n-1}})}{(t_n - t_{n-1}) P(Z(t_{n-1}) = z_{j_{n-1}})} =$$

$$= \frac{\sum_{A_{n-1}} q(t_{n-1}, x_{i_{n-1}}, \{x_{i_n}\}) P(X(t_{n-1}) = x_{i_{n-1}})}{\sum_{A_{n-1}} P(X(t_{n-1}) = x_{i_{n-1}})} = Q(t_{n-1}, z_{j_{n-1}}, \{z_{j_n}\}).$$

Therefore the process Z satisfies condition 2^0 . The continuity of the function Q follows from condition 3^0 and (9). The proof of the theorem is complete.

From (6) and (9) it follows that the transition probabilities of the process Z satisfy the conditions

$$(10) \quad \lim_{t_n \rightarrow t_{n-1}} P_2(t_{n-1}, z_{j_{n-1}}, t_n, \{z_{j_n}\}) = \chi_{\{z_{j_n}\}}^{(z_{j_{n-1}})}$$

and the convergence is uniform with respect to $z_{j_{n-1}}, \{z_{j_n}\}$;

$$(11) \quad \lim_{t_n \rightarrow t_{n-1}} \frac{P_2(t_{n-1}, z_{j_{n-1}}, t_n, \{z_{j_n}\}) - \chi_{\{z_{j_n}\}}^{(z_{j_{n-1}})}}{t_n - t_{n-1}} = \\ = Q(t_{n-1}, z_{j_{n-1}}, \{z_{j_n}\})$$

and the convergence is uniform with respect to $t_{n-1}, z_{j_{n-1}}, \{z_{j_n}\}$.

Example. Let the function q have the form

$$q(t_{n-1}, x_{i_{n-1}}, \{x_{i_n}\}) = \lambda = \text{const.},$$

then from (9) it follows that

$$Q(t_{n-1}, z_{j_{n-1}}, \{z_{j_n}\}) = \lambda \operatorname{Card}\{i_n : f(x_{i_n}) = z_{j_n}\}.$$

It follows from the proved theorem that the class of discrete stochastic processes is closed with respect to piecewise monotonic transformations.

In applications sometimes it is interesting to know the transition probabilities

$$(12) \quad P_3(t_{n-1}, x_{i_{n-1}}, t_n, \{y\}) = P(Y(t_n) = y | X(t_{n-1}) = x_{i_{n-1}})$$

and their properties, if

a) we know the transition probabilities

$$P_1(t_{n-1}, x_{i_{n-1}}, t_n, \{x_{i_n}\}),$$

b) $Y = g(X)$,

c) the process X satisfies condition 2⁰ and 3⁰.

Let us consider the case when function g is a piecewise monotonic function (it is no special case of the previous considerations).

We shall prove that if the process X satisfies condition 2⁰, then the transition probabilities (12) satisfy conditions

$$(13) \quad \lim_{t_n \rightarrow t_{n-1}} P_3(t_{n-1}, x_{i_{n-1}}, t_n, \{y\}) = \chi_{\{y\}}(x_{i_{n-1}}),$$

$$(14) \quad \lim_{t_n \rightarrow t_{n-1}} \frac{P_3(t_{n-1}, x_{i_{n-1}}, t_n, \{y\}) - \chi_{\{y\}}(x_{i_{n-1}})}{t_n - t_{n-1}} =$$

$$= \sum_{\{i_n : g(x_{i_n}) = y\}} q(t_{n-1}, x_{i_{n-1}}, \{x_{i_n}\}),$$

where

$$(15) \quad \chi_{\{y\}}(x_{i_{n-1}}) = \sum_{\{i_n : g(x_{i_n}) = y\}} \chi_{\{x_{i_n}\}}(x_{i_{n-1}})$$

and the convergence in (13) is uniform with respect to $x_{i_{n-1}}, \{y\}$, the convergence in (14) is uniform with respect to $t_{n-1}, x_{i_{n-1}}, \{y\}$.

Note that

$$(16) \quad \lim_{t_n \rightarrow t_{n-1}} P(X(t_{n-1}) = x_{i_{n-1}}, Y(t_n) = y) =$$

$$= \lim_{t_n \rightarrow t_{n-1}} \sum_{\{i_n : g(x_{i_n}) = y\}} P(X(t_n) = x_{i_n}) =$$

$$= \sum_{\{i_n : g(x_{i_n}) = y\}} \lim_{t_n \rightarrow t_{n-1}} P(X(t_n) = x_{i_n}) =$$

$$= \begin{cases} 0 & \text{if } \bigwedge_{\substack{i_n \\ g(x_{i_n}) = y}} x_{i_n} \neq x_{i_{n-1}}, \\ & \\ P(X(t_{n-1}) = x_{i_{n-1}}) & \text{if } \bigvee_{\substack{i_n \\ g(x_{i_n}) = y}} x_{i_n} = x_{i_{n-1}}. \end{cases}$$

Therefore from (12) and (16) we have

$$(17) \quad \lim_{t_n \rightarrow t_{n-1}} \frac{P(X(t_{n-1}) = x_{i_{n-1}}, Y(t_n) = y)}{P(X(t_{n-1}) = x_{i_{n-1}})} =$$

$$= \lim_{t_n \rightarrow t_{n-1}} P_3(t_{n-1}, x_{i_{n-1}}, t_n, \{y\}) = \begin{cases} 0, & \text{if } \bigwedge_{\substack{i_n \\ g(x_{i_n})=y}} x_{i_n} \neq x_{i_{n-1}}, \\ & g(x_{i_n})=y \\ 1, & \text{if } \bigvee_{\substack{i_n \\ g(x_{i_n})=y}} x_{i_n} = x_{i_{n-1}}. \end{cases}$$

We can write formula (17) in the form

$$(18) \lim_{t_n \rightarrow t_{n-1}} P_3(t_{n-1}, x_{i_{n-1}}, t_n, \{y\}) = \sum_{\{i_n : g(x_{i_n})=y\}} \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})}.$$

Now we shall seek the intensity function of the process $Y = g(X)$.

Let us denote

$$(19) \sum_{\{i_n : g(x_{i_n})=y\}} \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})} = \chi_{\{y\}}^{(x_{i_{n-1}})}.$$

We shall find the limit

$$(20) \lim_{t_n \rightarrow t_{n-1}} \frac{P(X(t_{n-1})=x_{i_{n-1}}, Y(t_n)=y) - \chi_{\{y\}}^{(x_{i_{n-1}})} P(X(t_{n-1})=x_{i_{n-1}})}{(t_n - t_{n-1}) P(X(t_{n-1})=x_{i_{n-1}})}.$$

Taking into account (16) and (19) we obtain

$$(21) \sum_{\{i_n : g(x_{i_n})=y\}} \lim_{t_n \rightarrow t_{n-1}} \frac{P(X(t_n)=x_{i_n}) - \chi_{\{x_{i_n}\}}^{(x_{i_{n-1}})} P(X(t_{n-1})=x_{i_{n-1}})}{(t_n - t_{n-1}) P(X(t_{n-1})=x_{i_{n-1}})} =$$

$$= \sum_{\{i_n : g(x_{i_n}) = y\}} q(t_{n-1}, x_{i_{n-1}}, \{x_{i_n}\}).$$

From (21) it follows that relation (14) is thus proved.

Because q is a continuous function with respect to t_{n-1} , consequently the sum on the right-hand side of (21) is a continuous function with respect to t_{n-1} .

Therefore the process $Y = g(X)$ is a discrete stochastic process.

All the consideration in this paper concern non-markovian processes (processes which can be but need not be markovian processes). Some results for non-markovian processes were also obtained in the previous paper of the author, for example [1], [2].

BIBLIOGRAPHY

- [1] E. Pluciński: On a problem connected with the Kolmogorov integro-differential equations for a completely discontinuous stochastic process, *Demonstratio Math.* 4 (1971) 195-203.
- [2] E. Pluciński: On some questions concerning the equation of Kolmogorov type for non-markovian discontinuous processes, *Demonstratio Math.* 3 (1974) 403-409.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received January 4, 1978.