

Zbigniew Leszczyński

REMARKS ON FUNCTOR CATEGORIES

Let \mathcal{C} be a skeletally small (pre)additive category. We recall that $\mathcal{C}\text{-Mod}$ is the category of \mathcal{C} -modules, i.e. the category of covariant additive functors from \mathcal{C} to the category of abelian groups. We have also a natural morphism:

$$f_M: \left(\prod_{t \in I} Q_t \right) \otimes M \longrightarrow \prod_{t \in I} (Q_t \otimes M),$$

where $X \otimes N$ is a tensor product of modules over the category \mathcal{C} (for the definition see below).

Let R be a (not necessarily commutative) ring with unity. We know that for the category of unitary modules over the ring R the following conditions are equivalent:

- 1) right projective modules are injective
- 2) left projective modules are injective
- 3) right injective modules are projective
- 4) left injective modules are projective.

Each of these conditions defines a class of quasi-Frobenius rings (see [2]). The situation is different in the case of the category $\mathcal{C}\text{-Mod}$. Harada in [3] gave examples from which we may conclude that no implication between points 1) and 3) holds. We show for modules over \mathcal{C} that conditions 1) and 2) imply 3) and 4), and that the inverse implication holds, too. In the proof of this fact we use a characterisation of locally Noetherian, coherent and perfect functor categories

in terms of the morphism f_M . Some of them were studied in [4], [7], and [10].

We know that $\{h^X\}_{X \in \mathcal{C}}$, where $h^X = \text{Hom}_{\mathcal{C}}(X, -)$ denotes Yoneda functor, is the family of small projective generators of $\mathcal{C}\text{-Mod}$. Every finitely generated free module is a finite coproduct of Yoneda functors.

Now we recall the definition of tensor product of modules over \mathcal{C} . Let N be a \mathcal{C}^{op} -module and M a \mathcal{C} -module. $N \otimes_{\mathcal{C}} M = \left(\bigoplus_{X \in \mathcal{C}} (NX \otimes_{\mathcal{C}} MX) \right) / U$, where U is the subgroup generated by elements $N(f)y \otimes x - y \otimes M(f)x$ for all $f \in \text{Hom}_{\mathcal{C}}(X, Y)$, $x \in MX$, $y \in NY$. It is well known and easy to check that $N \otimes_{\mathcal{C}} h^X \simeq NX$, $h^X \otimes_{\mathcal{C}} M \simeq MX$ (see [5]).

For a given family $\{Q_t\}_{t \in I}$ of \mathcal{C}^{op} -modules and a \mathcal{C} -module M we define a homomorphism

$$f_M: \left(\prod_{t \in I} Q_t \right) \otimes_{\mathcal{C}} M \longrightarrow \prod_{t \in I} (Q_t \otimes_{\mathcal{C}} M)$$

to be the unique for which the diagram

$$\begin{array}{ccc} \left(\prod_{t \in I} Q_t \right) \otimes_{\mathcal{C}} M & \xrightarrow{f_M} & \prod_{t \in I} (Q_t \otimes_{\mathcal{C}} M) \\ \downarrow \prod_t \otimes 1 & & \downarrow \prod_t' \\ Q_t \otimes_{\mathcal{C}} M & = & Q_t \otimes_{\mathcal{C}} M \end{array}$$

is commutative for each $t \in I$, where \prod_t , \prod_t' are canonical projections.

We start with the following useful result (see [4]).

Proposition 1:

a) If M is free (resp. finitely generated projective) \mathcal{C} -module, then f_M is a monomorphism (resp. an isomorphism).

b) A \underline{C} -module M is finitely generated iff f_M is an epimorphism for all families $\{Q_t\}_{t \in I}$ (even only for families of Yoneda functors).

c) A \underline{C} -module M is finitely presented iff f_M is an isomorphism for all families $\{Q_t\}_{t \in I}$ (even only for families of Yoneda functors).

P r o o f . a) easy.

b) Necessity. If we have an epimorphism $\varphi: F_1 = \bigoplus_{i=1}^n h_{X_i} \rightarrow M$ then from commutativity of the diagram

$$\begin{array}{ccc} \left(\prod_{t \in I} Q_t \right) \otimes F_1 & \xrightarrow{f_{F_1}} & \prod_{t \in I} (Q_t \otimes F_1) \\ \downarrow & & \downarrow \\ \left(\prod_{t \in I} Q_t \right) \otimes M & \xrightarrow{f_M} & \prod_{t \in I} (Q_t \otimes M) \\ & & \downarrow \\ & & 0 \end{array}$$

we conclude that f_M is an epimorphism.

Sufficiency. Take $I = \bigcup_{X \in \underline{C}} MX$ (disjoint union) and $Q_t = h_X$ for $t \in MX$. For each finitely-generated submodule $N \hookrightarrow M$ we have a commutative diagram

$$\begin{array}{ccccc} \left(\prod_{t \in I} Q_t \right) \otimes M & \xrightarrow{f_M} & \prod_{t \in I} (Q_t \otimes M) & \xrightarrow{g} & \prod_{X \in \underline{C}} \prod_{t \in MX} (MX)_t \\ \uparrow & & \uparrow \prod_t (1 \otimes j) & & \uparrow \\ \left(\prod_{t \in I} Q_t \right) \otimes N & \xrightarrow{f_N} & \prod_{t \in I} (Q_t \otimes N) & \xrightarrow{g'} & \prod_{X \in \underline{C}} \prod_{t \in MX} (NX)_t, \end{array}$$

where $(MX)_t = MX$, $(NX)_t = NX$ for $t \in MX$, g and g' are isomorphisms induced by isomorphisms $Q_t \otimes M \simeq MX$, $Q_t \otimes N \simeq NX$ for $t \in MX$ and the right hand morphism is induced by natural inclusions $NX \hookrightarrow MX$. Let $a = \langle \langle t \rangle \rangle_{t \in MX} \rangle_{X \in \underline{C}} \in \prod_{X \in \underline{C}} \prod_{t \in MX} (MX)_t$. By the assumption f_M is an epimorphism;

then $a = gf_M(b)$ for same $b \in (\prod_{t \in I} Q_t) \otimes M$. Then one can find a finitely generated submodule $N \subseteq_j M$ and an element $c \in (\prod_{t \in I} Q_t) \otimes N$ such that $b = (1 \otimes j)c$. The commutativity of the above diagram with such an N implies that $MX \subseteq NX$ for each $X \in \mathcal{C}$ and therefore $M = N$ is finitely generated.

c) We assume that f_M is an isomorphism. From a) we know that M is finitely generated. Hence we have an exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$, where F is a finitely generated free \mathcal{C} -module. This sequence induces the commutative diagram with exact rows

$$\begin{array}{ccccccc}
 (\prod_{t \in I} h_{X_t}) \otimes K & \longrightarrow & (\prod_{t \in I} h_{X_t}) \otimes F & \longrightarrow & (\prod_{t \in I} h_{X_t}) \otimes M & \longrightarrow & 0 \\
 \downarrow f_K & & \downarrow \simeq f_F & & \downarrow \simeq f_M & & \\
 0 & \longrightarrow & \prod_{t \in I} (h_{X_t} \otimes K) & \longrightarrow & \prod_{t \in I} (h_{X_t} \otimes F) & \longrightarrow & \prod_{t \in I} (h_{X_t} \otimes M) \longrightarrow 0.
 \end{array}$$

Since f_K is an epimorphism then from a) we have that K is a finitely generated \mathcal{C} -module. The inverse implication can be proved similarly.

We call a category $\mathcal{C}\text{-Mod}$ locally coherent if every finitely generated submodule of a free module is finitely presented, or equivalently, every finitely generated submodule of any h^X is finitely presented (see [6]).

If $\mathcal{C}\text{-Mod}$ is locally Noetherian then, of course, it is locally coherent.

Proposition 2. $\mathcal{C}\text{-Mod}$ is locally Noetherian iff f_M is a monomorphism for all M and all families $\{Q_t\}_{t \in I}$ of flat objects in $\mathcal{C}^{\text{op}}\text{-Mod}$ (see [10] Prop. 2.4).

Proof. Let $\{Q_t\}_{t \in I}$ be a family of flat \mathcal{C}^{op} -modules and let M be a \mathcal{C} -module. By the assumption, M is a union of Noetherian submodules $M_k \subseteq M$. Then for each k we have a commutative diagram

$$\begin{array}{ccc}
 (\Pi Q_t) \otimes M_k & \xrightarrow{f_{M_k}} & \Pi(Q_t \otimes M_k), \\
 \downarrow & & \downarrow \varphi_k \\
 (\Pi Q_t) \otimes M & \xrightarrow{f_M} & \Pi(Q_t \otimes M),
 \end{array}$$

where f_{M_k} is an isomorphism and φ_k is a monomorphism since Q_t are flat. Then it follows that f_M is a monomorphism.

Conversely, assume that \underline{C} -Mod is locally Noetherian. We shall show that every \underline{C} -submodule α of any h^X , $X \in \underline{C}$, is finitely generated. The exact sequence $0 \rightarrow \alpha \rightarrow h^X \rightarrow h^X/\alpha \rightarrow 0$ induces the following commutative diagram with exact rows

$$\begin{array}{ccccccc}
 (\Pi h_{X_t}) \otimes \alpha & \longrightarrow & (\Pi h_{X_t}) \otimes h^X & \longrightarrow & (\Pi h_{X_t}) \otimes h^X/\alpha & \longrightarrow & 0 \\
 \downarrow f_\alpha & & \downarrow \simeq & & \downarrow f_{h^X/\alpha} & & \\
 0 & \longrightarrow & \Pi(h_{X_t} \otimes \alpha) & \longrightarrow & \Pi(h_{X_t} \otimes h^X) & \longrightarrow & \Pi(h_{X_t} \otimes h^X/\alpha) \longrightarrow 0,
 \end{array}$$

where $f_{h^X/\alpha}$ is an isomorphism by the assumption. Hence f_α is an epimorphism and by Proposition 1. α is finitely generated.

Recall that a category is said to be perfect if each of its objects has a projective cover.

Proposition 3. The following three conditions are equivalent:

- i) \underline{C} -Mod is perfect,
- ii) every flat \underline{C} -module is projective,
- iii) f_M is a monomorphism for all flat \underline{C} -modules M .

This is a part of Theorem 5.4 in [7].

Proposition 4. If in the category $\underline{C}^{\text{op}}\text{-Mod}$ every injective object is flat and every flat \underline{C} -module is a directed union of finitely presented modules then the category \underline{C} -Mod is perfect.

Proof. Let M be a flat \mathcal{C} -module and suppose $M = \bigcup_{k \in K} M_k$ is a directed union of finitely presented modules M_k . By proposition 3 it is sufficient to show that f_M is a monomorphism. Consider the commutative diagram with exact rows

$$\begin{array}{ccccc} 0 & \longrightarrow & (\Pi Q_t) \otimes M & \longrightarrow & (\Pi \hat{Q}_t) \otimes M \\ & & \downarrow f_M & & \downarrow g_M \\ 0 & \longrightarrow & \Pi(Q_t \otimes M) & \longrightarrow & \Pi(\hat{Q}_t \otimes M), \end{array}$$

where \hat{Q}_t is an injective envelope of Q_t . Now it is enough to show that g_M is a monomorphism. Suppose $\text{Ker } g_M \neq 0$. Then there exists k such that the composed map $(\Pi \hat{Q}_t) \otimes M_k \rightarrow (\Pi \hat{Q}_t) \otimes M \rightarrow \Pi(\hat{Q}_t \otimes M)$ has a non-trivial kernel. Since each of the modules \hat{Q}_t is flat, then from commutativity of the diagram

$$\begin{array}{ccc} (\Pi \hat{Q}_t) \otimes M_k & \longrightarrow & (\Pi \hat{Q}_t) \otimes M \\ \downarrow \simeq g_{M_k} & & \downarrow \\ 0 & \longrightarrow & \Pi(\hat{Q}_t \otimes M_k) & \longrightarrow & \Pi(\hat{Q}_t \otimes M) \end{array}$$

where g_{M_k} is an isomorphism, we get contradiction.

Corollary 5. If all injective \mathcal{C}^{op} -modules are flat and the category $\mathcal{C}\text{-Mod}$ is locally Noetherian then $\mathcal{C}\text{-Mod}$ is perfect.

A \mathcal{C} -module M is FP-injective if $\text{Ext}_{\mathcal{C}}^1(P, M) = 0$ for all finitely presented \mathcal{C} -module P (see [8], [11]).

Let G be a \mathcal{C} -module. We define the character \mathcal{C}^{op} -module G^+ by formula $G^+(X) = \text{Hom}_{\text{Ab}}(G(X), \mathbb{Q}/\mathbb{Z})$ (see [8]). From the Yoneda equivalence it is easy to check that the morphism

$$\chi_X: G^+ \otimes h^X \longrightarrow (h^X, G)^+$$

defined on generators by

$$\chi(g^+ \otimes f)(F) = g^+(F(f)),$$

where $g^+: G(Y) \longrightarrow \mathbb{Q}/\mathbb{Z}$, $f: X \longrightarrow Y$, $F: h^X \longrightarrow G$, is an isomorphism. We remark that the homomorphism χ_M is an epimorphism if M is a finitely generated \mathbb{C} -module, and it is an isomorphism if M is a finitely presented \mathbb{C} -module.

Lemma 6. Suppose that $\mathbb{C}^{\text{op}}\text{-Mod}$ is locally coherent. The following conditions are equivalent:

- i) Every injective \mathbb{C} -module is flat.
- ii) Every flat \mathbb{C}^{op} -module is FP-injective.
- iii) Every finitely generated free \mathbb{C}^{op} -modules is FP-injective, or equivalently, each of the Yoneda functors h_X is FP-injective.

For modules over a ring this lemma is due to Colby [1], theorem 1 and Würfel [11], satz 4.3..

Proof. i) \longrightarrow iii). Consider a monomorphism $u: M \longrightarrow F_1 = \bigoplus_{k=1}^n h_{Y_k}$, where M is finitely generated. By our assumption M is finitely presented. Further let F be a flat \mathbb{C}^{op} -module. We want to have that the natural morphism $h_F(u): (F_1, F) \longrightarrow (M, F)$ is epimorphic, or equivalently, that $h_F(u)^+: (M, F)^+ \longrightarrow (F_1, F)^+$ is a monomorphism, where $h_F(u)^+$ is the natural homomorphism of groups of characters (see [8], Prop. 2.6). Since, by the assumption, F^+ is flat we have the commutative diagram

$$\begin{array}{ccccc} 0 & \longrightarrow & M \otimes F^+ & \longrightarrow & F_1 \otimes F^+ \\ & & \downarrow \chi_M & \simeq & \downarrow \\ & & h_F(u)^+: (M, F)^+ & \longrightarrow & (F_1, F)^+ \end{array}$$

and ii) follows. The implication

ii) \rightarrow iii) is obvious.

iii) \rightarrow i). Let Q be an injective \underline{C} -module and consider an epimorphism $F \xrightarrow{p^+} Q^+ \rightarrow 0$, where $F = \bigoplus_{t \in I} h_{X_t}^+$ is a free $\underline{C}^{\text{op}}$ -module. We derive the monomorphism

$$Q^{++} \xrightarrow{p^+} F^+ \simeq \prod_{t \in I} h_{X_t}^+.$$

Hence, by the assumption, Q is a direct summand of F^+ because p^+ is a monomorphism and there is a natural embedding $Q \hookrightarrow Q^{++}$. Now, to show that Q is flat, it is enough (from the coherentness of $\underline{C}^{\text{op}}\text{-Mod}$) to show that h_X^+ is a flat \underline{C} -module for every object X (see [4], Satz.4.).

Let α be a finitely generated (i.e. finitely presented) submodule of the free $\underline{C}^{\text{op}}$ -module h_Y . Then the commutative diagram

$$\begin{array}{ccccc} 0 & \longrightarrow & \alpha \otimes h_X^+ & \longrightarrow & h_Y \otimes h_X^+ \\ & & \downarrow \chi_\alpha \simeq & & \downarrow \simeq \\ 0 & \longrightarrow & (\alpha, h_X)^+ & \longrightarrow & (h_Y, h_X)^+ \end{array}$$

implies condition i).

Now we are in a position to prove the following theorem related to Harada's results in [3].

Theorem 7. Let \underline{C} be a skeletally small (pre)additive category and let $\underline{C}\text{-Mod}$ (resp. $\underline{C}^{\text{op}}\text{-Mod}$) denote the category of additive functors from the category \underline{C} (resp. $\underline{C}^{\text{op}}$) to the category of abelian groups. Then the following conditions are equivalent:

- i) Every injective \underline{C} -module and every injective $\underline{C}^{\text{op}}$ -module is projective.
- ii) Every projective \underline{C} -module and every projective $\underline{C}^{\text{op}}$ -module is injective.

Proof. If we assume i) then from the well-known Faith theorem ([2] Theorem 1.1) $\mathcal{C}\text{-Mod}$ and $\mathcal{C}^{\text{op}}\text{-Mod}$ are locally Noetherian. From Lemma 6 we have that h_X, h^X are FP-injective and therefore they are injective. Now since these two categories are locally Noetherian we obtain the statement ii).

ii) \longrightarrow i). By [3], Theorem 3 we know that $\mathcal{C}\text{-Mod}$ and $\mathcal{C}^{\text{op}}\text{-Mod}$ are locally finite and hence perfect and locally coherent. Therefore i) is a consequence of Lemma 6.

The author would like to express his gratitude to prof. D. Simson for help and encouragement during work over this paper.

REFERENCES

- [1] R.R. Colby : Rings which have flat injective modules J. Algebra 35 (1975) 231-252.
- [2] C. Faith, E.A. Walker : Direct - sum representations of injective modules, J. Algebra 5 (1967) 203-222.
- [3] M. Harada : Perfect categories IV (Quasi-Frobenius categories), Osaka J. Math. 10 (1973) 585-596.
- [4] H. Lenzing : Endlich präsentierbare Moduln, Archiv der Mathematik. Vol. 20 (1969) 262-266.
- [5] B. Mitchell : Rings with several objects, Advances in Math. 3 (1972) 1-161.
- [6] U. Oberst, H. Röhrl : Flat and coherent functors, J. Algebra 14 (1970) 91-105.
- [7] D. Simson : On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977) 91-116.
- [8] B. Stenström : Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970) 323-329.
- [9] B. Stenström : Purity in functor categories, J. Algebra 5 (1968) 352-361.

- [10] C. Webb : Tensor and direct products, Pacific J. Math. 49 (1973) 579-594.
- [11] T. Würffel : Über Absolut reine Ringe, J. Reine Angew. Math. 10 (1973) 381-391.

INSTITUTE OF MATHEMATICS, NICOLAUS COPERNICUS UNIVERSITY
87-100 TORUŃ

Received July 15, 1977.