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BOUNDEDNESS AND STABILITY OF SOLUTIONS
OF SOME HYPERBOLIC EQUATIONS

Introduction

In the present paper the properties of solutions of a
mixed problem for some non-linear hyperbolic equations with
linear boundary conditions with n space variables have been
investigated., The present paper continues and generalizes
results of the paper [3] and in part [4].

1. Notations and statements of the problem

In the paper functions are denoted by minuscules and
oonstants are denoted by capitals. Let R = (-co,c0), R =
= <0,°), @ be the closure of a bounded domain, the boundary
of which is a piecewise smooth surface /" ,2 c R,

We consider functions u:Q ~ R -—--R; 8149 by, h2, r, pt
Q—-—R i, = 1,¢..,n and operators x,p :C2Q xR 4
—c° (EJ xB.). «[u], B[u] are values of operators « ,f3 for
the funct;ion u e 03(Q BR) and ofu] (x,t), B[u] (x t) are
their values at the point (x,t) .

In this paper we investigate the properties of solutions

of the equation

(1) ug + c[u] u; + ru = :’2;1 (aiduxi)xj + B[u]
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2 W. Sadkowski

with the initial conditions

(1C) ul =h,, u =h
b0 - 1t Y6 2

and the boundary condition

(BC) E 3; jUy, COBV, + PU =0,
»d=1 J r

where vy is the angle between the axis Oxi and the unit
vector normal to /” and pointing out of R .
We suppose that the following compatibility condition is

satisfied
; ai;jh1xj cos vy + ph,‘ =0.

i,3=1 r

We also suppose that there exists a classical solution u
of the problem (1), (IC), (BC), defined on QXE+. There are
many papers dealing with the existence of solutions of non-
~linear problems, e.g. J. Lions [2], K.I. Chudawierdijew [1].

Let the functions describing problem (1}, {(IC), (BC)
satisfy the conditions

(2) uecXa xR), r,pec?R), by, e cAQ),
a;44hy € chR), 1,5 = 1yeeesbi
and

A1. There exist constants I.,l,Ia‘2 such that for every
u e C3(Q x _R+) ‘the inequalities

0< I;<uw[u] (x,8) <I,
are satisfied,

- 776 -



Some hyperbolic equations : 3

A2. There_ exists a positive constant B such that for every
u e C3(@x §+) we have

|B[u](x,t)|=< B.
A3. There exist constants R,,, 32 such that for every

x € 5 we have

0<R1$r(x)<nz .

A4, There exist constants 19 P2 such that for every
x € @ we have

0<P1<p(x)<P2 .

AS5. The form aid is symmetrical, i.e. a4 = °Ji for
i,3 = 1,¢e.,n 8nd there exists a positive constant A such
that for every x € @ and every ({4yeee, § ) € R® the next
inequality is satisfied

,=1 =

In order to define boundedness, exponential convergence
to zero, stability and asymptotic stability of the solutions
of the problem (1}, (IC), (BC)} we introduce the space
H (@ * R.) consisting of functions u e cl(e R.), with the
norm (if the assumption A 5 is satisfied) defined by the

formula ,
llut., )] ={J {ua(x,t) + u%(x,t) +

1
2
+ E ai;j(") uxi(x,t)uxj(x,t):ldx-pIua(s’t) da} ,
2 =1

where t 18 considered as a parameter.
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Definitions . A solution u of the problem
(1), (16), (BC) defined on R xR, 1s said to be

a) 81-bounded if_there exists a positive constant M such
that for every ¢+ € R+- we have

Hul., 6l .

b) H,,-exponentially convergent to zero if there exists a
posltive constant K such that

lim || u(., s}l &t =0,
t-=oco
c) H,-stable if for every 7 >0 there exists A>0 such
that for every classical solution v {defined on R = i,,_) of the

considered equation, satisfying given boundary condition the
next inequality

lla(.,0) =~ v(.,0)|l<A implies [lu(.t) - v(.,t}]|<y for teR, .

da) H,]-aaymptotically stable if it is stable and in
notations of the last definition we have

tlim luf{e,t) = v(.,8)|| = 0.

In the sequel we use the following Green formula

(3) v (a ). dx = - a v. dx +
! ;, = 1%y 2y «! 1:, = 1%y ey
+ ,J.v E ai:luxd cos vi_ ds.
» =1

We define a function of Lapunov type for the solution u
of the problem (1), (IC}, (BC) in the following form
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n
(4) k() -.-.J[% u%(x,t) +% E aij(x) uxi(x,t) ux_(x,t) +
»d=1 J
+ 32— r(x) u2(x,t) + au(x,t)ut(x,t):ldx + fp(s)ua(s,t)ds,
' r

where t ¢ §+ and the constant ¢ satisfies the condition

4L.R
(5) e= 3 win (VR), 01— ,2] .
L2-+.4R1

We introduce an auxiliary function

6) 1(t) = 2(x,t) E (x)u, (x,t b
( J[ut x + - ay4(x uxi.x )uxj(x ) +

+ u2(x,t)] ax + J‘ ua(x,t)ds .

By the assumption A5 every term in (6) is non-negative,
This means that we can put [lul.,t)|| = V1(t] for t ¢R,.

2. The auxiliary theorems

Lemma 1. If the assumptions A3, A4 and the condition
(5) are satisfied then there exist positive constants M, M,
such that for + ¢ §+ we have

(7) M,ll(t) = k(t) < M1(6).

Proof6t. In virtue of the assumptions A3, A4 we have

k(t)gf [%— u% + % ; 1511‘_511x:|-ux:l + %Rzuz + % e(ua + u%):]dx +
9] s 9=1
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6 W. Sadkowski

2 =
+ Py fu ds <M,1(t) for teR_,
r"

1
where M, = 7 max (2, R, + 1, 2P,).
Using the same assumptions A3, A4 we obtain

2 2
k(t) = %f[ut - ¢lu] [uy] + Ryu” + E aijuxiuxj} ax +
e

i1,3=1

2 —
+P1ﬁfuds for teR+.

By the condition (5) the quadratic form f2 - 2¢§7 + R, 72

is positive definite, therefore there exists a positive
constant N, such that (2 - 2¢f7 + Ry 72 >R(f2 + 79,
Consequently we have for t ¢ R

N+

k(t) = Ml(t) where M, =

, min (N, 1, P

"l).

Thus Lemma 1 is proved.

Lenna 2. If the assumption A2 holds then there
exists a positive constant M3 such that for every ¢t € §+
we have

k,(t) =€!‘(ut Blu]l + eu Blulldx=< M, Vk(t).

Proof. Making use of Schwarz’s inequality, the
assumption A2 and the formulae (6), (7) we obtain for t ¢ _R+

k(6) < BJ |ug| dx + eBJ[u[ dx <<

<B(de)1/2(fu dx1/2+5B fdx)1/2(fu dx1/2<

<< M3 Vk(t) ,
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where

1/2
M5 = h&%r—‘gg and l@ = JidXo
1

S

This ends the proof of Lemma 2.

Lemma 3. If the assumptions A1, A3, A4 and the
condition (5) are satisfied then there exists a positive
constant M,+ such that for every ¢ e §+ we have

k() =f[u§( x[u] =€) + cu u, xfu] + er w? +
Q

+ € aijuxiux.]dx + efp(s) u° de =2M, k(t).
{,3=1 J r

Proot£t. In virtue of assumptions A1, A3, A4 we have
for t e §+

2 2
k2(t)>f|:ut(L,] ~€) = €Ly |ul| Jug| + ERju" +
+]

n
+ ¢ E aijuxi%':l ax + eP,] fua ds,
r

i,3=1 J

By the condition (5) the quadratic form {2(141 ~e) ~elyEn+
eR,' rgz is positive definite and so there exists a positive

constant N,] such that
2 2 - 2 2
§9(Ly —€) = eLyfp+ eRy 7° =N,(6° + 29).
Therefore

ky(t) =2M, k(t) for t eR_,

where .
min (N,, ¢, ¢P,)

Mq_= 2!2 .
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Hence Lemma 3 is proved,
Lenma &4 If keCYE), k(t)=>0 for t eR,
M5, M4- are positive constants, then the inequality

(8) k(t) < -2, k(t) + My Vi(t]

implies the following estimation

M, \2 _
(9) k(t) << (Vk(o) +—2-%4> for t <R _.

Prooctk. In virtue of the assumption (8) we obtain
for t© ev§+

M, t 2t - 20,
g—t(e “ k(-t)) =e * (k(t)+ 2 k(t))<Uze * Vi(tl.

Taking K3(t) = exp (2M4t) k(t) we get

Mt
. q_ - —_
k}‘“ = M3 e VKa(t) for t eR, .

For any positive integer n we have

Mt
L] 4 1 _
gﬁhg%e W#H+E for t €BR_.

Therefore

ez (6) Mt -
=M for t e R

\\ 3 e + ]
\/k3(t) +3

Integrating both parts of this inequality from 0 to t we
obtain -

Vigtt) + 1 <Yiez00) + 1+ z% (% - 1) .
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It follows that if n-—=oo then

Yiz (6] < Yz (0) + 2‘% (eM‘*t - '1>

and finally

. =Mt M M, =Mt
Ye(t] < Yk(O] e 4T . Zﬂé - zmé e * .,
4 4
The constants M3’ M4 being positive and ¢ e'§+ we obtain
the estimation (9).

3. Theorems

Theorem 1. If the assumptions A1-A5 are satisfied
then every solution u of the problem (1), {IC), (BC) is
H1-bounded.

Proof. Let u be an arbitrary solution of (1) with
conditions (IC) and (BC). Let the function of Lapunov type
for this solution be of the form (4).

In virtue of (2), the integrands in (4) are of class G’
with respect to t and of class CO with respect to x. Thus

we may interchange integration and differentiation with
respect to t. After differentiation of k with respect to

t we obtain for t ¢ §+
k(t) =~r[ut Upy + aiduxitux. + ruu, + £u§ + &uutt]dx-+
®] ,:1 d
+ J'p(s) uu, ds.
r

Computing uy, from (1) and introducing it into the previous
formula we see that the last equality becomes
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k() = [ u, S (a8 1. + ug Blu] = ala] uf +
R i,3=1 o

2 .
+ g aijuxiux. + cup + €u E (aij“xi)x;j +
1,3=1 J i,J=1

+ tu Blul] - €u oc[m]ut - er(x)uﬂdx +J.p(s)u u, ds .,
r

Making use of Green’s formula (3) and the boundary conditions
{BC) after some routine transformations we get for + € §+

-k(t) =f [uf( «fu] —¢e) + €u ug ofu] + eru® +
v
R

+ € _:, 8y jUy Uy ]dx +éfp(s)u2 ds -f(ut Blu] + eu Blu])ax.
731 17 r &
From Lemmas 2 and 3 we obtain the following estimation

(10) k(t)< -2, k(t) + M, Ve(8] for ¢t eR, .

By the definition of the auxiliary function 1 given by
{(5), the assumption A5 and Lemma 1 we have for ¢ eﬁ_'_ k{t)=o0.
Applying Lemma 4 to k we get for ¢ € §+

M,\2
k(t)=s <Vk(0) + éﬁé> .
m

From the above estimation and in virtue of the inequality (7)
it follows that

ol

ful.,6)<M for teR ,
1 S

where M = | Yk(0) + 5 | » This completes the proof of
iM 4

Theorem 1. 1
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Remaurk- 1. The Hq-boundedness of u implies the
boundedness of u, u,, grad,u in the sense of LE(Q ) for
t eR+.

Theorem 2., If the assumptions A1, A3, A4, AS
hold then every solution of the homogeneous equation (1)
(B[u]=0) with conditions (IC), (BC) is H,-bounded and H,-
-exponentially convergent to zero.

Proof, The H1-boundedness of u follows from
Theorem 1, as all its hypotheses are satisfied,

Hq-exponential convergence to zero follows from the
inequality

(11) k{t) < -2M, k(t) for ¢t e ﬁ+ .

One can obtain this inequality directly from (10) putting
M3 = 0 because Blu]=0.

From the inequality (11) we get the following estimation
for t ¢ R+

~2M, b
(12) k(t) << k(0) e .

The last inequality implies expouential H1-convergence to
zero of the solution u for t-eoo.

Thus Theorem 2 is proved,

Remark 2., PFrom the estimation (12) and by Lemma 1
we infer that u, Uy, gradx u converge to zero in the sense
of L2(Q ) when t-=co .

Theorem 3, If the assumptions A1, A3, A4, AS
are satisfied then the zero solution of the homogeneous
equation {1} (B[u] = 0) with conditions (BC) and (IC:
h,= h,= 0) is H,-stable and H,-asymptotically stable.

Proof. According to definition of H1-stability we
must prove that for every >0 there exists A=>0 such that
if |lu(.,0)]| < A then the solution u of problem (1), (BC),
(IC: h,= h, = 0) satisfies the inequality [lu(.,t)|=<7 for
t eR,.
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Putting A= V(M,l/MZ)q in virtue inequalities (7) and
(12) we obtain

=M t -
lul.,8)j<r1e * for te R _.

From the above estimation it follows that the zero solution
is stable and Hq-aaymptotically stable.

Hence the proof of Theorem 3 is completed,

Remark 3, By the following inequality

2 2 2
ve(s)ds < ve +¢, v-lax,
[ram<] |2 w7

r

{where constants d , cg are positive and c¢; depends on Q
and ¢ only) and by the assumption 4 5 we obtain the bound-
edness, convergence to zero, stability and asymptotic stability
of solutions of the problem (1), (IC), (BC) in the energetic
norm i,.e.

-

lut., 8, ={f[u2(x.t) + u%(x,t) + (gradxu(x,‘b))a]dx} .
o}
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