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SUR LES EQUATIONS QUI NE DEVRAIENT PAS OSCILLER

1. Introduction
Soient deux ensembles

ottt T

et

du plan des (a,b) (voir 1la
£ig.1).

Si (a,b) € D, alors toutes
lea solutions de 1l'équation
linéaire du second ordre a co-
efficients constants

Fig.1

1.1 x" - 2ax' =bx =0

sont oscillantes et si (a,b) € B elles sont non oscillantes
(une fonction X = x(t) est oscillante s'il existe deux

2 o + 3 i +
sultes de nombres t_ et ¢ telles que La<:tn<:tn+n

n n
et x(t;)<:()<:x(t;)' pour tout n; dans le cas contraire
elle est non oscillante). )

— 4 o0
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2 K.Tatarkiewicz

Ccnsidérons un couple de fonctions

(1.2) a = a(t), b = b(t)

(o))

finies et conbinues pour t € {0,+00). Désiznons par G,
{od h >20) 1la courbe du plan (a,b) donnée paramétriqueﬁent
par les fonctions (1.2) pour t € (h,+oo).

La proposition "s'il existe un h = 0 tel que ¢, C B,
zlors toutes les solubtions de l'équation différentielle ordi-
naire linéaire du second ordre

(1.3) x" - 2a(t)x' - b(t)x = 0

sont non oscillantes" - est fausse. Ce travail est consacré
a4 la démonstration de ce résultat et d'un autre sur la non
oscillation des solutions de l'équation (1.3) (ce dernier,
dans un certvain sens, est le meilleur possible).

femargquons qu'en partant du théoreme de Sturm sur les
oscillations (voir p. ex. Kamke [1J, p. 277) ou bien du
théoréme sur la réduction des équations homogénes (voir p. ex.
Kamke [1], p. 240) on peut facilement démontrer gqu'ou bien
. toutes les solutions ron banales de l'équation (1.3) sont
oscillantes ou bien toutes sont non oscillantes. On peut donc
dire qu'une équation linéaire de second ordre est oscillante
ou bien qu'elle est non oscillante.

En généralisant les résultats connus on peut poser le
probléme suivant:

Probleme, Soit une équation linéaire du n-iéme ordre

n-1
(1.4) x() -Z ak(t)x<k> - 0,
k=0

ou les fonctions 8, = ak(t) (k = 0,1,¢0e4n=1) sont définies
et continues dans <0,+%)., Est-ce qu’il existe toujours un
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eysteme fundamental de 1°équstion (1.4) qui contient un nom-
tre peire de solutions oscillantes? (s’il ern était ainsi,
alors évidemment chaque équation (1.4) d'ordre impaire aurait
au moins une solution non banale non oscillante).

2. Les équations non oscillantes

Nous avons démontré dans [4], que si
(2.1) b(t) = 0,

alors l'équation (1.3) est non oscillante. Nous allons démon-—
trer ici que méme si

(2.2) b(t) =0

alors 1l'équation (1.3) est non oscillante.

Lemme 2.1. Supposons que la condition (2.2) soit
vérifiée et que x = x(t) est une solution de 1'équation
(1.3) telle que pour un to> O on a

(2.3) x(t)=>0, . x'(t)) =

Alors il existe ur intervalle (tq,t2> sy o0 0= & <t <
sta < +00 (et ou 1l peut 8tre 1 = ta), tel que x'(8)=0
pour t € <t1,t2> . Si t2<+eo, alors ona x'(t) >0
pour t>.t2 et si O<t'], alors on a x'(t) <0 pour
C<t <t1. si b(to) = 0, alors <t1,t2> est 1'inter-
valle fermé maximal dans lequel ©b(t) = C. Si b(to) # 0,
alors t1 = t2.

Démonstration. Ce lemme est une suite
presque. immédiate du lemme 2.41) du travail [5]. En effet il

M Dans le travail [ 5] nous avons mentionné (voir p.479)
que le lemme 2.4 de ce travail généralise notre lemme 2 1. La
publlcatlon du présent travail ayant eu un ra2tard il n'y a pas
de raison de donner une démonstration indépendante du {e
2.1 (elle est presque aussi longue que la démonstration du
lemme 2.4).
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4 K.Tatarkiewicz

suffit de poser f(t,x,z) := b(t)x + 2a(t)z et l'intervalle
maximal (tq,t2> sera égal 4 l'ensemble J (remarguons
qu'en plus on a ici {(t,x) : £(t,x,0) = 0} = {t : b(t):O}xR1),
donc un tel intervalle <t1,t°> existe. ceqef.de

Des raisonnements semblables & ceux des n°° 2 et 4 du tra-
vail [4] nous montrent que sous la supposition (2.2) on ob-
tient un théoréme analogue aux théorémes I et J de ce
travail (et au théoréme W du travail [5]}), a savoir:

Théoréme S. Si la condition (2.2) est véri-
fiée, alors

1° toutes les solutions de 1'équation (1.3) gui vérifient
la condition x(0) = O sont fortement monotones - sauf la
solution banale x(t) = 0.

2° toutes les solutions de 1l'équation (1.3) qui vérifient
la condition x(0) > 0 sont ou bien a) fortement croissantes,
ou bien b) 1l existe un intervalle (O,t1) (i1l peut &tre
vide) dans lequel la solution x = x(t) est fortement dé-
croissante, un intervalle fermé (tq,t2> (il peut se réduire
4 un point) dans lequel x'(t) = O et enfin l'intervalle
(t2,+oo) (cet intervalle impropre peut &tre vide) dans lequel
la solution x = x(t) est fortement croissante, ou bien ¢)
la solution x = x(t) est fortement décroissante

3% si x(0) <O, alors la fonction y(t) := -x(t) aura
les propriétés énoncées sous 2°,

De ce Théoréme S il s'ensuit le corollaire suivant:

Corollaire 2,1 Si la condition (2.2} est
vérifide, alors 1°équation (1.3) est non oscillante.

Ce corollaire est un cas particulier du corollaire 3.1
du travail [5]. Il peut &tre aussi obtenu (sauf dans le
cas ou a(t) = 0 = b(t)) par d'autres voies (p.ex. en par-
tant des estimations du travail [2]). '

3, Une équation oscillante
Soient deux points (ai,bi) i =1,2 (voir la fig.2) du
plan (a,b), tels que
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«+e qui ne devraient pas osciller 5

(3.2) 0<al + by, i=1,2
et
(3.3) b; < O, i=1,2,
bl
e, aq, a
b,
b,
Fig.2

-

Désignons par r, et r, les solutions de 1l'équation
algébrique
(3.4) 2 - 2a;r - b; =0
1 i

pour 1 =1 et par s, et s, les solutions de 1l'éguation
(3.4) pour 1 = 2. Vu (3.2), les nombres r; et s; somt
réels. D'aprés (3.1) et (3.3), on a

(3'5) rl< 0 <Si

et r, # T5, 8, # sy+ Pour fixer les idées supposons que

r,|<r2<0<s,]<sa.
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6 K.Tatarkiewicz

La solution générale de l'équation différentielle linéaire
& coefficients constants

[]
(3.6) - x" - 2aix' - b:x = O

sera pour i = 1

x(t;c,],cz) c, exp r,l-’c + C, exp r2t
et pour i = 2

y(t;kq 1k

2) k, exp s,]t + k, exp s,t.

Vu (3.5) des calculs élémentaires nous montrent que si
x = x{t) est une solution de 1l'équation (3.6) pour i = 1,
telle cue pour un t, =0 on a

n = x(t,) = 0, n' 1= x'(te) =0

(x(ts) =<0, x'(t,) <=0), alors il existe un g(m,m')> 0
indépendant de tx et tel que b4 + t{um,m') est le maximum
(minimum) unique de la forction x = x(t). Si m = 0, alors

t(0,m') ne dépend pas de w' et on peut poser t := £(0,m').

_

y
X

ot

I~
-~
-4

Fig.3 ' Fig.4
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De m8me si x = y(t) est une solution de l'équation
(3.6) pour i = 2, telle gque '

n := y(t*) > 0, n' 1= 3'(t*) <O

(y(£*) <0, y'(t*)=0), alors il existe un t(n,n')=> 0
indépendant de t* et tel que t* + t(n,n') est le zéro
unique de la fonction x = y(t) (voir la fig.4). Sin' = 0,
alors t%(n,0) ne dépend pas de .n et on peut poser
% := ¥(n,0).

Posons enfin

tk = k(§+E) k=0,'],2,..o .

Considérons les fonctions

b t e {t,,b,+L)
1’ b(t) = 1 pour k?"k

(3.7) a(t) =
' a, b, t e <tk+§’tk+ﬂ>

et pour k = 0,1,2,++s Alors l'équation (1.3) correspondant
aux coefficients définis par les formules (3.7) aura des so-
lutions oscillantes, donc elle-méme sera oscillante. Mal-
heuresement, les fonctions-coefficients ainsi définies ne
sont pas continues (et les solutions ne sont pas de classe
DZ), donc elles ne vérifient pas toutes nos suppositions.
Pour obtenir ltéquation (1.3) oscillante, avec des coeffi-
cients continus et telle que c,CB i1l nous faut faire une
construction assez évidente, mais aussi assez compliqué.

4, Les coefficients continus
Soit un € = 0 assez petit, &4 déterminer ultérieurement.

Supposons que les nombres a,,as,b;,b, vérifient les condi-

tions (%.1), (3.2), (3.3) et posons

I
o
~
-3
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8 K.Tatarkiewicz

a(t) = a, b(t) = b,]

pour t € {(0,t> . Admettons pour a = a(t), b = b(t) dans
{t, t+£> un couple de fonctions continues, telles que la
fonction a = a(t) est croissante (voir la fig.5),

b=-
Fig.5
a(l) = aq, at +¢ ) = ay,
2L = by, bk +¢) = by,
(41) aa(t) +b(t) = w pour t e {L,t +&> ,
ou
(He2) W i= min [alg_ + bi] >0,

Alors il existe une constante positive ¢  telle que

(4¢3) |b(t)l < c pour. t € &, L+ .

- 642 =
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Supposons que x = x(t) . est la solution (cui n’est définie
provisoirement, que dans l'intervalle <0, t+£)>) de l'égua-~
tion (1.3) correspondant aux coefficients a = a(t), b=0b(t)
définis ci-dessus et telle que

x(0) = 0, x'(0) = v° >o0.
Vu la définition du nombre % nous avons x(t) >0, x'(y)=0,
donc x"(&) = b,]x(g) < 0, 1) atensuit qu'il existe un nowmbre
€ >0 tel que si ¢ e (0,€°%), alors

x(t +¢ ) > 0, x'(t +¢ ) =0C,

Posons

cHi

t= B(x(g +€e), x'(& +¢))

(ou la fonction % = T(n,n') fut définie Gans le numéro
précédant) et t5 t= t + t. Choisissons ¢ de fagon gu'on

a ¢e€ (0, min I:eo, ?]). Alors 2> t +¢ . Admebtons
a(t) = sy b(t) = b, pour t € (L +¢ ,t3> .

Soit maintenant un £, > 0 assez petit, a déterminer
ultérievrenent, Admettons cour 2 = alt) et b = b(t) dans
<t3,t*) (ou le nombre t¥* >4 4+ €, sera aussi céterminé
ultérieurenent) un couple de fonctions continues dans cet in-
tervalle, telles gque la fonction a = a(t) est faivle:ent
décroissante,
;5)

a(t7) = a,, b(t?) = bss

(4.4) a(t) = S ot} = b, wour T € <t5 + €., *> et

. I . ’, . - . . .
oy 1'irecelite (4.1) (o0 w cov Gornd -rx 1o fomocle (0,20)

.
o
est vérificéé dans L'intervaile (57,5 + £ .
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10 K.Tatarkiewlicz

Alors 11 existe une consbante ¢, telle que 1tinégaliteé

(4.3) est vérfiée dans le méme invervalle (tﬁ,t§+51> . I
existe alors aussl une autre constante 52 >0 telle gue,

31 €4 € (o, E:), alors il existe un t* >0 tel que x(t4)=0.
On peut cnoisir €, € (0,52) de fagon que t7 + €, < t*,

Admettons dans les formules (4.4) gue t% = tq. Les fonc-
tions a = a(t) et Db = b(t) sont déja définies et conti-
nues dans l'intervalle <O,t4> et on a
(4.5) a(0) = a(t®),  b(0) = b(t*).

Supposons qu'elles "sont définies pour tous les t en
étant périodiques de période *. wu (4.5), elles sont con-
tinues et elles vérifieront la condaition (4.1) (ou k est
donnée par la formule (4.2)). Cependant 1l'équation (1.3)
correspondante sera oscillante. '

5. Comportement asymptotigue
La solution considérée au numéro précédant est bornée

(et ne tend pas vers zéro), si

(5.1 x(0) _ 4

) YT ’

elle tend vers zéro, si

(5.2) x(0) _ 4
x'(t7)

et elle est non bornée, si

(5'5) X'(O > 1.
x'(t7)

En effet, posons Ek t= kt4 + 1t pour k = 0,1,2,e0e

Si la condition (5.1) est vérifiée, alors la suite des va-
leurs absolues des extrema de la solution x = x(t),

- 644 -
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c'est-a-dire la suite X, &= |x(fk)| est une suite constan-

te. 81 nous avons (5.2), alors xk——*-o, donc t1im x(t) =0
ot 0O
et si (5.3), alors X ———+oo et la solution x = x(t) est

non bornée.

On peut obtenir (élémentairement, mais d'une facgon trés
pénible) des considérations du n° 3 les conditions auxquelles
doivent &tre assujettis les nombres a5y byy i=1,2 pour
que la sclution considérée au n° 3 tend vers zéro. Les nom-
bres ¢ et ¢, étant donnés dtavance, on peut obtenir
(d'une facon encore plus compliquée) aussi un résultat sem-
blable pour la solution x = x(t) considérée au n° 4.

6. Conclusions
Solt la parabole (voir la fig.1)

(6.1) b = -a°

du plan des (a,b). L'équation de sa tangente H(ao) au
point (ao,—ag) est (voir la fig.6)

~ : - _ 2
(6.2) b = 2aoa.+ ag.

Hla,)
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Yosons»
Z(a,.) := {(a b) 32<:'b + 2a a}
o’ ° 4 %= o)

- c'est le demi-plan fermé, ayant comme frontiére la tangente
H(ao). fvidemment Z(0) = {(a,b) t a eR, 0 b} et

Z Z(a) = B.

Dans l'équation (1.3) substituons (voir [3])
(6.5) x(t) = y(t) exp rt.
Nous obhvenons 1lféguation
y"' - 2alt)y' - Bty = 0,
ou

a(t) := a(t) - r,
2

(6.4) .
B(E) := b(t) + 2a(t)r - r°,

Désignons par Eg la courbe du plan (a,b) donnée pa-
rawétriquement par les fonctions

a = a(t), b = (L)

pour t € {(h,+e), ou hz= 0.
Considérons la transformation Tr (ou 1r est un nombre
réel) du vlan (a,b) en lul-méme donnée par les formules

a =8 -r,

(6.5)

P =b + 2ar - r2.
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et

Tra(ao) = Z(ao - 1)
donc, en particulier,
(6.6) TrZ(O) = Z{(-r).

Etant donné que, si P C %Z(a), ealors
T.P C TrZ(a) = Z(a - 1)
on a, en particulier,

(647) Z(-r) = T,2(0) D TG, = Ef; .

\

La condition (2.2) équivaut & la condition ¢, C ACOR
Donc du corollaire 2.1 et des formules (6.6), (6.7) il
s'ensuit le corollaire suivant.

Corollaire 6.1 Stil existe un h= 0 et
un a, tel gue G, C Z(ao), alors l'éguation (1.3) esv non
oscillante,

Ce résultat est dans un certain sens le meilleur possible
{si on ne considére que les suppositions concernant les en-
sembles qui doivent contenir la courbe Ch)' Car en apovliguant
la substitution (6.3) & l'équation (1.3) dont les coefficients
furent construits cux n°% 3 et 4 on obtient le coroilaire
suivant

Corollaire 6.2 Soient deax points (ai’bi)’

i =1,2 tels gue pour chague a € R on a {(aﬂ,bq),(aa,bzﬁ—
~ Z(a) # #, alors i1l existe une courbe C donnée par les
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14 K.Tatarkiewicz

foruules (1.2) telle que (ai,bi) €eCy, 1=1,2 (et méme

1l existe deux suites t{—=+o pour k—=+oco telles que
a(tg) = 85, b(t?) = bi’ i=12), lacourbe C est con-
tenue dans l'ensemble B (et méme 1l'inégalité (4.1),ou le
nombre: w est défini par (4.2) - peut 8tre vérifiée) et
telle gque ltéqguation correspondante (1.5) est oscillante.
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