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ON SOME RELATIONS OF TANGENCY OF ARCS IN METRIC SPACES

Introduction

In this paper we sghall use the notions given in the in-
troduction to [2], analogous to [6]. Accordingly, we introduce
the relation Tl(a,b,kpp) defined as follows

(1) T, (a,byk,p) = {(4,B); AUBCE and (4,B) is (a,b) -
concentrated at the point p€E

and r—}{l(A"‘S(p,r)a(r),BﬂS‘ip,r)b(r)) F——or O} .

This relation will be called the relation of (a,b) -
tengency of sets of order k at the point p.

If (a,B) GTl(a.b,k,p), then we shhll say that the set A
is (a,b) - tangent of order k at the point p to the
get B,

There arises the following question: if the sets A,B eEo
are (a,b) - tangent of order k at the point p of the
space (E,1), then when these sets are (a', b') - tangent of
order k at the point p of this space?

In the present paper we consider this problem in & metric
gpace (E,p) for rectifiable arcs having the Archimedean
property at the point p and for real functions defined by
the equalities
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9°(A,B) = sup{Q(x,B); xeA} ,

9, (4,B) = max{ p,(4,B); PO(B,A)} ,

05(4,B) = min{ 0o (4B QO(B,A)},
(2) p(4,B) = inf{diam,({x}UB); xeal,

94(A,B) = max{QB(A,B); QB(B,A)},

?S(A’B) = min { 93(A,B): 93(B,A)},
Pg(A,B) = diamy (AUB),
p7(4,3) = int{o(x,B); xe A}

for A, BeE . By definition, ¢(x,B) = ing p(x,y) and
ve

diam,A denotes the diameter of the set A in the metric
space (E,p). The functions psli = Oy1y+¢+57) 8re gpecial
cases of the function 1 considered in [6] such that

(3) ?1({"}'{3’}) = 1,(x,3) = p(x,y) for x,y €E.

1. For any sets A,B,C the following inequalities hold
(4) p(A,C)<p(4,B) + o(AUB,C) + diam,B,
(5) diam‘,(AUB)gdiam,.A + diamgB + 9(A,B)

where, by definition, o(A,B) = 0,(4,B) = _inf ol(x,y).
9 7 xek,°
ye B
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On some relations of tangency

Now we shall prove the following lemme.
Lemma 1. If ¢(A,B) =0, then

(6) sup 9(x,c) < sup ¢(x,C) + diam, B.
xe(AUB) X€EA

Proof, Agssume that ¢(4,B) = 0. For any sets A4,B,C
the following equality holde

sup g(x,c) = max{sup p(x,C), supp(x C)}
xe(AUB Xe€lA

If max{ sup 9(:: C), sup 9(x,c)}= sup ¢(x,C),
X€EA x€B Xel

then the equality (6) clearly holds. Hence assume that

max{sup o(x, ), sup Q(x,C)] = sup ¢(x,C).
xeA x€B xeB

Then we have

(7) sup ¢(x,C) = sup.p(x,C).
xe (AUB) xeB

Take an arbitrary &>0., By assumption, there exist points
y'eA, x'€ B such that 9(x‘,y')'<—5—. Ist x be an arbitrary
point of the set B. Then we have

p(x,0)<p(y,C) + Q(x,y')gsug p(3,C) + plx,3') <
ye
< sup ¢(3,C) + o(x,x') + o(x'yy') =
yei

< sup g(y,C) + diamgB + Q(x',y') <
yeh '

<sup (y,C) + diameB +
sup 9Ly, meB + & .
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Hence

sup ¢(x,C)<sup o(y,C) + diamyB + ‘%<
xeB yeA

<sup ¢(y,C) + diamB +¢.
yeA
Since ¢ is arbitrary, we infer that

(8) sup 0(x,C) = sup ¢(y,C) + diamgb.
x€B yeA

From (7) and (8) we obtain the inequality (6}, which concludss
the proof of the lemma,
Lemma 2, If

(9) Ay = A UA,UA,,
]
(9) By = B{UB,UB,
are gets such that
(10) 97(A1,Ai) =0
i=2,3

then the following inequalities hold

(11) 9,(A1,B,)<9,(4,,B,) +diamph, + diemyA , + diemy B, + diamy 3,
(12) pglhyyB, )< gg(AqyBy) +diameh, + diamph, + diamy b, +dlamgB,,
(13) 93(A1,go)s;293(@°,31)+-dian,A2 +diam,A3+ diam,ng-diam,EB,

(14) p (4 ,B1)<<p (44,5,) +diemed, + dizimpd g +diameE, + diakge,

- 570 ~
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- r oo f. Frow {4), (9) znd (10) we obtain
078159 ) &Py(aqUa,, 2y ) 79 (A54,) + diameh, =
= 97(A1LJA2,31) + diamph, <
< 97(.-91u £5U ‘43,31) +97(A1U hoyby)+aizmehy +diamghy =
= 97 AO,B1) + diamgh, + diam?AB,
le€,
(11.1) 9,(A4,31)<Py(A,,By) + diamgh, + diamehs .
similarly, from (4), (9') and (10') we obhtain
(11.2) 97(.40,331) < 97(A0,30) + diame5, + diameBs.

From (11.1) and (11.2) we obtain the inequality (11).
¥rom (5), (9), (¢'), (10) and (10') we obtain

0¢(8593,) = diamg(A U A U AU B

3 4V B2UB3)<

< diamg (AU By)+ diamgh, +diamphy + diamgB, + diamgBy

which yields the inequality (12),
To prove the inegquality (13) let us observe that

diam,B, + diame({x}u B,)<2 diamg({x}uB,).
This implies

(13.1) diam,B, + inf diam ({x UB,)<?2 inf diam ([x}UB ).
¢B4 ? 1 9 1
xer xer

From (5), (9), (9'), (10), (10'), (11.1) and (13.1) we obtain
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P3(A14B,) =£f diame({x}UBo)é

A

<xiex;i; diamg({z}UB;) + diamyB, + diam,B,<

< inf (diameB. + 0(x,B,)) + diam,B, + diam.B. =
xeh, poq T PLX,y Dy p P2 )

= 9(A4,B,) + diamyB, + diamgB, + diamgBy<
<¢(A,,B, )+ diamgA, + dlamgA 4+ diam,B, + diamgB, + diamgBy<

< int atam({x|UB,)+ dtamyB, + dlanph, + damgA, + diam,B, + diamgB,
0

<2 inf diamy({x|UB,) + diamgh, +diamgh; +diamgB, +dismgB, =
= 293(A°,B1) + diamgA, + diam9A3 + diamgB, + diam,BB,
that is

93(!\1 ,Bo)s 293(A°,B1 )+ diamgA, + diampAq + diameB, + diameB,

which gives the inequality (13).
From Lemma 1 and from (9) we have

(A ,B,) = sup 0{(x,B,)<sup 0(x,B,)+ diamoA, + diam,A, =
Fo'4or o1 xerﬁ’ 154 xeA1€’ 59 ph2 $73

= 9,(A14By) + diempa, + diamgA .

Congequently

(14.1) 9085134 )s%(A1,B1)+diam,A2 + diamgA,.
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Taking into account (11.2) we obtain
(14.2) 9 (A1,B;) <9 (4,,B ) + diam,B, + diamgB,.
From (14.1) and (14.2) we obtain the inequality (14). Taking
into account the definitions of the functions 90’?3’96’97 and
the inequalities (11) - (14) we obtain the following inequa-
lities
(15) ¢3(Ay,B;)< 295(4,,B, ) + diamph, + diamyA 5 + diamyB, + diamy B,
(15') 04(44By)<9y(Ay By ) +diameh, + diamyh +diamgB, +diameB;,
Whel‘e i’:j,k,l = 0'1; 8 = 0’6’7¢

2. Agsume that in the metric space (E,p) we are given

real, non-negative functions ai,i = 1,2, defined in a right-
=hand neighbourhood of 0, which satisfy the following condition

(16) ai(r);:::a:o.

Let us put

(17) i(r) = max{ai(r), az(r)} ’
(17) 8(r) = min{a(x), ay(r)} ,

(18) A(r):AﬁS(p,r)g(r)-AﬂS(P.r)a('r) for ACH.

‘We stall prove the following lemma,

Lemma 3, If there exists n>0 such that for every
r,u €(0,n)
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(19) S(p,r) ={xe,;; r - u<elp,x)<r + u} s

then we have

(20} A(r) = 2y(r)Ua(x),

where

(21) A1(r) = [xe.’a; T - ﬁ(r)<9(p,x)<r - ﬁ(r)} ,
(21" hylr) = {Xeié; r o+ 8lr)< Plp,x) <r + ?-i(r)] .

H

¥ roof., Let ) tzzi(:-c}‘e.{;_“/,q) for n>0, i= 1,2,

et xeA(r). Hsnc: =xes =nd ‘_V.GS(j?,l‘;'y(w) and
DR 4

:c¢hﬂf,r)g(r,. srom (19) we infer that
r - é(r)<9(“,x.)< r o+ %(r}

and

Hence wo huve
v e Aq(r) or =z el lr, i.e.
xe(A1(r)UA2(r)).

similarlr we can show that if xe(A.l(r)UAZ(r)), then x € a{r),
tence the equality (20) holds.
»rom (18) and (20} we obtain

(22) An.s(p.r)g(r}_ = _an(?,r)g(r)u.41(r)U}aE(r).
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from (21), (21') taking into account the tormula
Aﬁs(p,r)a(r/ ={xeA; r - ﬁ(r)<9(p,x)<r + 'é(r)}

we nbtain the following equalities

(23) Q(Aﬂs(p,r)é(r), Ai(r)) =0 rTor i = 1,2,

et 4 be a rectifiasble are with the Archimadean property at
a point peu, defined in the interval <0,1> by weans of a
hosigomorchism @.

Let ue reczll that an arc A4 hag the Archimedezan property
at a point pe€iA whensver

g X

eip,x A3X —eD Ts

whera e(p,x) denotes the length of the arc with ends at »
and x.

Zet us congidar the gets defined by the equalitiss (21)
and (21')."

Lemwise ¢4, If the functions asy 1 =1,2, catiefy ths
condition
(24) a;/r)<r for re(0,d), d>0,
a,(r) - a,(r)
2 1
2
(25) r r—=0+ 0
then

T s .
?dlam’.ﬂ.i(r)r——-cro, 1l = 1,2.

I r oo f, Consider the set

(26) s!,!(r) ={ze.f;; r - ﬁ(r)gg(p,z) Lr - ':‘;(r)} .
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Since A1(r)CA1(r5 we have
(27) T atamph, (r) < 3 diemgh (¥).

Now we shall prove that

(28) 1 diamgh, (T) ——53 0.

Let us put

(29) pt,) = x,
q)(t"r) = x'x"

where

ot
[}

inf{t; 0<t<1 and cp(t)e(Ans(p,r-‘a’(r)))]

<t
]

. .sup{t; 0<t<g1 and cp(t)e(AﬁS(p,r-ﬁ(r)))}

For the points p, X X4 the following insquality hold

(30) 9(p,x"r)sp(p,x'r) + s(x'r, z",) ss(p,x"r),

whers s(p,x"r), s(x'r,x”r) denote ths length of arcs with

ends at p,x"r and x'r,x“r,
is equivalent to the following ons:

plp,x',) + s(x'r,x"r) Celp,x

(30") -
plp,x",) plp,x

H )
oy
»
Fron the Archimedean property for the arc 1 2% the point »

it follows thzt

s(p,:{"r)
p(p,x" ) r—0+

(31) 1,
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11

From (30) and (31) we obtain

plp,x'.) + alx',, x")
p(p,x"r) r—=0+

7.

Hence by definition we have

r - 8(r) + s(xfr,x"r)

1.

r - &(r) r—-0+
Consequently,
t "
(¢ DN Blx'y, x7)
I s 1.
] - a(r) I —=0+
T
this iwmplies
s(x',, x")  (&(x) _ Q(r))
-\ r T
(32) £ 0.
7 - agr) r—e=0+

By (24) we have

A
o<1 - 8E)oq,
r
Hence by (32) we obtain

alx' ,x",) - (¥(x) - &(x))
T a0+

(33)

From (25) and (33) it follows that

S(xlr’xll )

x 0.

(34) = =07
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From (29), (29') and from the equality (26) we obtain

| it
A1(r5<2(x e r),

. N . 1
where (x'r,x"r) is the arc with ends x ,x

Hence we have

sup__ pl,¥)g sup - (x,y)< s(x',x").

RTIWEY x,ye(x' Lx",

Consequently, we infer that

1 5 — _1 [ 0
+ diamg A1(r)s;E-s(x 1 X r)'

ience by (34) we have

(35)

K|

diaﬁ9 A1(r) T——0% Ce

From (27) and (35) we obtzin

T 4.
(36) ? dJ.a.IIlg A,l(r) _——I'—-O-G- O.
Similarly we can prove that
: 1 .
(37) + diamg A,(x) z——mr O.

3. In the metric space (3,9) let us consider rectifiable
arcg A,B with the origin at a point p, having the Archi-
medean property. kizking use of Lemms 3 and (22) we obtzin the
following equalities

(38) AﬁS(ﬁ,r)\é(r) = AﬂS(p,I')/a\ )UA“(I')U-[\Z(I‘)’

(x
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(38") BnS(p,r)‘ﬁ(r) = BN S(p,r)%(r)UB.l(r)UBz(r),

where A,(r) and A,(r) are defined by (21) and (21'), and

B1(r) ={xeB; r - \ﬁ(r)<q(p,x)<r - <S(:c)} ,

By(r) ={xeB; r o+ G(r)sQ(P.x)<r + %(r)} ,
where

\‘r/;(r)

[}

max {b1(r), bz(r)},

B(r)

min {b1(r), b2(r)} .

The functions b1, b2 satisfy the same assumptions as the
funecting a, and Py

From (23), (15) and (15') we obtain the following inequali-
ties

(39) 91(AnS(Par)aa(r)aBn S(P"')ba(r))'%(mS(P'r)a1(r)'3”s’(f"r)b1(r)) <

sdiam9A1(r) + diamgA,(r) + diam,B,‘(S) + diamgB,(r),

(40) 93(ms(p.r)a2(r)anS(P’r)bz(r))$293(AnS(Pvr)aq(r):an(Pur)b1(r))+
+ diam,A,l(r) + diameAz(r) + diam9B1(r) + diamgB,(r),

(40') QB(MS(Ptr)a1(r)’an(Ppr)b1(r))éa%(Ans(P’r)aa(r)ans(P_vr)bz(r))*
+ diam9A1(r) + diam,Az(r) + diam,B,l(r) +'diam982(r).
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T heor ¢ u., If the functions i k|
the conditiouns

ai(r)<r, b, (r)<r for re(o0,d), d=>o,

az(r) - 61(r)l ‘bz(r) —b,l(r)
r r—0+ 7? r j—cW

0

and there exists q;aé:>0 such that for any r,u e(0,n)
Sw,r% ={xe3; r-u<9ugx)<r-+u}

then for any rectifiable arce A, 3 with the orizin at pe,
having the Archimedecn property at p we hszve

(A,B)eTg)i(a1,b1,1,p)@(A,B)eZ‘Qi(az,b?'i,p), 1=20,1,000y7e
Proof, For ths functions o 939 96: 97 this

theorem follows directly frow (3S), (40), (40') =znd from

Lemma 4, Hence let us assume that (A,B)e'?91(a1,b1,1,p). We

ghall show (A,B)é’391(a2,b2,1,p).
If

max { 9,(4,3), 9o(B,4) | = 954,

then we have

(41) 91(A9B) = QO(A’B)'
This implies
(42) (4,B) € To,(a ,by,1,P)e=>(4,B) e T (ay,b,7,p).

Since -the theorem holds for the function 96’ from (41). and
(42) we obtain

(43) (4,B)eTp(ay,by,1,0)<>(4,B) eTgasybyy1,p).
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Now let us agsume that
max { 9,(4,3), @(B,4) | = g (Bs4)

then we have

(44) p1(4,B) = ¢, (B,A).
Consequently, we infer that
(45) (A,B)eTp,(a;,by,1,0)>(B,A) €T (byya,,1,p).

From (44) and (45), taking into account that the theorem holds

for g, we obtain (43). -
Similarly we prove the theorem for the functions Qo0 P4 95

idence the theorem holds for all the functions 95

1 = 0,1,25000y7.
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