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THE (Z, @)-SYSTEMS

Introduction

The notion of a (Z,Q)-machine has been introduced by
Zakowski in [6]. The notion of a (Z,Q)-machine is a generali-
zation of the notion of Pawlak’s machine [3], of a k-machine
[1], of a simple continuous machine [2] and of a continous
simple 2 - machine [5]. The (2,Q)-machine is an abstract
model of computing machine which describes the three basic
types of that device: digital, analog and hybrid computers,
Roughly speaking, a (2Z,Q)-machine is a deterministic device
which uniquely extends functions of n real variables
defined on Z 1o functions defined on Q (The unique
extension of computations is the common attribute of all the
computers mentioned above),

In the present paper the idea of the description of the
computing machine with the omne input is generalised to the
multiinput case. The hehaviour of the (7,@) -~ system depends
on signals acting on each input and the interractions between
them, This behaviour is described by - so called - (Z,d) -
processes, whereas a computation and-a subcomputation of the
(ZQ) =~ system are the functione defined on the set of all
the moments admissible for all inputs, It seems to the
authors that the presented model of computing machine could
be the new tool for investigations on the parallel and
independent behaviour of multi-input systems,
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2 E. Stankiewlcz, W, Zakowski

1. Basic notations and definitions

Let S Dbe an arbitrary but fixed non-empty set, R’ - the
get of all non-negative real numbers and ./73- the set of all
non-negative integers, Iet ‘n be an arbltrary but fixed
positive integer.

If aecR’ and ¢ 4 UcR then U = {tecR':t-acu}.

Let Qk s K =1,...,0 be an arbitrary subset of R
such that

Me
(1 1<kv<n ° Qk .and 1skvsn GYQk(Qk)aCQk

and let Zk be an arbitrary subset of Qk s Kk =1,.04,n
fulfilling the following condition

(2) v v, [tze L, ~>t,¢ zk] .
1<k<n t;1 ,tzer
5<%,

n

By Qo we shall denote the set ‘Q‘ Qk « Note that
/}::Qo and (Qo)ang for any =aeQ . We shall also introduce
the following notations: Z,1 = Z1x...xzn, a= Q1*...xQn and
Zg = {(tqeeesty)e@s (ty-84,000,tyma ) 0], where & =
= (a.‘,...,an)’eﬂ. The set of all mappings f : Z—S8 such
¢hat f = (f1,...,'fn) end f, :2,—~5,1=1...,n is
denoted by % ; similarly the set of all mappings f :@—3S
guch that f = (f1""’fn) end f, :Q—~—S8,1=1,...,n
is denoted by }a. By ﬂz,a we denote the set of all
operators 4 such that ¢ # DAc ¥, and RAc Fy . By the
Q - shift operator we mean the operator assigning to every
mapping f ZE———Sn , 8 = (31,...,an) the mapping
£* 1+ Z — S® such that

n

f* (t.‘,...,tn) = f(t1+a1,...,tn+an)b .
(t1’000’tn)ez
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__ The (7,4 )-pystems 3

by f;, we denote the mapping (f|Zz Y , where &eQ,
fe]h and additionally f, = f|Z .

For any fe}b, Q¢ denotes the mapping Pp ¢ Qo—' s?
defined as follows

V (P (t) Ef f(t,...,‘t) .
te Qo

Definition 1. An operator Me/lza is
'
said to be a (2,d) - system iff

(3) v [melz) =],
fe DM
(4) vV Vv [fa;RM .

feRM Eg(a’...,a)ern

The elements of the set DM are called the initial
mappings of M and the elements of the set RM are called
the processes of that system, If f = (f1,...,fn) is a
process of the (Z,@) - system, then the mapping 9y is
called the computation of that system; the function
fi|Qo s 1 =1,40.yn 1is called the i-th subcomputation of the
system,

For n =1 the (Z,Q) - system is the (2,Q)-machine [6].
In that case processes of the system are computqtions of the
machine,

The (Z,@) - system can be said to be an abstract model
of the computing device with informations coming from n
independent sources, By Zk we mean the set of all the momente
such that informations from the k-th source (k=1,...n) are
supplied . Qk is the set of all the admissible moments for
the k-th source, Conditions (3) and (4) characterize the prin-
ciple of work of the (Z,Q@) - system. Condition (3) requires
the unique extension of an n-dimensional information, whereas
condition (4) secures the "closure™ of RM with respect to
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4 ' E, Stankiewicz, W, Zakowski

"granslations in time" at every possible moment for every
source, By the computation of the system we mean the "display"
of the process in the set of all the moments admissible for
all sources,

2. The bhasic properties of processes and computations
of the (Z,@) - system
Definition 2. A mapping fs?a is gaid to
be perlodic iff there exists Te¢ Qo such that the following
condition is satisfied

(5) Y F(by+Teenyt +0) = £(b,,000,t)) o
(t1,000,tn)€a

Lemmae 1. If f = (f1,...,fn)e3'a is a periodic
mapping, then the mapping 9p is periodic, moreover the
functions fi are the periodic functions of variable t.

Proof. Iet reQ, be the element satysfying (5).
Since condition (1) is true for Q then t +7¢ Qo for any
te Qo and we get the equality

o ?

Pe(t+7) = £(T+0,0..,847) = £(1,...,8) = ¢o(t) .

The second statement follows from the structure of f.
Definmnition 3. A mapping fe 3, is seid
to be Z - injective iff £y # f; for any 3,be QO“ ,
8 = (8,000,8) , D = (Dyeeoyb) , a £Db .,
Definition 4. A mapping cp:Qo——Sn is
called Z-injective (§ # 2=Q,) iff (9|2))" # (g]z,)
for any a,b € Qo , & #b.,
Let us assume that Q1 = Q2 = e = Qn =Q and
Z1 = 22 = ,e0 = Zn =2 , until Lemma 3, Then we have Q = Qo
and Z'.;Qo « We ghall investigate relations between Z -
injectivity of the mapping f = (f,,...,f )ef, 2 = injec-
tivity of the mapping Pr and 2 -~ injectivity of the
functions £, [4].
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The (Z,3)-systems 5

If there exists io N 1<io<n such that the function
fi is Z - injective, then the mapping f 1is Z - injective
% 1o prove it suppose that fz = Iy for some E,B,ern ’
8 = (Byesey8) , D = (b,.0.,b) . This equality means that

Y £(ty48y 000, b +a) = £(t 4D, u0u,t +b)
(t1’ooo'tn)€z

in other words

V V fi(t + a) = fi(t +b) .
1i<n teZ

Especially f; (t +e) = £, (t + b) for any  teZ , i.e.
0 o
(£, )
1072

of £, implies that a = b , which proves that f is Z-
0

- injective.
In the following we shall show the existence of the

Z - injective mapping fe.}h such that 9 is 2 = injecti~
ve, but the function £y ijs even not (Z,Q)-computable (6]
for some i , 1Ki<n .
Example 1. let Q1=Q2=Q=3',Z=Z1
2, =<051) , 8 =R, We define a mapping f = (f,,f;)
: (2)%2—~18% as follows

= (£ ), o The assumption concerning Z - injectivity
o

£,(t) =t for any te R

0 for t =25, ke
£08) = {4 ror ten’-U {24 .
ke

This mapping is injective, hence it is lexZ2 - injecti\fe for
any Z1xzch1xQ2 . The mapping ¢, : Q —~ R is defined by

k

k
t,1) f teR'- 2°t,
(t,1) for teR kg";{ }

(t,0) for t =2
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6 E. Stankiewicz, W. Zakowaki

Since this mapping is injective, it is Z = injective for any
Z2¢Q . The function £, is not (2,Q)-computable for any
Z =<0;1),re 2 -0}

Now we shall give gome general properties of (Z,Q) - sys-
tems for Z1,...,Zn , Q1’*"’Qn satyafying conditions (1) =-
- (2) only, Note at first that, by Definition 1, every operator
M being the (Z,Q) - system is an injective operator.
Similarly as for (2,Q)-machines ([4]) it is easy to verify
the following lemmas,

Lemma 3, If M ea@La is a (Z,Q) - system, then
fzae DM =and M(fz ) = fQ for any fe RM where

(8,.0058) € Q

Lemmna 4. If Me./lrf is a (Z,Q@) - system,then
for any f,heRM and 8,b ¢ Q, where & = (a,...,8) ,
b = (byeea,b) , if fz 'hdg then faﬁ = hab_ .

Definitio n 5. A mapping fe k7 1s said to
be a (Z,RQ) - process iff there exists a (Z,8) -~ system M
such that fe RM . )

The following theorem can be proved in the same way as it
has been done for (Z,Q) - machines,

Theorem 1., Amapping fe% isa (z2,Q) -
process 1iff

(6) A4 [fz§= fl5 -—)fa§= fas].
,0eQ

,2“:::::33

Comparing this theorem and Definition 3 it is clear that
every Z - injective mapping fe:Fa is & (z,@) - process,
Consequently, for Z1 = 22 = .. = Zn =2,
Q1 =Q = ... =Q =Q if f= (ff....,fn)eﬁh is such that
fi is 2 - 1nject;ve for some i , 1<ki<n , then f 1is a
(z,Q2) - process,

The class of the (Z,Q) -~ processes is characterized by
the following result,

o gt1] Sﬂl
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Theorem 2, If fe¥, is-a (Z,8) - process,
then it satisfies exactly one of the following conditions:

(7) £ is Z - injective,

R n _
(8) 'Ehere exist &,,b € Q" where & = (ao,-..,ao) .
b = (bgyees,b,) » &, # by, such that fzio = f,so and

for any E,Sern y 3 = (8y40058) , D = (b,ese,b) , a<b
if b -~ac Qo , then the equality fzﬁ = f25 implies that
fﬂa is a periodic mapping of period b - a ., Moreover, if
Q, has the property that for any a,beQ, , a<b the relation
b - aeQO holds, then condition (8) is also a necessary condi=
tion for e mapping to be a (Z,8) - process.

The following theorem proves the existence of mappings
feF, which are not (z,Q) - processes.

Theorem 3. If S>2 +then for any Z§¢ @ there
exists a mapping fe ¥, which is not a (Z,3) - process.

Proof. Let (t1°,...,tno)ea-2. Then there
exists 1 , 1<i<n such that tie Qi - Zi » Denote by 1
mg.x {tg1,...,tin}, where time Qim - Zim for any 1<m<kn .
One can choose wer such that w>to . It follows from

condition (2) that (w,...,w)eQ-Z ., ILet y(1), y(2)e s

and y(1) # y(2) . We define a mapping f = (f1....,fn) as
follows

y(1) for t<4w

= for l1e{i ,eeesd }
fi(t) {1’ ’ kn

y(z) for t>4w
and
v for 2kw<t <(2k + 1)w

£,(t) =
i( ) y(2) for (2k + 1)wst<(2k + 2)w
for ie {1,...,n} - {11""'11: } .
n

ke,

Note that for any (t.sece,t )eZ t, + 2W<4W,,..,t +2w<qw ,
1 n i, 1
n
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8 E. Stankiewicz, W, Zakowski

Now it is easy to check that f(t1,...,tn) = f(t1+2w,...,tn+2w)
for any (t1,...,tn)62 s 1., 1, =(1}h/ . On the other hand

we have f(2w’oc-,2w) = (y(1),ooa,y ) # f(4w""’4w) =
= fﬂ2 (2w, .40,2w) which proves that f is nota (Z,Q) ~
. ‘

process.
Note that there exist (Z,Q) - systems such that the
set of 1-th subcomputations (for some i, 1<i<n) of that
system cannot be a subset of any (2,Q)-computable set (e].
Example 2 . The mapping f defined in Example 1
is Z~ injective for Z=12, X I, where Z, = Z, = <0; 3) ,
hence it is a (Z,Q) - process, Consequently, an operator
Me.ﬂza defined by the formula

2
o= {g, 8= (8 )e g b om0 fo

is the (Z,Q@) - system. The function f, defined in Example 1
belongs to the set of 1-st subcomputations of®that system,
Since this function is not (ZQ,Q)- computable, the set of
these subcomputations cannot be a subset of any (ZZ’Q) -

computable set.
Finally we shall show that for any finite sequence of one

dimensionsal (Zi'Qi)"' mechines M; , i ='1,...,n such that
n

Aﬁgqi y I;® f“hQi one cen construct the (Z,Q) -~ system,
1= . .

This system has the property that its set of i-th subcomputa-
tions, 1 = 1,...,n 1is (Z,Q) ~ computable for some Z,Q
(not nepessarly equal to Z; and Qi) . n

Let us denote, as previously, by Q/ the set £3 Qi

and by RMi , i=1,...,n the set of computations of the
machine Mi . Forany i, i =1,.e.,0n, let us distinguish
the subset of such fe RMi for which he RM; and aeQi - Qo

such that f = hQ does not exist. Denote these sets by
a

R Mi , 1 =1...,0 . They have the following property

1
-(9) R1Mi = {an H f€R1MjAa€QO} fOI‘ i = 1,0..,“
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\D

We define an operator M : ,'Fz———.'r"a as follows

DM = {f} t £ = (fg000,fp)eRMX o0 xRy}

W [u(h) = (g Qhy),.n i (n)))]
h = (Byee.,h )€ DU df

We have to prove that M is the (Z,Q) - system. let he DI,
Then there exists f = (f1,...,fn)eR1M1x .es xR such
that h = f; . As the immediate consequence of the

construction of the sets R Mi we obtain that filzie Dmi ,

1
i=1,..0y0 . Hence we get

M(h) = M(£12) = (M1(f1|Z1),...,Mn(fn[2n)) = (f1,...,fn) = f

and M(f|Z)|Z = f|Z = h which proves that condition (3) of
Definition 1 holds. By equality (9) we get that U satisfies
condition (4) as well. The set of i-th subcomputations

(1 = 1,e0.,n) 1is (Zi,Qo)-computable.
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