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HOW TO DECREASE THE COMBINATORY COMPLEXITY

Introduction
We consider the solution of a nonlinear scalar equation

(1) £(x) = 0,

where f: DcC-=C . Assume that f 1is analytic in a neigh-
bourhood of a simple zero o¢c , f(x) = O # £ (). We approximate
®« by an iteration. Suppose that we can compute the standard
information on £, i.e.

(2) % (£,%) = {£(x), £ (x),..., £5)(0)}

for a given integer s, s >=1. We deal with a one-point
iteration without memory ¢ which defines the sequence of
successive spproximations {xi } by

(3) X041 = @(x,, Yt(f,xn)), = 0,100

where Xq is a given initial approximation, see [2].
The measure of "goodness" of the iteration (3) is defined
by the complexity index [3]

comp(T) + comb(ep)
log,p(@) ’

(4) z(@) =

where comp(®) 1is the complexity (cost) of computing M (f,x),
comb(cp) is the combinatory complexity of combining the in-
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2 Jd. Trojan

formation 71(f,xn) to produce the next approximation X041
and p(y) is the order of the iterations ¢.

From the compubtational complexity point of view we want
to find an iteration ¢ with minimal complexity index. Let

(5) z(¢_.) = inf z(e)

S ¢e@s !
where ¢s is the class of iterations which use the standard
information (2). It is well-known [1], [2] that p(g)< s+1
for any ¢ from QS. Since any ¢ has to use xn,f(xn),...,

f(s)(xn) at least once at the n-th step, taking the complexity
as the total number of arithmetic operations we have

(6) comb(p) = s.

We recall the interpolatory iteration Is which was
defined ia [4].
Algorithm 1. Given x_, set 1z, = X5
n o
perform m = rlogE(s + 1)1 Newton steps for the interpo-
latory polynomial

Ps(x) = f(xn) + f‘(xn)(x - xn) + ees + é% f(s)(xn)(x - xn)s

as follows:
for i = 0(1)T;1 compute Ps(zi), P;(zi) and z; 4 =
=z; - P (zi) -Ps(zi);

set Xpq = Zye

1
S

It is easy to verify that the combinatory complexity of
I, is roughly 4(s + 1)log,(s+1). From this we get the
estimate [ 3]
comp (%) + 4(s+1)logy(s+1)

7 %L(néz_ﬂ(l)gﬁyégzwsK log,(s+1)

If comp(®t) > slog,s then We have a pretty tight bounds
on z(?s). However for large s it can happen that comp ()
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The combinatory problem 3

linearly depends on s and the combinatory complexity might
dominate., Thus, we wish to answer the following questions:

Does there exist en iteration whose combinatory complexity
is essentially less than 0(slog,s)?

What is the minimal combinatory complexity of an iteration
of order s+17?

In the next section we exhibit an iteration ¢* of order
s+1 with linear combinatory complexity, i.e. comb(¢’) = 0(s).
Due to (6) this means that ¢* has minimal complexity (exact
to asymptotic constant) which answers our problem.

Minimal combinatory complexity
ssume that &1=ﬂ4+k,p<k<fA.Dﬁmea
sequence of numbers { i}, 4y = 274, i = 0(1)m-1. ILet
P@i(x) be a polynomial of degree <Cu; *defined by

P(U'i(x) = bo + b,](x-xn) + e + bﬂl(x-xn)#i ]

NG ) . _ .
where by = 31 £ Y9%x))  § = 0o(M)s, bj =0 for j>>s.

Assume that X, is a sufficiently close approximation to
o, Then it is obvious that gLi(x) # 0 for x close to «
and there exists a point «; for which P#i(ui) = 0 and

2i+1

+1
(8) m—W=0“ﬁ-m¢ﬁ)=0w )y

i
where e = x, -«, for 1= 1(1)m-2.
For i=m-1 we have Cpq =X = O(esm).
We are now in position to propose the following iteration
¢* defined by the algorithm
. Algorithm 2., Given X, set zy = x.; for
i = 0(1)m-1 compute gui(zi), %ui(zi);
Zi41 i

set Xn4q = Zp e

— - . _1. L)
=25 =~ B (25)" By (23)3
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4 J. Trojan

Comparing with Algorithm 1 we see tnat we still have m
Newbton steps but applied to the polynomials P’I’ P5’ Poyese,

P of increasing degrees,
M N
Theorem. For the iteration ¢ we have

p(e*) = s + 1,

comb(¢*) = 2™2 4 45 - 4m - 6 <125 - 4log,(s+1) ~ 6.

n

Proof. Let e =32; ~o and 4 =a; -. From (8)
we get e,lzz,]-oc:z,l-cco+0c0-oc=eco—oc=do=0(e2)

since P,I is a polynomial of first degree amnd Zg = g

\
Assume by induction that ey = 0(62 ) for j=<{i. Thum

e = Z. - = 2. - 0. +oci.-oc=o(z.-a:.)2+d.=

i 141 i+1 i i i i

2
=O(zi—0t+0c-oci) +4 =

) 0<0<e2i) N o(eei-f»’l))z . O(egiH) -

= O(e2i>2 + C(egim) = O(ezim) for 1

0(1)m-2.
For L =m-~ 1 we have

ey = Zp =X = Zy = p 4 O, 4 - &=

O(ezm) + O(es+1) = 0(es+1)

which means that x4 - @ = 0(x, - a)5*, Hence ple™) = s+1.
We compute the combinatory complexity of @* . We apply m
steps of Newton iteration. In every step sxcept the first one

we compute the values P,U- and P"L by Horner?s scheme per-
i i1
forming 4/‘,1 - 2 multiplications and additions. Newton’s
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iteration itself nceds 2 arithmetic operations. Thus the total
number of operations is egqual to

m=2

comb(@*) = 2 + E 4, + 48 = 2™2 45 - 4m - 6,
< i
i=1

Since s+1 = 2571 4 k, O<<lcs;2m_1 we can estimate
comb(p*) < 125 - 4log,(s+1) - 6

and this completes the proof.
Applying our theorem we can improve the estimate (7),
namely

comp(®) + s comp(M) + 12s
() o hh® <28,)< Tog,(5+1T  *

Note that both sides of (9) are very tight for every s.
The presented algorithm can be used also for the multi-
variate case. This will be reported in another paper.
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