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1. Introduction

Although the general theory of optimal stopping is well
developed ([2]) many particular problems interesting in prac-
tice are difficult to solve. One of them is so called finite
case., In many papers the problem of recognizing the maximum
of a stochastic sequence with unknown distribution has been
investigated; so called "secretary problem" in [[3], [4],
and "secretary problem with interview cost" in [1], [5].

In (4] the case of a known distribution is considered %oo.

In our paper we shall investigate *two problems: recogniz-
ing the maximum of a sequence of icdenticaly distributed ran-
dom variables with a known distribution law and the second
problem is maximizing the drawn value. Our results generalize
some results of J.Gilbert and F.ilosteller contained in [4].

2. Yormulation of the problem
Suppose we have a population with a known continuous

distribution law, We draw a sample of, et most, ¥ elements
out of it, A certain payoff is connected with each drawing to
the sample., We want to choose one element out of this sample
to maximize thé mean payoff. “ie draw elements to our sample
one by one and after each drawing we may sither keep the
drawn element or cast it off., The payoff depends on the last
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2 A.Sierocinski

zlement but may depends on previous sleéments too. We have to
keep some element by the N-th at the very latest.

Let (R,F ,2) be a probability space and let KypevesXy
be a finite sequence of independent identicaly distributed
random variables on this space., For n = 1,2,...,0 1let Tn
n and let Qn(xn) =
= ¢p(xqy0005x, ) be the n-th payoff, Ve suppose that ¢ (x,)
is 7h-measurable. The problem is to find the optimal stopping
rule for the stochastic sequence @n(xn), Té]g=1. This is
so called "finite case"; the solution always exists and can
be obtained by the backward induction.

In our paper we consider the following two cases most

be the 6-algebra generated by XyreeesX

interesting in practice:
a)l qulx ) =x  -c ), O<cy<..e <oy

ch plays the role of the payment for the first n drawings;
b) g (x)) = E[Wn(xn)lyn]’ where

-on if X = Xy for 1 = 1,2,0e4,4N

1
yol(xpy) ={

-o0n otherwise,

in other words we are interested in recognizing the maximum

o
oy {Xn} .

3. ‘'he case qn(xn) = X, - Cy

Let P, f, m denote the distribution function, the den-
sity and the mean of the population respectively., let Cg
be the class of these stopping rules t which satisfy

n=t=k. Denote by E® the mean of the payoff for the

. ; . n :
stopping rule optimal in Chcner 1eee

g? = sup{ Eg,(xy) lt € Cﬁ-n+1}'
Lefinition., The n-th decision number d is

ithe smellest number satisfying the inequality ¢n(dn);= EN-R,
The optimal stopping rule will depend on the sequence
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On the optimal choice 3

a; = g1, cy3 if the n-th drawn element is not smaller -

than dn we should keep it otherwise we should cast it off

and continue the drawing. The above stopping rule is optimal
by ‘Theorem 3.2 in [2]. Since we have to keep xy 1if we are

in the n-th step, dy = -co. E' =m - ¢y, S0 d
=W+ Cy 4 = Cye For every n=1

N=1 =

B = p(ay =y JB(xy -y % = dy )+ ER(x, <4y ),

n .
where dN-n = E + CNen® After easy computations we get

'd + 0o
dy_q = .f max(x,dk)f(x)dx +Cp_q =0 k=2,...,N-1
-oo
(x)  {dy_q =m+ g 4 - cy
+00
BN - j.max(x,d1)f(x)dx - cq.

. —00

In the case of a truncated distribution (i.e, if for some

a the density f fulfils the conditions f(x) = 0 for
x<a and f(x)>0 for a<x<a+t for same positive ¢)
we pat d) = a whenever d, computed as in {x) is smaller
than ea.

Corollary. In the case of a truncated distri-
bution if for every i Cj = Cj_q=m ~a then the optimal
stopping rule is "keep the first drawn value".

Now let us consider the same problem but with the possi-
bility of keeping more than one, say k, values. Our payoff
is the sum of the payoff’'s for the kept values.

Let us introduce the followling notations:

Ag’k - the mean payoff for the stopping rule optimal in the
class Cg-n+1 when we 8till have to choose k ele-
) ments, N =n = k;
ag’k - the n-th decision number in a k-choice game of the

lenght N,

- 665 =



4 A,Sierocidski

It id easy to see that Ag’1 = E® and a§'1

The optimal stopping rule for this problem depends on k se-
guences of decision numbers, After the first choice the prob-
lem reduces to the problem with k-1 choices. We shall define
the solution inductively. For k=1 the solution is given by
(¥). Suppose we have our problem solved for k-1 choices than

= dno

Nk
B’™ = kem - oy = Oy g - eee = Cgigyqo

N,k

y N, k-1
afa) = Blxy = a)[Blny_ oy g [my = &) + g0 T4

[0 - sty al] Al

f

N,kiqg),

max Ak+1

N,k
(At

Differentiating A§;¥(a) with respect to a and equating the

result to zero we get

N,k
anlx

N,k _ ,N,k(.N,K :
Aeir = Ay (aN1k> .

Repeating the above procedure for n = k,...,,N=1 we get

N,k
k

N, k-1

A " + cN-k

- A

9 -
aln = A - AT oy
ﬁ +S0 +%
N,k _ N,k N,k Nkt
A=A+ J' (x-cN_n)f(x)dx - (An - A ) £(x)dx.
¥,k Nk
\ aN-n N-n

A%'k is the mean payoff for the whole game,
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On the optimal choice 5

Proposition. If a distribution of a popula=-
tion is truncated at a and ¢y ~cy_y4=m-2a for every 1
than the optimal stopping rule in the k-choice game is: "keep
the first k elements",

4, The case ¢n(xn) = E[Wn(xn)lyn]

In this case we want to know where the maximum actually
is, and not how big it is, So, if we have a population with
some fixed distribution law (F - distribution function) our
problem can be reduced to the problem of finding the maximum
of a sequence of rendom variables having the uniform distri~
bution on the interval <¢0,1) . Indeed, the distribution
function F, mapping the maximum on the maximum, transforms
our random variable to a rendom variable with uniform distri-
bution on the interval <0,1> . The advantage of this trans-
formation is that in the case of the uniform distribution on

0,17 the drawn value is the value of the distribution
function. From now on we shall assume that X19XopeeeyXy is
a sequence of random variables uniformly distributed on the
interval (0,1 . Notice that it is enough to consider the
case o <<1; for oz=1 the optimal stopping rule is to
stop after the first drawing. Indeed, if we did not stop in
the first step our payoff would be at most 1-2«, otherwise
it would be at least ~tx,

Now we shall try to answer the guestion when it is rea-
sonable to stop the stochastic sequence {¢n(xn)’9h} for

x €<0,1), Let E®(x) denote the mean payoff for the stopp-
ing rule optimel in the class Cy_ ., with the sdditional
essumption that x 1is the maximum of values drawn in the
first N-n sgteps. E%(x) is a decreasing function of x.

If we hsve already drawn values XqseeeyX then it is reason-

n
able to keep x only in two cases:

n

_ N-n e
a) x, = ?2§ x; and E (x) < @n(x), x = mex(xy,000,x)

b) x, <x = max x;, but ~xn =B R {x)
ign
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6 A.Sierocinski

(the cost is so big that even the optimal strategy will not
help).

For n =1 2,...,N-1 let d, be the smallest x e <0,
such that BN n(x)<cp (x) and D, be the smallest x 0,1
such that EV"(x)< ~m. For n=N we put dy = Dy = O.
Cbserve that D >>d, for each n. By [2,th.3.2] the opti-
mal stopping rule t 1is of the form

t=:nﬂn N: max(xq,ee0,x ) = x &x =>4,
or max(x1 ye o ,xn) = Dn}.

We shall improve this result, namely we shall prove that +t
is of the form

t = 1nf{ < N: max(x1,...,xn) = X, &J&l;adn}.

Since Dn;z dn it is enough to prove that for every o deci-
sion numbers Dn(a) form a nondecreasing sequence. Indeed,
it is easy to see that conditions max(x1,...,xi) =D; = Dy_4
and max(xy,eeeyX;_q) <Dy 4 imply max(xy,.e.,x;) = x; and
=4d;.

P r oposition, For every o decision numbers

bi(m) i =1,e.e,N=1 form a non-decreasing sequence.

Xy =

Proof:
1} Notice that DN_iSE-.DN_i+1 if and only if the following
implication holds: if max(xq,eesyXy_5) =Dy ;.4 then stop
in the ©N-i step. Thus for

)

1-p: . (« .
a;a——~u—%il——- we have DN_i(m) 1i=2,¢0.,N-1,

< Dy ()
Suppose that max(Xy,eee,Xy_4) = Dy_j41+ If we do not stop
in the N-1 step then we shall stop in N-i+1 step with the
probability 1. So to have Dy_; =Dy ;. 4 it is enough to
have
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" On the optimal choice T

i
1= (cc) :
-oc(N-i);DN#i‘—— - «(N-1+1) = El(DN_i+1 ().

The last equality holds because

P(XN_1+1 >X1,...,XN_1+1 >xN|maX(x1’...,xN_i) = DN-1+1 (m)) =

. 1-DE . . (t)
= f xl-1dx = _i,y.:%i_—'

Dyoiet

2) If dy_i+q =Dy-ji» then

[ 1-D§_i(05)}
Dy (®) SDy_y q (€)== 0 =—"3"—|.

] .
3) If a=<y then dy_, () =<Dy . (c) .

Proofs of 2) and 3) are similar to that of 1).

1-D_, (o¢)
4) Dy_,l(x) sDN_iH(oc)ﬁoc;-——l‘l—-———jL .

For océ-l— 4) results from 2) and 3), and for oc>-} it is
trivial,

+1 1_xi

_ i ®

1=-x*
i+l

5) For x e 0,1

6) Dy_j(x) =< Dy_; q{x)==Dp ;_,floc) < Dy, (x),

results from 4), 5) and 1).

7) Dy_o{®) <Dy _4(xx) = 1 -x, results from 1).

The thesis follows easily from 7) and 6) (induction).
Corollacry. The optimal stopping rule is of

the form: "keep the first =x; such that x; = max(x1,...,xi)

and x; = di"'

- 669 -



8 A.Sierocidski

Example,. For N=3 we get

d3=0
d, = = (1 ~a)
2°72
(0 3- W<t
d1=<%—-oc+% 23 - 3<ax<<3 - W&

%(1-&)+%Vo¢§-120¢+6 O ox<<2V3 - 3

“

The three decision numbers computed above are the last three
in any game of the lenght at least three., This results from
the fact that dn in the game of N drawings equals dn+1
in the game of N+1 drawings., Even in the case N=3 it is
rather arduous to compute dn’s and requires solving out
some quadratic equations. The quantity and degrees of equa-
tions increase with N. We shall show now some facts which
enable us to find the optimal stopping rule in some cases,
Proposition.
1-ai . L («)

dy_jle)=<dy_, 4(cc) if and only if mB_l-iL. .
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On the optimal choice

Proof, B8y the definition of dn's

i
N-i

(==)

ot (o) - a(ri-i) = EHay_; (o))

i
B TSAL

i 1
d () - oc(li-i) = 1

N-i+1

+ d (@) ot (Gy_yyqlec))

Nei

(==) Suppose dp_i > Oy_j4q» then

i
. Ay _. . (@)
i s N=i+1
dI‘{’—i+1 (a)-“(N-l) < i

i-1 s sas
+ dy_y,q{€) EZ7 (dy_ 4, 4(@)) thus by the definition of

, 1=dp i, q o)
dnswe get oo << ry .

Corollary. If dy,lx) =0 thend
for i = 1,2,e..,N-2.

N-i-1

Proof. If the maximum for i = 1,...,N-1 is zero

then % - oc{N~i+1) is the mean payoff in the N-i+1 step.
i 1

Thus dy_, = O implies that -o(N-i)=E"(0)z= 7 - «(N-i+1),

1 ; = .
Hence o« =3 . Suppose that dN-i-‘l >0 = dN-i’ then

-agt
ot<——i;1—' =137 Ihe contradiction proves that dl\'-

Let us introduce the following notation:

i
1-0§_141 (o) ]
—A

—i=1

oy =[infoc : xe(0,1) & x=

By the continuity of the distribution law and by the facts
dyg_44¢(0) <1, dy ;.4(1) = 0 the set in brackets is non-
empty. So for @ <oc; we have
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i
1-d (o)
N-i+1
x< T ard  dy_s{ec) >dy . ,{ec),

The definition of oy implies:

Proposition. The sequence (oci) decreases
i.es 1 =00, = aes >0y

Corollary. TForoa<ay dy,(0)=dy ; 4(xk=..
see=dy. In particular for O=<oa=<ocy , the decision num-
bers di(oc) form a nonincreasing sequence,

Our last two propositions will generalize results obtain-
ed in [4] for = 0 +to the case o = 0. In prcofs we shall
limit ourselves to the part with a costs

Proposition, Lety°=iqf{ye(0,1):yn'2=

i _
- N-1 N-2
_ 1(R=2\ N~k=2 k 1=y R .
= () (1-31" + §3 Twy }
= 1t
For 0<®X <&y _, = -yo- the numbers &y , 1 = 1,...,N-1

tulfill the equations
s () (1 x) € - 1-x*
= k\k T-x °*

Proof, Suppose we are in the N-i~-th step and
X = Xy_y = max(Xyye00yXy_4) = dy_y. We still have i draw-
ings at most. We shall stop in N-i+k - th step with proba-
pility x~1(1-x) for k==i-1 and in N-th step with pro-
bebility xi'1. This results from the fact that decision
numbers do not increase, and so our loss equals

: . .
21 (1ox) (N-ivk) + BN - _m[N_i + 1::;:'

Enclosing after [4] the part without the cost we get

£ (x) - z %Gc)xi"kh-x)k - oc(N-1) -a(}:}fi),
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The mean payoff for the stopping in the N-i-th step is
xi ~x(N-i). We get the thesis by equating obtained valies.
i 1 '
Remark, By [4] dy_;,4(0)=7% for N=51. Thus
N-1 N~1
1-477 (ay ) 1-d777(0)

) 1
Cyet = TR =—x T =zw-Ar 0 for N5l

Hence for .« éz_(;q-_ﬂ‘ , N=<< 51 we have the posesibility of
computting the decision numbers,

Proposition. If the decision numbers form
a nonincreasing sequence then the mean payoff for the stopping
rule based on these numbers is given by:

" q‘ -dN N1 > aF dN dN N-1 7/ k dk
E = A + —1 - -—i i - r+q -oci1 + M __i_
N r N N-r N k ¢
r=1 {_1=1 =1 ‘i=1

Proof. (for the part with a cost],
Let Ak denotes the event {we stop in the k-th step}.

N _
Ak are disjoint, P(k:4 Ak) = 1 and the mean cost equels

N
-0 g;koP(Ak). Let B, = |J 4A;, k=0,1,...,N-1. We ha-

9
iske1
ve -a g keP(A,) = -m{g k[P(B,_q)-P(B,]] + N-P(By_, )} =
N-
= - P(B ). Tet Cg = {we stop after k-th step and

the i~-th number is the biggest ampng the first k numbers},
k=1,000,N-1, i=1,.o-,k' i.e. Ci= X1 <xi,n.o,xi_1 <xi,xi+1<
<xi,...,xk<x1,xi<di}. For each k CK are disjoint

di
and Lchf = B,. It is easy to see that P(Cg) =.r x§'1dxi=
i

i o B (E zi)]q.e.d.

=1, Now -u%i- p(B, )
X = P8
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12 4.Sierooidski

Remark. The above result is usefull not only in
the case of a non-increasing sequence of decision numbers,
Looking at the mean payoff as at a function of d1,...,dN
defined on the set {(dy,e.e,dy) + 1=d,= dy= ...=>dy =0}
We can fix the optimal stopping rule in this set., Namely, the
coordinates of the point (d1,...,dN) in whiech the function
takes its maximal value are the decision numbers in the opti~
mal stopping rule,
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