

Kazimierz Cegiełka

SOME NOTE ON CHANGES OF RIEMANNIAN METRIC
IN GEOMETRY OF SUBMANIFOLDS

Let (\bar{M}, \bar{G}) be a \bar{m} -dimensional Riemannian manifold. We denote by $\bar{\nabla}$ the Levi-Civita connection on (\bar{M}, \bar{G}) . Let $M \subset \bar{M}$ be a m -dimensional submanifold of \bar{M} . If $G = \iota^* \bar{G}$, then (M, G) is the Riemannian submanifold of (\bar{M}, \bar{G}) , where $\iota: M \subset \bar{M}$ is the inclusion map. For $p \in M$ the tangent space $T_p \bar{M}$ is the direct sum of $\iota_{*p}(T_p M)$ and $(\iota_{*p}(T_p M))^N$ — the orthogonal component of $\iota_{*p}(T_p M)$ in $T_p \bar{M}$ (with respect to \bar{G}), i.e.

$$T_p \bar{M} = \iota_{*p}(T_p M) \oplus (\iota_{*p}(T_p M))^N \text{ for } p \in M.$$

If $v \in T_p \bar{M}$ and $v = v^T + v^N$, where $v^T \in \iota_{*p}(T_p M)$, $v^N \in (\iota_{*p}(T_p M))^N$, then v^T and v^N is called the tangential component and the normal component of v , respectively.

Let $W(M, \bar{M})$ denote a $C^\infty(M)$ -module of all smooth vector fields along $\iota: M \subset \bar{M}$. We set

$$W(M, \bar{M})^N = \left\{ \xi \in W(M, \bar{M}): \xi(p) \in (\iota_{*p}(T_p M))^N \text{ for } p \in M \right\}.$$

It is obvious that $(W(M, \bar{M}), \bar{G} \circ \iota)$ is a Riemannian module [2] and $W(M, \bar{M})^N$ is a $C^\infty(M)$ -submodule of $W(M, \bar{M})$. We observe that $W(M, \bar{M})^N$ with the restriction of $\bar{G} \circ \iota$ to $W(M, \bar{M})^N$

is also the Riemannian module. Those modules have a local vector basis. Namely, the following theorem is true [1].

Theorem 1. Under the above suppositions, for any point $p \in M$ there exist a neighbourhood U of p in M , an orthonormal basis X_1, \dots, X_m of $W(M) = W(M, \bar{M})$ on U (with respect to G) and an orthonormal basis $X_{m+1}, \dots, X_{\bar{m}}$ of $W(M, \bar{M})^N$ on U (with respect to $\bar{G} \circ \iota$) such that $\iota_* X_1, \dots, \iota_* X_m, X_{m+1}, \dots, X_{\bar{m}}$ is an orthonormal basis of $W(M, \bar{M})$ on U (with respect to $\bar{G} \circ \iota$).

Let $\bar{\nabla}^{\iota}$ denote the covariant derivative in $W(M, \bar{M})$ induced by $\bar{\nabla}$ and ι . For any $X \in W(M)$, $\xi \in W(M, \bar{M})^N$ we denote by $\bar{A}_{\xi}(X)$ and $\bar{\nabla}_X^N \xi$ the tangential component and the normal component of $\bar{\nabla}_X^{\iota} \xi$, i.e.

$$\bar{\nabla}_X^{\iota} \xi = -\bar{A}_{\xi}(X) + \bar{\nabla}_X^N \xi \quad \text{for } X \in W(M), \xi \in W(M, \bar{M})^N,$$

where

$$\bar{A}_{\xi}(X)(p) \in \iota_* p(T_p M) \quad \text{for } p \in M \quad \text{and} \quad \bar{\nabla}_X^N \xi \in W(M, \bar{M})^N.$$

It is known [1] that $\bar{A} : W(M) \times W(M, \bar{M})^N \rightarrow W(M, \bar{M})$ is a tensor field and $\bar{\nabla}^N : W(M) \times W(M, \bar{M})^N \rightarrow W(M, \bar{M})^N$ is a covariant derivative in $W(M, \bar{M})^N$. Moreover, if $v_1, \dots, v_{\bar{m}-m}$ is an orthonormal basis of $(\iota_* p(T_p M))^N$, then the vector $\bar{H}(p) = \frac{1}{m} \sum_{k=1}^{\bar{m}-m} \text{tr} \bar{A}_{v_k}(\cdot)(p) v_k$ does not depend on the choice of the basis $v_1, \dots, v_{\bar{m}-m}$. The vector field \bar{H} is called the mean curvature vector field of the submanifold M in (\bar{M}, \bar{G}) [1]. It follows from Theorem 1 that $\bar{H} \in W(M, \bar{M})^N$. The submanifold M is called minimal in (\bar{M}, \bar{G}) when $\bar{H} = 0$.

Let ∇ be another covariant derivative on \bar{M} . For any $X \in W(M)$, $\xi \in W(M, \bar{M})^N$ we denote by $-A_{\xi}(X)$ and $\nabla_X^N \xi$ the tangential component and the normal component of $\nabla_X^{\iota} \xi$, i.e.

$$\nabla_X^{\iota} \xi = -A_{\xi}(X) + \nabla_X^N \xi \quad \text{for } X \in W(M) \quad \text{and} \quad \xi \in W(M, \bar{M})^N,$$

where

$$A_\xi(X)(p) \in \iota_{*p}(T_p M) \quad \text{for } p \in M \quad \text{and} \quad \nabla_X^N \xi \in W(M, \bar{M})^N.$$

Under the above suppositions we shall prove the following theorem.

Theorem 2. $A : W(M) \times W(M, \bar{M})^N \rightarrow W(M, \bar{M})$ is a tensor field and $\nabla^N : W(M) \times W(M, \bar{M})^N \rightarrow W(M, \bar{M})^N$ is a covariant derivative in $W(M, \bar{M})^N$.

Proof. It is obvious that A and ∇^N are an R -2-linear mapping. Let $\alpha, \beta \in C^\infty(M)$, $X, Y \in W(M)$ and $\xi \in W(M, \bar{M})^N$. Then

$$\nabla_{\alpha X}^2 \beta \xi = -A_{\beta \xi}(\alpha X) + \nabla_{\alpha X}^N \beta \xi.$$

Comparing this with

$$\begin{aligned} \nabla_{\alpha X}^2 \beta \xi &= \alpha X(\beta) \xi + \alpha \beta \nabla_X^2 \xi = \alpha X(\beta) \xi + \alpha \beta (-A_\xi(X) + \nabla_X^N \xi) = \\ &= -\alpha \beta A_\xi(X) + (\alpha X(\beta) \xi + \alpha \beta \nabla_X^N \xi) \end{aligned}$$

we obtain $A_{\beta \xi}(\alpha X) = \alpha \beta A_\xi(X)$ for the tangential component and $\nabla_{\alpha X}^N \beta \xi = \alpha X(\beta) \xi + \alpha \beta \nabla_X^N \xi$ for the normal component.

Theorem 3. If ∇ is Riemannian with respect to \bar{G} , then ∇^N is also Riemannian with respect to $\bar{G} \circ \iota$.

Proof. It is obvious that ∇^2 is Riemannian with respect to $\bar{G} \circ \iota$. Hence we have

$$\begin{aligned} X(\bar{G} \circ \iota)(\xi, \eta) &= (\bar{G} \circ \iota)(\nabla_X^2 \xi, \eta) + (\bar{G} \circ \iota)(\xi, \nabla_X^2 \eta) = \\ &= (\bar{G} \circ \iota)(-A_\xi(X) + \nabla_X^N \xi, \eta) + (\bar{G} \circ \iota)(\xi, -A_\eta(X) + \nabla_X^N \eta) = \\ &= (\bar{G} \circ \iota)(\nabla_X^N \xi, \eta) + (\bar{G} \circ \iota)(\xi, \nabla_X^N \eta) \quad \text{for } X \in W(M), \xi, \eta \in W(M, \bar{M})^N. \end{aligned}$$

Theorem 4. Let ∇ be a covariant derivative on \bar{M} Riemannian with respect to \bar{G} and with the torsion tensor T . Then

$$(\bar{G} \circ \iota)(T(\iota_* \circ X, \iota_* \circ Y), \xi) + (\bar{G} \circ \iota)(\iota_* \circ X, A_\xi(Y)) = (\bar{G} \circ \iota)(\iota_* \circ Y, A_\xi(X))$$

for $X, Y \in W(M)$, $\xi \in W(M, \bar{M})^N$. In particular, if the vector field $T(\iota_* \circ X, \iota_* \circ Y)$ is tangent to M for every $X, Y \in W(M)$, i.e.

$$T(\iota_* \circ X, \iota_* \circ Y)(p) \in \iota_{*p}(T_p M) \text{ for } X, Y \in W(M) \text{ and } p \in M,$$

then A is self-adjoint with respect to $\bar{G} \circ \iota$.

Proof. Let $p \in M$ be any point of M . Then for every $X, Y \in W(M)$ there exist a neighbourhood U of p in M , a neighbourhood V of p in \bar{M} and tangent vector fields \bar{X}, \bar{Y} on V such that $U \subset V$ and

$$(1) \quad \iota_* \circ X|_U = \bar{X} \circ \iota|_U, \quad \iota_* \circ Y|_U = \bar{Y} \circ \iota|_U.$$

Hence we get

$$\iota_* \circ [X, Y]|_U = [\bar{X}, \bar{Y}] \circ \iota|_U.$$

Differentiating covariantly the equality

$$(\bar{G} \circ \iota)(\iota_* \circ Y, \xi) = 0 \text{ for } Y \in W(M), \xi \in W(M, \bar{M})^N$$

with respect to ∇^2 in the direction $X \in W(M)$ we have

$$(\bar{G} \circ \iota)(\nabla_X^2 \iota_* \circ Y, \xi) + (\bar{G} \circ \iota)(\iota_* \circ Y, \nabla_X^2 \xi) = 0$$

by virtue of Theorem 3. Next, it follows from (1) that

$$(\bar{G} \circ \iota)(\nabla_X^2 (\bar{Y} \circ \iota), \xi)|_U + (\bar{G} \circ \iota)(\iota_* \circ Y, -A_\xi(X) + \nabla_X^N \xi)|_U = 0.$$

Since $(\bar{G} \circ \iota)(\iota_* \circ Y, \nabla_X^N \xi) = 0$, we get

$$(\bar{G} \circ \iota)(\nabla_{\iota_* \circ X} \bar{Y}, \xi) \Big|_U = (\bar{G} \circ \iota)(\iota_* \circ Y, A_\xi(X)) \Big|_U.$$

We observe that

$$\begin{aligned} (\nabla_{\iota_* \circ X} \bar{Y} - \nabla_{\iota_* \circ Y} \bar{X}) \Big|_U &= (\nabla_{\bar{X}} \bar{Y} - \nabla_{\bar{Y}} \bar{X}) \circ \iota \Big|_U = T(\bar{X}, \bar{Y}) \circ \iota \Big|_U + \\ &+ [\bar{X}, \bar{Y}] \circ \iota \Big|_U = T(\iota_* \circ X, \iota_* \circ Y) \Big|_U + \\ &+ \iota_* \circ [X, Y] \Big|_U. \end{aligned}$$

Thus

$$\begin{aligned} (\bar{G} \circ \iota)(\iota_* \circ [X, Y], \xi) + (\bar{G} \circ \iota)(T(\iota_* \circ X, \iota_* \circ Y), \xi) &= \\ &= (\bar{G} \circ \iota)(\iota_* \circ Y, A_\xi(X)) - (\bar{G} \circ \iota)(A_\xi(Y), \iota_* \circ X). \end{aligned}$$

Hence it follows that

$$(\bar{G} \circ \iota)(T(\iota_* \circ X, \iota_* \circ Y), \xi) + (\bar{G} \circ \iota)(\iota_* \circ X, A_\xi(Y)) = (\bar{G} \circ \iota)(\iota_* \circ Y, A_\xi(X)).$$

We now assume that ∇ is any covariant derivative on \bar{M} . Let $u_1, \dots, u_{\bar{m}-m}$ be an orthonormal basis of $(\iota_* \circ (T_p M))^N$ ($p \in M$). Let $A^k = A_{\xi_k}(\cdot)(p) : T_p M \rightarrow T_p M$, where $\xi_k \in W(M, \bar{M})^N$ is a vector field such that $\xi_k(p) = u_k$ for $k = 1, \dots, \bar{m}-m$. By a simple calculation we verify that the vector $H(p) = \frac{1}{m} \operatorname{tr} A^k u_k$ is independent of the choice of the orthonormal basis $u_1, \dots, u_{\bar{m}-m}$. It follows from Theorem 1 that H is smooth, i.e. $H \in W(M, \bar{M})^N$. We say that the vector field H is a mean curvature of the submanifold M in (\bar{M}, \bar{G}) with respect to the covariant derivative ∇ .

Let E be the deformation tensor of ∇ and $\bar{\nabla}$, i.e.

$$E_X^Y = \nabla_X^Y - \bar{\nabla}_X^Y \quad \text{for } X, Y \in W(\bar{M}).$$

We set

$$E_X^Y = E_X^{T^T} Y + E_X^N Y \quad \text{for } X, Y \in W(\bar{M}),$$

where

$$E_X^N Y \in W(M, \bar{M})^N \quad \text{and} \quad (E_X^T Y)(p) \in \iota_{*}^{-1}(T_p M) \quad \text{for } p \in M.$$

Then, for any $X \in W(M)$, $\xi \in W(M, \bar{M})^N$ and $p \in M$ there exist a neighbourhood U of p in M , a neighbourhood V of p in \bar{M} and $\bar{X}, \bar{Y} \in W(\bar{M})$ such that $U \subset V$, $\iota_{*}^{-1}(X)|U = \bar{X} \circ \iota|U$ and $\xi|U = \bar{Y} \circ \iota|U$. Thus, on the set U , we have

$$\begin{aligned} \nabla_X^2 \xi &= \nabla_X^2 (\bar{Y} \circ \iota) = \nabla_{\iota_{*}^{-1}(X)} \bar{Y} = \nabla_{\bar{X} \circ \iota} \bar{Y} = (\nabla_{\bar{X}} \bar{Y}) \circ \iota = (\bar{\nabla}_{\bar{X}} \bar{Y} + E_{\bar{X}} \bar{Y}) \circ \iota = \\ &= \bar{\nabla}_{\bar{X}} \bar{Y} \circ \iota + E_{\bar{X}} \bar{Y} \circ \iota = \bar{\nabla}_{\bar{X} \circ \iota} \bar{Y} + E_{\bar{X}} \bar{Y} \circ \iota = \bar{\nabla}_{\iota_{*}^{-1}(X)} \bar{Y} + E_{\bar{X}} \bar{Y} \circ \iota = \\ &= \bar{\nabla}_{\bar{X}}^2 (\bar{Y} \circ \iota) + E_{\bar{X}} \bar{Y} \circ \iota = \bar{\nabla}_{\bar{X}}^2 \xi + E_{\bar{X}} \bar{Y} \circ \iota = \\ &= (-\bar{A}_{\xi}(X) + E_{\bar{X}}^T \bar{Y} \circ \iota) + (\bar{\nabla}_X^N \xi + E_X^N \bar{Y} \circ \iota) = \\ &= (-\bar{A}_{\xi}(X) + E_{\iota_{*}^{-1}(X)}^T \xi) + (\bar{\nabla}_X^N \xi + E_{\iota_{*}^{-1}(X)}^N \xi). \end{aligned}$$

Since p is an arbitrary point of M , we get

$$A_{\xi}(X) = \bar{A}_{\xi}(X) + E_{\iota_{*}^{-1}(X)}^T \xi \quad \text{for } X \in W(M) \text{ and } \xi \in W(M, \bar{M})^N.$$

We set

$$B_{\xi}(X) = E_{\iota_{*}^{-1}(X)}^T \xi \quad \text{for } X \in W(M) \text{ and } \xi \in W(M, \bar{M})^N.$$

Let $u_1, \dots, u_{\bar{m}-m}$ be an orthonormal basis of $(\iota_{*} \iota_p(T_p M))^N$ ($p \in M$). It is easy that

$$\bar{B}(p) = \frac{1}{m} \sum_{k=1}^{\bar{m}-m} \text{tr} B \xi_k(\cdot)(p) u_k \quad \text{for } p \in M,$$

is independent of the choice of basis $u_1, \dots, u_{\bar{m}-m}$, where $\xi_k \in W(M, \bar{M})^N$ is such that $\xi_k(p) = u_k$ for $k = 1, \dots, \bar{m}-m$. Hence we obtain the following theorem.

Theorem 5. Under the above hypothesis and notation we have

$$H = \bar{H} + \bar{B}.$$

As an application, we consider a conformal change of Riemannian metric on \bar{M} . Let \tilde{G} be the Riemannian metric on \bar{M} given by

$$(2) \quad \tilde{G} = \frac{1}{\alpha} \bar{G}$$

for some positive function $\alpha \in C^\infty(\bar{M})$. Let ∇ be the Levi-Civita connection on (\bar{M}, \tilde{G}) . Then it is known (see for instance [3]) that

$$(3) \quad E_X Y = \frac{1}{2\alpha} (\bar{G}(X, Y)V - X(\alpha)Y - Y(\alpha)X) \quad \text{for } X, Y \in W(\bar{M}),$$

where $V \in W(\bar{M})$ is such that

$$Z(\alpha) = \bar{G}(V, Z) \quad \text{for } Z \in W(\bar{M}).$$

We say that the conformal change (2) is differentially constant on M when

$$\xi(p)(\alpha) = 0 \quad \text{for } \xi \in W(M, \bar{M})^N \quad \text{and } p \in M.$$

In this case it is obvious from (3) that $\bar{B} = 0$. As an immediate consequence of Theorem 5 we obtain the following theorem.

Theorem 6. Let M be a submanifold of \bar{M} . Let (2) be the conformal change of Riemannian metric which is differentially constant on M . Then M is minimal in (\bar{M}, \bar{G}) if and only if M is minimal in (\bar{M}, \tilde{G}) .

REFERENCES

- [1] B. Y. Chen : Geometry of submanifolds, New York 1973.
- [2] R. Sikorski : Differential modules, Coll. Math., 24 (1971) 45-79.
- [3] R. Sikorski : Wstęp do geometrii różniczkowej, Warszawa 1972.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW
Received October 4, 1977.