

Jerzy Trojan

HOW TO DECREASE THE COMBINATORY COMPLEXITY

Introduction

We consider the solution of a nonlinear scalar equation

(1)
$$f(x) = 0,$$

where $f: D \subset \mathbb{C} \rightarrow \mathbb{C}$. Assume that f is analytic in a neighbourhood of a simple zero α , $f(\alpha) = 0 \neq f'(\alpha)$. We approximate α by an iteration. Suppose that we can compute the standard information on f , i.e.

(2)
$$\mathcal{N}(f, x) = \{f(x), f'(x), \dots, f^{(s)}(x)\}$$

for a given integer s , $s \geq 1$. We deal with a one-point iteration without memory φ which defines the sequence of successive approximations $\{x_i\}$ by

(3)
$$x_{n+1} = \varphi(x_n, \mathcal{N}(f, x_n)), \quad n = 0, 1, \dots$$

where x_0 is a given initial approximation, see [2].

The measure of "goodness" of the iteration (3) is defined by the complexity index [3]

(4)
$$z(\varphi) = \frac{\text{comp}(\mathcal{N}) + \text{comb}(\varphi)}{\log_2 p(\varphi)},$$

where $\text{comp}(\mathcal{N})$ is the complexity (cost) of computing $\mathcal{N}(f, x)$, $\text{comb}(\varphi)$ is the combinatory complexity of combining the in-

formation $\mathcal{N}(f, x_n)$ to produce the next approximation x_{n+1} and $p(\varphi)$ is the order of the iterations φ .

From the computational complexity point of view we want to find an iteration φ with minimal complexity index. Let

$$(5) \quad z(\Phi_s) = \inf_{\varphi \in \Phi_s} z(\varphi),$$

where Φ_s is the class of iterations which use the standard information (2). It is well-known [1], [2] that $p(\varphi) \leq s+1$ for any φ from Φ_s . Since any φ has to use $x_n, f(x_n), \dots, f^{(s)}(x_n)$ at least once at the n -th step, taking the complexity as the total number of arithmetic operations we have

$$(6) \quad \text{comb}(\varphi) \geq s.$$

We recall the interpolatory iteration I_s which was defined in [4].

Algorithm 1. Given x_n , set $z_0 = x_n$; perform $m = \lceil \log_2(s+1) \rceil$ Newton steps for the interpolatory polynomial

$$P_s(x) = f(x_n) + f'(x_n)(x - x_n) + \dots + \frac{1}{s!} f^{(s)}(x_n)(x - x_n)^s$$

as follows:

$$\text{for } i = 0(1)m-1 \text{ compute } P_s(z_i), P'_s(z_i) \text{ and } z_{i+1} = z_i - P'_s(z_i)^{-1} \cdot P_s(z_i);$$

$$\text{set } x_{n+1} = z_m.$$

It is easy to verify that the combinatory complexity of I_s is roughly $4(s+1)\log_2(s+1)$. From this we get the estimate [3]

$$(7) \quad \frac{\text{comp}(\mathcal{N}) + s}{\log_2(s+1)} \leq z(\Phi_s) \leq \frac{\text{comp}(\mathcal{N}) + 4(s+1)\log_2(s+1)}{\log_2(s+1)}.$$

If $\text{comp}(\mathcal{N}) \gg s \log_2 s$ then we have a pretty tight bounds on $z(\Phi_s)$. However for large s it can happen that $\text{comp}(\mathcal{N})$

linearly depends on s and the combinatory complexity might dominate. Thus, we wish to answer the following questions:

Does there exist an iteration whose combinatory complexity is essentially less than $O(s \log_2 s)$?

What is the minimal combinatory complexity of an iteration of order $s+1$?

In the next section we exhibit an iteration φ^* of order $s+1$ with linear combinatory complexity, i.e. $\text{comb}(\varphi^*) = O(s)$. Due to (6) this means that φ^* has minimal complexity (exact to asymptotic constant) which answers our problem.

Minimal combinatory complexity

Assume that $s+1 = 2^{m-1} + k$, $0 < k \leq 2^{m-1}$. Define a sequence of numbers $\{\mu_i\}$, $\mu_i = 2^{i+1} - 1$, $i = 0(1)m-1$. Let $P_{\mu_i}(x)$ be a polynomial of degree $\leq \mu_i$ defined by

$$P_{\mu_i}(x) = b_0 + b_1(x-x_n) + \dots + b_{\mu_i}(x-x_n)^{\mu_i},$$

where $b_j = \frac{1}{j!} f^{(j)}(x_n)$ $j = 0(1)s$, $b_j = 0$ for $j > s$.

Assume that x_n is a sufficiently close approximation to α . Then it is obvious that $P_{\mu_i}(x) \neq 0$ for x close to α and there exists a point α_i for which $P_{\mu_i}(\alpha_i) = 0$ and

$$(8) \quad \alpha - \alpha_i = O((x_n - \alpha)^{\mu_i+1}) = O(e^{2^{i+1}}),$$

where $e = x_n - \alpha$, for $i = 1(1)m-2$.

For $i = m-1$ we have $\alpha_{m-1} - \alpha = O(e^{s+1})$.

We are now in position to propose the following iteration φ^* defined by the algorithm

Algorithm 2. Given x_n , set $z_0 = x_n$; for $i = 0(1)m-1$ compute $P_{\mu_i}(z_i)$, $P_{\mu_i}'(z_i)$;

$$z_{i+1} = z_i - P_{\mu_i}(z_i)^{-1} \cdot P_{\mu_i}'(z_i);$$

$$\text{set } x_{n+1} = z_m.$$

Comparing with Algorithm 1 we see that we still have m Newton steps but applied to the polynomials $P_1, P_3, P_7, \dots, P_{\mu_{m-1}}$ of increasing degrees.

Theorem. For the iteration φ^* we have

$$p(\varphi^*) = s + 1,$$

$$\text{comb}(\varphi^*) = 2^{m+2} + 4s - 4m - 6 \leq 12s - 4\log_2(s+1) - 6.$$

Proof. Let $e_i = z_i - \alpha$ and $d_i = \alpha_i - \alpha$. From (8) we get $e_1 = z_1 - \alpha = z_1 - \alpha_0 + \alpha_0 - \alpha = \alpha_0 - \alpha = d_0 = O(e^2)$ since P_1 is a polynomial of first degree and $z_1 = \alpha_0$. Assume by induction that $e_j = O(e^{2^j})$ for $j \leq i$. Then

$$\begin{aligned} e_{i+1} &= z_{i+1} - \alpha = z_{i+1} - \alpha_i + \alpha_i - \alpha = O(z_i - \alpha_i)^2 + d_i = \\ &= O(z_i - \alpha + \alpha - \alpha_i)^2 + d_i = \\ &= O(O(e^{2^i}) + O(e^{2^{i+1}}))^2 + O(e^{2^{i+1}}) = \\ &= O(e^{2^i})^2 + O(e^{2^{i+1}}) = O(e^{2^{i+1}}) \quad \text{for } i = O(1)m-2. \end{aligned}$$

For $i = m - 1$ we have

$$\begin{aligned} e_m &= z_m - \alpha = z_m - \alpha_{m-1} + \alpha_{m-1} - \alpha = \\ &= O(e^{2^m}) + O(e^{s+1}) = O(e^{s+1}) \end{aligned}$$

which means that $x_{n+1} - \alpha = O(x_n - \alpha)^{s+1}$. Hence $p(\varphi^*) = s + 1$.

We compute the combinatory complexity of φ^* . We apply m steps of Newton iteration. In every step except the first one we compute the values P_{μ_i} and P'_{μ_i} by Horner's scheme performing $4\mu_i - 2$ multiplications and additions. Newton's

iteration itself needs 2 arithmetic operations. Thus the total number of operations is equal to

$$\text{comb}(\varphi^*) = 2 + \sum_{i=1}^{m-2} 4\mu_i + 4s = 2^{m+2} + 4s - 4m - 6.$$

Since $s+1 = 2^{m-1} + k$, $0 < k \leq 2^{m-1}$ we can estimate
 $\text{comb}(\varphi^*) \leq 12s - 4\log_2(s+1) - 6$

and this completes the proof.

Applying our theorem we can improve the estimate (7), namely

$$(9) \quad \frac{\text{comp}(\mathcal{N}) + s}{\log_2(s+1)} \leq z(\Phi_s) \leq \frac{\text{comp}(\mathcal{N}) + 12s}{\log_2(s+1)}.$$

Note that both sides of (9) are very tight for every s .

The presented algorithm can be used also for the multivariate case. This will be reported in another paper.

REFERENCES

- [1] M. Jankowski, H. Woźniakowski: O złożoności obliczeniowej w analizie numerycznej, Matematyka Stosowana 5 (1975) 5-27.
- [2] J.F. Traub: Iterative methods for the solution of equations, New York 1964.
- [3] J.F. Traub, H. Woźniakowski: Strict lower and upper bounds on iterative computational complexity, in Analytic computational complexity, New York (1976) 15-34.
- [4] H. Woźniakowski: Maximal order of multipoint iterations using n evaluations, in Analytic computational complexity, New York (1976) 75-109.

INSTITUTE OF MATHEMATICS, SILESIAN TECHNICAL UNIVERSITY,
 GLIWICE

Received November 16, 1977.

