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SUR LES ÉQUATIONS QUI NE DEVRAIENT PAS OSCILLER 

1. Introduction 
Soient deux ensembles 

D :=[ (a, b) : b < -a" 

et 

B := R 2 - D 

(voir la du plan des (a,b) 
fig.1). 

Si (a,b) e D, alors toutes 
lea solutions de l'équation 
linéaire du second ordre à co-
efficients constants 

Fig.1 

(1.1) :" - 2ax' - bx = 0 

sont oscillantes et si 
(une fonction x = x(t) 
suites de nombres t~ n 
et x(t-) :x(tp 

(a,b) e B elles sont non oscillantes 
est oscillante s'il existe deux 

et t* telles que t ~ < t * < t -—•- + <» n u a n n-tfi 
pour tout n; dans le cas contraire 

elle est non oscillante} 
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3 K.Tatarkievvicz 

Considérons un couple de fonctions 

(1.2) a = a(t), b = b(t) 

définies et continues pour t e <0,+ oo). Désignons par C,, 
IJ. 

(où h >0) la courbe du plan (a,b) donnée paraaétriquement 
par les fonctions (1.2) pour t e <h, + oo). 

La proposition "s'il existe un h ^ O tel que C^ C B, 
alors toutes les solutions de l'équation différentielle ordi-
naire linéaire du second ordre 

sont non oscillantes" - est fausse. Ce travail est consacré 
à la démonstration de ce résultat et d'un autre sur la non 
oscillation des solutions de l'équation (1.5) (ce dernier, 
dans un certain sens, est le meilleur possible). 

riemarquons qu'en partant du théorème de Sturm sur les 
oscillations (voir p. ex. Kamke C1U, p. 277) ou bien du 
théorème sur la réduction des équations homogènes (voir p. ex. 
Kamke [1H, p. 240) on peut facilement démontrer qu'ou bien 
toutes les solutions r.on banales de l'équation (1.3) sont 
oscillantes ou bien toutes sont non oscillantes. On peut donc 
dire qu'une équation linéaire de second ordre est oscillante 
ou bien qu'elle est non oscillante. 

En généralisant les résultats connus on peut poser le 
problème suivants 

Problème. Soit une équation linéaire du n-ièine ordre 

(1.3) x" - 2a(t.)x' - b(t)x = 0 

n-1 

k=0 

où les fonctions = a^it) (k = 0,1,...,n-1) sont définies 
et continues dans <0,+oo). Est-ce qu'il existe toujours un 
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système fundamental de l'e'q nation (1.4) qui contient un nom-
bre peire de solutions oscillantes? (s'il en était ainsi, 
alors évidemment chaque équation (1.4) d'ordre impaire aurait 
au moins une solution non banale non oscillante). 

2. Les équations non oscillantes 
Nous avons démontré dans C43, que si 

(2.1) b(t)> 0, 

alors l'équation (1.3) est non oscillante. Nous allons démon-
trer ici que même si 

(2.2) b(t)3s0, 

alors l'équation (1.3) est non oscillante. 
L e m m e 2.1. Supposons que la condition (2.2) soit 

vérifiée et que x = x(t) est une solution de l'équation 
(1.3) telle que pour un t Q ^ 0 on a 

(2.3) x ^ o ^ • x' ( V = 

Alors il existe un intervalle <t ,t > , où O ^ t ^ t < 
2 1 ? ° î^t ig+oo (et où il peut être t = t ), tel que x'(t) = 0 1 2 2 pour t e <t ,t > . Si t < +oo, alors on a x' (t) > 0 

2 1 pour t :»• t et si 0 < t , alors on a x' (t) < 0 pour 
C a S t c t 1 . Si b(tQ) = 0, alors <t1,t2> est l'inter-
valle fermé maximal dans lequel b(t) = 0. Si b(t ) ^ 0, 

1 2 0 
alors t = t . 

D é m o n s t r a t i o n . Ce lemme est une suite 
presque immediate du lemme 2.4 ' du travail C5D. En effet il 

1Ì ' Dans le travail nous avons mentionné (voir p.479) 
que le lenirne 2.4 de ce travail généralise notre lemme 2.1. La 
publication du présent travail ayant eu un retard il n'y a- pas 
de raison de donner une démonstration indépendante du lemme 
2.1 (elle est presque aussi longue que la démonstration du 
lemme 2.4). 
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s u f f i t de poser f ( t , x , z ) s= b ( t ) x + 2 a ( t ) z e t l ' i n t e r v a l l e 
1 2 

maximal <t , t > se ra égal à l ' ensemble J (remarquons 
qu ' en p lu s on a i c i { ( t , x ) : f ( t , x , 0 ) = 0} = {t : K t ^ O j x R ^ ) , 
donc un t e l i n t e r v a l l e ( t ^ t ^ e x i s t e , c . q . f . d . 

Des raisonnements semblables à ceux des n o s 2 e t 4 du t r a -
v a i l [4] nous montrent que sous l a suppos i t ion (2 .2 ) on ob-
t i e n t un théorème analogue aux théorèmes I e t J de ce 
t r a v a i l (et au theorème W du t r a v a i l [5] ) , à savoi rs 

T h é o r è m e S. S i l a condi t ion (2 .2 ) e s t v é r i -
f i é e , a l o r s 

1° t o u t e s l e s s o l u t i o n s de l ' é q u a t i o n (1 .3 ) qui v é r i f i e n t 
l a cond i t ion x(0) = 0 sont fo r t emen t monotones - sauf l a 
s o l u t i o n banale x ( t ) = 0. 

2° t o u t e s l e s s o l u t i o n s de l ' é q u a t i o n (1 .3 ) qui v é r i f i e n t 
l a cond i t ion x(0) > 0 sont ou b ien a) fo r tement c r o i s s a n t e s , 
ou bien b) i l e x i s t e un i n t e r v a l l e < 0 , t ) ( i l peut ê t r e 
v ide) dans l eque l l a s o l u t i o n x = x ( t ) e s t fo r tement dé-1 2 c r o i s s a n t e , un i n t e r v a l l e fermé <t , t > ( i l peut se r é d u i r e 
à un p o i n t ) dans l eque l x ' ( t ) s 0 e t e n f i n l ' i n t e r v a l l e 

2 • ( t ,+ <*>) ( c e t i n t e r v a l l e impropre peut ê t r e v ide) dans l eque l 
l a s o l u t i o n x = x ( t ) e s t fo r tement c r o i s s a n t e , ou bien c) 
l a s o l u t i o n x = x ( t ) e s t fo r t emen t déc ro i s san t e 

3° s i x(0) < 0, a l o r s l a f o n c t i o n y ( t ) := - x ( t ) aura 
l e s p r o p r i é t é s énoncées sous 2° . 

De ce Théorème S i l s ' e n s u i t l e c o r o l l a i r e s u i v a n t : 
C o r o l l a i r e 2 . 1 . Si l a cond i t ion (2 .2) e s t 

v é r i f i é e , a l o r s l ' é q u a t i o n (1 .3) e s t non o s c i l l a n t e . 
Oe c o r o l l a i r e e s t un cas p a r t i c u l i e r du c o r o l l a i r e 3 .1 

du t r a v a i l C5J. I l peut ê t r e a u s s i obtenu (sauf dans l e 
cas où a ( t ) = 0 = b ( t ) ) par d ' a u t r e s vo ies ( p . e x . en p a r -
t a n t des e s t i m a t i o n s du t r a v a i l C23). 

3. Une équat ion o s c i l l a n t e 
Soient deux p o i n t s (a^ ,b^) i = 1 ,2 ( v o i r l a f i g . 2 ) du 

p lan ( a , b ) , t e l s que 
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(3.1) 

(3.2) 

et 

(3.3) 

a* < 0 < a„, 

0 < af + b i t i = 1,2 

Fig. 2 

Désignons par r^ et r 2 les solutions de l'équation 

algébrique 

(3.4) r - 2a.jr - b i = 0 

pour i = 1 et par s^ et s^ les solutions de l'équation 
(3.4-) pour i = 2. Vu (3.2), les nombres r^ et s^ sont 
réels. D'après (3.1) et (3.3), on a 

r i < 0 < (3.5) 

et r^ ^ rg, s^ ^ Sg. Pour fixer les idées supposons que 

r^ < r 2 < 0 < s^ < s 2. 

- 639 -



6 K.Tatarkiewicz 

La solution générale de l'équation différentielle linéaire 
è coefficients constants 

(3.6) x" - 2aix' - b^x = 0 

sera pour i = 1 

xCtjc^jCg) = ĉ  exp r^t + c2 exp r2t 

et pour i = 2 

y(t;k^,k2) = k̂  exp ŝ t + k2 exp s2t. 

Vu (3.5) des calculs élémentaires nous montrent que si 
x = x(t) est une solution de l'équation (3.6) pour i = 1, 
telle eue pour un t, S* 0 on a 

m := x(t») 0, m' := x'(t*) 

(x(t»)s^0, x'(t,)<0), alors il existe un t(i.i,in') > 0 
indépendant de t* et tel que t* + t(in,m') est le maximum 
(minimum) unique de la fonction x = x(t). Si m = 0, alors 
t(0,m') ne dépend pas de m' et on peut poser t := t(0,m'). 

Fig. 3 Fig. 4 
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De môme si x = y(t) est une solution de l'équation 

(3.6) pour i = 2, telle que 

n := y(t*) > 0, n' :=y'(t*)a£0 

( y ( t * ) < 0 , y'(t*)S^0), alors il existe un t ( n , n ' ) > 0 

indépendant de t* et tel que t* + t(n,n') est le zéro 

unique de la fonction x = y(t) (voir la fig.4). Si n1 = 0, 

alors t(n,0) ne dépend pas de n et on peut poser 

t := t(n,0). 

Posons enfin 

t k := k(t + t) k = 0,1,2 

Considérons les fonctions 

, al bl t 6 ^ » t ^ + t ) 
(3.7) a(t) = <( \ b(t) = <| 1 pour k k 

t € <t k+t,t k + 1) 

et pour k = 0,1,2,... Alors l'équation (1.3) correspondant 
aux coefficients définis par les formules (3«7) aura des so-
lutions oscillantes, donc elle-même sera oscillante. Mal-
heuresement, les fonctions-coefficients ainsi définies ne 
sont pas continues (et les solutions ne sont pas de classe 
L ), donc elles ne vérifient pas toutes nos suppositions. 
Pour obtenir l'équation (1.3) oscillante, avec des coeffi-
cients continus et telle que C^ C B il nous faut faire une 
construction assez évidente, mais aussi assez compliqué. 

4. Les coefficients continus 

Soit un £ > 0 assez petit, à déterminer ultérieurement. 

Supposons ¡¿ue les nombres a^ ,aP,b,. ,b2 vérifient les condi-

tions (3.1), (3«2), (3«3) et posons 
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a ( t ) e a^ b ( t ) = 

pour t e < 0 , t > . Admettons pour a = a ( t ) , b = b ( t ) dans 
< £ , t+£> un couple de fonctions continues, t e l l e s que l a 

fonction a = a ( t ) est croissante ( v o i r l a f i g . 5 ) » 

( 4 . 1 ) 

ou 

// 
// 

// 
// 

b—a**»^ \ 

\ \ 
\ 

* \ \ 1 
1 / * \ \ 1 
1 / 

F i g . 5 

a ( i + t ) = a 2 , 

b ( t + £ ) = b 2 > 

a (t) + b(t) ^ w pour t e < ï > t + 0 > 

a ( t ) = a^, 

M t ) = b^ , 

w := min af + b̂  > 0 . 
i = 1 , 2 L 1 1 J 

(4 .2) 

Alors i l existe une constante p o s i t i v e c t e l l e que 

( 4 . 5 ) | b ( t ) | c c pour t e < £ , £ + £ > . 
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Supposons que x = x(t) , est la solution (oui n'est definie 
provisoirement, que dans l'intervalle <0, t+£ ) de l'équa-
tion (1.3) correspondant aux coefficients a = a(t), b=b(t) 
définis ci-dessus et telle que 

x(0) = 0, x'(0) = v° > 0 . 

Vu la définition du nombre ï nous avons x(£) > 0, x'(£)= 0, 
donc x"(t) = b,]X(t) < 0 . Il 3'ensuit qu'il existe un nombre 
£° > 0 tel que si £ e (0,e°), alors 

x(t +«)>(), x'(t+e)-cO. 

Posons 

ï := t(x(t +î ), x'(t + £ )) 

(où la fonction t = t(n,n') fut définie dans le numéro 
3 = 

précédant) et t := t + t. Choisissons e de façon qu'on 
a e e (0, m m [|é0, t]). Alors t +e . Admettons 

a(t) = &2> ^(t) = i>2 pour t e (i + e ,t^> . 

Soit maintenant un ê  > 0 assez x^etit, à déterminer 
ultérieurement. Admettons pour s = a(t) et b = b(t) dans 
<t^,t*> (où le nombre t * > t ^ + e^ sera aussi déterminé 

ultérieurement) un couple de fonctions continues dans cet in-
tervalle, telles que la fonction a = a(t) es~ faiblement 
décroissante, 

aCt^) = aP, b(t^) = b2, 

(4.4) a(t) = a,, , b(t) = b,( om* t e < t^ + e „ , z*} et 

o'J l'ir.e'c.clite (.1.1 ) (oo v; osï ô or.no --r rc?.: -.le i'.")) 
est vérifiée dans l'intervalle <t;>,x? + £,)>. 
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Alors il existe une constante c^ toile eue l'inégalité 

(4.5) est vérfiée dans le même intervalle <t ,t +£^> . Il 

existe alors aussi une autre constante > 0 telle que, 

si £̂  e (0, alors il existe un t^ > 0 tel que x(t^)=0. 

On peut choisir e^ e (C,£°) de façon que t^ + 

Admettons dans les formules (4.4) que t* = t^. Les fonc-

tions a = a(t) et b = b(t) sont déjà définies et conti-

nues dans l'intervalle et on a 

(4.5) a(0) = a(t^), b(0) = b(t4). 

Supposons qu'elles -sont définies pour tous les t en 

étant périodiques de période t^. Vu (4.5)1 elles sont con-

tinues et elles vérifieront la condition (4.1) (où k est 

donnée par la formule (4.2)). Cependant l'équation (1.3) 

correspondante sera oscillante. 

5» Comportement asymptotique 

La solution considérée au numéro précédant est bornée 

(et ne tend pas vers zéro), si 

(5.1) 
x ' ( 0 

elle tend vers zéro, si 

(5-2) x'(0) 

T 7 ^ 

et elle est non bornée, si 

(5.3) ^ r k ^ " ' 

En effet, posons t^ := kt + £ pour k = 0,1,2,... 
Si la condition (-^.l) est vérifiée, alors la suite des va-
leurs absolues des extrema de la solution x = x(t), 
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c'est-à-dire la suite x^ := ^("t^)] es"b une suite constan-

te. Si nous avons (5.2), alors x , — — 0 , donc lim x(t) = 0 
K _ t-+<» 

et si (5.3), alors — + <*> et la solution x = x(t) est 
non bornée. 

On peut obtenir (élémentairement, mais d'une façon très 
pénible) des considérations du n° 3 les conditions auxquelles 
doivent être assujettis les nombres a^, b^, i = 1,2 pour 
que la solution considérée au n° 3 tend vers zéro. Les nom-
bres c et c^ étant donnés d'avance, on peut obtenir 
(d'une façon encore plus compliquée) aussi un résultat sem-
blable pour la solution x = x(t) considérée au n° 

6. Conclusions 

Soit la parabole (voir la fig.1) 

(6.1) b = -a 2 

du plan des (a,b). L'équation de sa tangente H(a ) au ? 
point ( a

0>
- ao) e s t ( v o i r l a fig.6) 

(6.2) b = - 2a0a + a
2. 
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Posons» 

Z(aQ) := [(a,b) : a ^ < b + 2aQa 

- c'est le demi-plan fermé, ayant comme frontière la tangente 

H(aQ). évidemment Z(0) = j (a,b) : a e'3, bj et 

Z(a) = B. 
aeK 

Dans l'équation (1.3) substituons (voir [3]) 

(6.3) x(t) = y(t) exp rt. 

Nous obtenons l'équation 

y" - 2â(t)y' - ¥(t)y = 0, 

où 

â(t) := a(t) - r, 
(6.4) ? 

B(t) b(t) + 2a(t)r - r . 

Désignons par C^ la courbe du plan (a,b) donnée pa-

ramétriquement par les fonctions 

a = I(t), b = b(t) 

pour t e où h s* 0. 

Considérons la transformation T (où r est un nombre 

réel) du plan (a,b) en lui-même donnée par les formules 

(6.5) 
a n a - r, 

"5 - b + 2ar - r 2. 
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On a 

TrB = 3, TrD = D, TpH(a0) = H(aQ - r) 

et 

TrS(a0) 3 Z(a0 - r) 

donc, en particulier, 

(6.6) TrZ(0) = Z(-r). 

litant donné QU6 } SX i CZ ¿j (a), alors 

TrP C TrZ(a) = Z(a - r) 

on a, en particulier, 

(6.7) Z(-r) - TrZ(0) D TrCh = C? . 

La condition (2.2) équivaut à la condition C^ C Z(C). 
Donc du corollaire 2.1 et des formules (6.6), (6.7) il 
s'ensuit le corollaire suivant. 

C o r o l l a i r e 6.1. S'il existe un h ^ 0 et 
un aQ tel que C^ C Z(aQ), alors l'équation (1.3) esô non 
oscillante. 

Ce résultat est dans un certain sens le meilleur possible 
(si on ne considère que les suppositions concernant les en-
sembles qui doivent contenir la courbe C-,J. Car en appliquant 
la substitution (6.3) à l'équation (1.3) dont les coefficients 

OS 
furent construits aux n 3 et 4 on obtient le corollaire 
suivant 

C o r o l l a i r e 6.2. Soient deux, pointa (a^.b^), 
i = 1,2 tels que pour chaque a 6 R on a j(â  ,b̂  ) , (,bg)}-
- Z(a) £ 0, alors il existe une courbe C donnée par les 
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fo rmales (1 .2) t e l l e que e C, 1 = 1 ,2 ( e t même 
k 

i l e x i s t e deux s u i t e s t-——+oo pour k—"•+<» t e l l e s que 
k k 

a ( t ^ ) = a^, b ( t ? ) = b^, î = 1 , 2 ) , l a courbe C e s t con-
tenue dans l ' ensemble B ( e t même l ' i n é g a l i t é (4 .1 ) , où l e 
nombre- w e s t d é f i n i pa r (4 .2 ) - peut ê t r e v é r i f i é e ) e t 
t e l l e que l ' é q u a t i o n correspondante (1 .3 ) e s t o s c i l l a n t e . 

TRAVAUX CITâS 

C1H E. K a m k e : D i f f e r e n t i a l g l e i c h u n g e n r e e l l e r Funk-
t i o n e n , Leipz ig 1950. 

Z2J Gz. 0 1 e c h : Asymptotic behaviour of t he s o l u t i o n s 
of second order d i f f e r e n t i a l equa t ions , Bu l l . Acad. Polon. 
S e i . , Ser S e i . Math. Astronom. Phys. 7 (1959) 319-526. 

C30 K. T a t a r k i e w i c z : Deux théorèmes sur l a 
convergence exponen t i e l l e des s o l u t i o n s de l ' é q u a t i o n du 
second o r d r e , Ann. Univ. M. Curie-Sklodowska (A) 15 (1961) 
41 - 44. 

E4D K. T a t a r k i e w i c z : Un cas de s t a b i l i t é con-
d i t i o n n e l l e , Demonstratio Math. 7 (1974) 225 - 235. 

C5D K. T a t a r k i e w i c z : Sur l e s équat ions non 
o s c i l l a n t e s non l i n é a i r e s , Demonstratio Math. 7 (1974) 
471 - 482. 

INSTITUTE' OF MATHEMATICS, UNIVERSITY OF 7/ARSAW, WARSAW 
Heceived February 2nd, 1977« 


