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PARTIAL DIFFERENTIAL EQUATIONS
AND DYNAMICAL SYSTEMS

Intdoduction
The partial differentiasl equations that occur in physics

and conbroll the time evolution of a considered physical si-
tuation can be treated as a dynamlcal systems on a Hilbert
(or Banach) spaces of functions (e.g. the wave equation, the
Klein-Gordon equation) or on an infinite-diwensional manifolds
modelled on Banach spaces (e.g. the Buler equation in the
hydrodynamics). One obtains however the vector fields which
are not continuous and in general are defined only on a dense
subspace, Therefore the existencial theorems for such a
problems are not the immediate éonsequences of the theorem
about existence and uniqueness of the integral curves for a
vector field (satisfying Lipschitz condition) defined on a
Banach manifold, In the linear cases the existence theorems
arise from the Stone theorem if one proves at first that the
linesyr operator defining the' vector field is skew adjoint
under the real Hilbert space product (see e.g. [1]).

However if we have to do wlth the nonlinear densely defined
vector field on the Hilbert space we have not any criterium
which allows to determihe 1if this field generates (or is a
generator) a local one-parameter semigroup (see §3 in [1]).

In this moment the natural question occurs: can we choose
the space of functions on which the vector field is construc-~
ted from the partial differential equation in such a way that
this field is on it suitably regular, i.e. generates on this
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space a local one-parameter group. It appears that the
sppropriate choice of the space +to wreduce the problem to
integration of the smooth vector field on a Banach space is
fairly easy in the case of partial differential equations with
the constant coeffficients. However in the nonlinear case an
attempt of a realisation of this reduction leads to a very
poor spaces of functions, which is motivated in the mentioned
below considerations (proposition 3).

1. The spaces Br(Q) and their application for the
partial differential equations with constant coefficients
Let 2c R® be an open subset. Consider the partial

differential eguation of the form

aku a
(1) =y __ D,
wE <o ¢

where a = (a,l,a,a,...,an) € ({O} ulM)® is a multiindex,
laj=a, + a5 + eee + Ay (t,xq,...,xn)e R*Q , £ are the
lal
a

real pxp matrices, D, := and u is a

[+ 9 oL,
axqﬂaxf. .o axnn
funetion on R* which takes values in RP. Assume that the

given functions £ ,f,,...,f 4 on $ are the initial data
i
for the equation (1), i.e. —31:—‘{‘ (0,x) = fi(x), 120,104 ,k=1,

d
Define the now unknown functions uj ==—a@l‘1-, j=0,1,.‘..,k-’l.
Then the equation (1) is equivalent with the following system:

,

ou
0
T =W
au,] .
9 < T2 .
1 . where ug (0,x) = fj (x) are glven,
al:l.k_2 "
oat = k=1
a )
v loj<m



Partial differentisl equations 3

We can -write this system in the form

(2) WY Fag,
laigm

where : Rx Q —=RP, f(t,x) := (u (%) yenyu_q(x)),
and 1" are the kpxkp matrices, The initial condition is
then given by the formula: u(0,x) = (fo(x)'f’l (x)’“"fk-’l (x)).

The equation (2) we can treat as the equation for an
integral curve of a vector field in the following way: if we
interpret t-—=34(t,+) as a curve in some space of functions
on & then we obtain the equation (2) for the (linear) vectar
field L on this space given by the formula

L(£) 1= Y E*D,f.
la|<m

The equation (2) takes then the form

ad .
(3) ﬁuﬁ = L(G,), G(e) = TUlt,e.)

and the given function U(0,x) = ﬁo(x) we interpret as a
point, from which the integral curve ¢t v—»ﬁt of L starts
at the time t = O.

It is easy to see that if we want to consider the deriva~
tives in the common sense (not as in the distribution theory)
and also assume that L maps the space of functions on £ :
lnto itself, then this domain of L ought to be a subset of
C*° (Q). The sufficient condition for existence of the
solutions of (3) on this space is e.g. the existence of some
Banach norm on it such that I 1is the continuous operatox..

We will consider some spaces of C° functions on Q
taking values in Rkp with bounded on £ derivatives, Define

(4) ak(f) t= lnlll?']i sx:p [Dg£(x)] y where feC™ fﬁ,Rkp).
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We introduce the family of spaces of smooth functions indexed
by the real positive parameter =r:

o (5 ~k
Br(Q) $= {fe c (Q,Rkp): oiﬁgz r ak(f)<oo}.

It is easy to check that |-}, defined by
(5) Nflr t=  sup vk ak(f)
: O<keZ

is a norm on B_(Q). Then (B,(Q), J+].) are the Banach
spaces (the completness is evident;, Now we sum up the in-
teresting properties of these spaces in the following state-
ment,

Theorem 1, Let B, := B.(Q), The spaces B, have
the properties:

1° For s<r we have Byc B, and this inclusion 1s con-
tinwous, i,e. |f|r < nfls for any fe Bg;

2° In the case when Br are the spaces of real (complex)
valued functions, they do not form the algebras, but the
multiplicat;on of functlons continuously maps BrXBS—-B
moreover

r+8?

ﬂfgl +S <If Ir ﬂg’ﬂs'

5° Bach differential operator 1L wlth constant coeffle
cients maps any Space * Br into itself and is continuous on it.
Proof:
ad 1° It is evident (see (4) and (5)).
ad 2° Consider the functions f(x,],...,xn) = sin rx, and
B(Xq9Xp9e009X,) 3= cos 17X, on Q. Then

2j+1
9

8y (8) = 0%, ey (£) = Dr 32041y e 0.

*

where C = sup |sin rx,| and D = sup |cos X,
xeQ XeQ
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For the function g we obtain

_ N2l _ a3+
253 (g) = Dr and a5y 4 (g) = Cr .
So f, geB ( "f“ = max {C,D} = |&] o)+ On the other hand,
fg(x) = — sin 2rx, and ak(fg) >28 K pin {C,D} « The above

inequality implies that fgé Bl

For the proof of the second statement in this point it is
clearly sufficient to establish for any functions fe Br and
geBs the following inequality

Ite] pis <2l le] s

Du f .f

what is stralghtforward consequence of (4) and (5).
Now -

Hfgﬂ res = (s)gﬁ ((p4s)7E U&nlmx sup | Dg (fg)(x)|) =

ealer) )10y <

= sup <(n+s) max sup
|fl=k  xeQ

81\ /An
<oF (™ ik <§A<°1)"(“n> 2081222 gup 2. 6Cx))<

B B\ _jei 18l -1a
<ufnr ISIS sup((ms) lﬁl—k O{%ﬂ(“:) (;:)r' 's '):
f lrllgﬂ s’
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because
S (P () e () e
0<a<h \3=1 \ey O<a<p =1 \%j -

Al

= (r+s)p1(r+s)ﬂ2 (r+s')/6‘1 = (I‘+S)l .

ad §° To prove that the operators L of the form L=IZ AﬂDﬂ
Bl<m
are continuous, it is sufficient to show the following

inequalitiess
(1) for a matrix A : RSP —»Rkp, we have

ao] p<o Ie] L
where the constant- ¢ can depend on A, but not on £
(11) "Dﬂfu =< g uf " r?
where the constants M}; do not depend on £,

It is easy to see that (1) holds, if as C any number
bigger than [A| is taken, because

i

sup |D¢A°f(x)| sup |A D,f(x)| < sup JA| |D.£(x)] =
XeQ XeQ X€Q

1]

Ja] sup |D,2(x)
XeQ

Now
ezl = swp 7 mex swp [p,200])<

1]

-k 181 -k~ |8}
< D, £( (£) =
K (r i P SRE i "ok |l

ol -3 161 -3 gl
=r lﬂslugj (£ a,(£)) < r 8213) (=70 ag(£)) = =7 2],
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what proves (il) - as one can take My = rw. Thus in the
space B._. we have estimated the norm of the operator Dgt
IDﬁlr < r'®. Using properly the functions

fy(x) 1= I'gT sin r(zi+y1), y e R,
i=1
ooe can check that [Dg] . = r'#! indeed. Q.E,D.

As an immediate consequence of Theorem 1, we obtain the
following result.

Theorem 2. The differencial operators with
constant coefficients generate on any space Br(Q) the one~
-parameter groups of bounded, linear operators. In particular,
in the space X of functions on Rx$ taking values in
and sgtisfying the conditions
(ue X) > (exists r>0 such that

(1) lu(t,e)] L <=o for awy teRy

(11) Vi e RVe> 033|t-t°[<6-==>-
— Ju(t,.) - u(to,o)|r<e ;

(111) Ve, eR Ve>0 36 |t=t | <§~—>
—=|§ ) = Goued |

the eduation (2) with the initial condition U(0,°) =
= T(<)e¢ UO BS(Q) possesses a unique global solution (defined
8>

for all te€R and xeQ).

Proof, The first part of Theorem 2 1s a straight-
forward consequence of Theorem 1, Next notlee that the space X
consists of all differentiable curves on the spaces Br(Q).
If f£(-)e Ba(‘Q)’ then, accordingly to the first part of the
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theorem, exists exactly one solution of (3) in the space
BS(S?):

G(t,) = oL £(+),

Obviously teX. It remains to prove the unlqueness of
solution in the space X. Suppose that veX and v
satisfies (2) with the same inltial condition v(0,¢) = £(*),
Then t—v(t,*) is a ¢! ourve in some space Br(.Q) and

satisfies (3), i.e. g—;—t = Lv,. Suppose now that ra»s. If so,
then in accordance with the point 1° of Thm 1 the curve
t—=¥, 1is also a differentiable curve on B,(%), and
satisfies (3). The uniqueness of integral curves on B, and
the equalilty R, =V, imply that u = v, In the case when
r <s, the argument is the same, but u and v pley the
reversal parts. Q.E,D,

Notice that any function u of the form u(t,x) =
= g(t)f(x), where fe Lf.' B.(Q) and g is a real function of

class 01 on R, is an glement of the space X introduced
in Theorem 2, Though this theorem states exlistence and uni-
queness of soiutions in the case of simpler equations than
considered in Cauchy-Kovalevska Theorem, it admits the
nonanalytic functions (X contains the functions not differen-
tiable twice in t). Still the proper thing to do is to point
out that the spaces Br(Q) consist of the analytic functlons
only which can be widened analytically on the whole R®, This
property of Br - functions follows from the assumed bounded
veloclity of the growth of derivatives. On the other hand,there
exist analytic functions (even on RP) with bounded all
derivatives which are not in |J Br(Q).

>0

Exanple 1. Let Q:= (- %, %) and f(x) 1= ——1—2-.
~ 1+x
The function f is analytic on R' and on & has the

uniformly convergent expansion into the pawer series:
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F(x) 1= Flg (x) = i) -1)" %28,
n=

The derivatives of function £ are glven be the formulas:

k
~ z 1l+k
f(2k)(x) = (1+-}(c221;21i’,+1 = 212{{‘) (=1) * x211

1l

i
F(2ke1) 4y (-(21;;1& 120 (B2) (=1)+L (2141

1+X

and, as 1ls easy to see, are bounded on the whole Rq, Now
taking x = O, we obtain the following inequality:
azk(f).> (2k)1. As for each >0 the sequence —%l is
unbounded, we have £ ¢lg BL(Q). T

n
i

Example 2, It occurs that the problem of solving
the heat equation with the given initial data of class Br is
in the space X (described in Thm 2) well posed '"in both
time directions" (ﬁsually in the theory of parabolic equations,
we have to do with the semigroups, i. the solutions are

2
defined in future: ¢ >0). For example, the equation %%-: g;%

has in this space the unique solution satlisfying the initial
condition u(O,x) = £(x) = sin x (fe Bq(R1)), given by the
formulas

g2 ﬁ 2 n -t
u(tyx) = (exp t ~— ) sin x = o7 (=1) sin x = ¢ “sin x,
. ax n=0 *

BExample 3. Consider the hyperbolic equation
%g 82 2 :
g—g =a—§ » (t,x)eR° with the initial data:r g (x)=g(0,x)
t x
and ho(x) =~g%-(0,x), and let Byohy € lg Br(Rq). Defining

1= %%L to be the new unknown function, we obtain the
following system:
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8(0sx) = g, (x)
with the initial data:
=.__§_a h(O,x) = ho(x)-

X

s zip?

How we obtain by Thm 2 that the above problem has a unique
solution in an appropriate space X of some functions on
taking values in R™:

5(t,*) o 1)\ /e, oo, .2k D%k 0 &
= [exp ¢ 5 . = s (5?7] ok +
n(t,*) 22 0|/ \n, o p*\n,
21
= |21+1 0 D 8o
Yim Rt | 5.0 b
= D=ttt 0 0

’)‘j 2k &= 2141 3
ok . & 21
2k)1 D By * 2 iyl Pk

1=0

2k 2141
12K 2 2142
= (k)1 DB * g 211yt D 8o

Here D . denotes differentiatlon of the real valued
functions on R': D =.é§-. Thus the wanted function g 1is
expressed by the functions 8o ho’ and their derivatives 1n

théfform of the uniformly convergent serlesi

ok a%g 2141 'd%1h
(t,) = BEN T2 * &= eyl oT -
=0 ax’* . 10 ax?

From the example 1, the followlng doubt arises naturally:
are the spaces Br rich enough for any applications? The
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answer to this question is positive. In the case, when the

set Q 1is bounded, any space B'r(Q) contains all polynomlals,
because for the polynomial of degree m the coefficients a
defined by (4) vanish for k> m, Hence the spaces Br(Q) are
dense in C(f)) equipped with the standard norm () is compact).
Now we consider the case Q = R°,

Proposition 1. Let K(O,r) denote the closed
ball in R® with center O and radius r., If ¢e C:(Rn) and
supp ¢c K(O,r), then the Fourler transform F(¢) of the
function ¢ 18 an element of Br(Rn) (this space consists of
complex valued functions). In particular, LI‘J Br(Rn) = T(C;"(Rn)).

Proof, It ils sufficient to find the constant C, such
that for any multiindex a the following inequality holds:
s?.p |Dy Fle)(E)| < © ="', We nave

sup |D, Flp)(¢)| = sup If o~ 18 x%p(x)ax| =
§ £ o

= ~ixegya (")dx|< o 3
T x(c‘[.r) Il il K(({r) <o) ex <
<r"’“.l K(O{r) Iq(x)]dx (where x% t= x:‘l.x?..“,x‘:n).

So we obtain. ﬂ?’(q)l 2 <C :='f |g(x)| ax. Q.E.D.
RD

As an immedlate consequence of the above proposition and
Plancherel?’s theorem, we obtain the following result:
Corollary, If Br(Rn) and LZ(R?) denote the
spaces of RP values functions, then the subspace
LI_‘JBr(Rn) n 1%(R®) 1s dense in . L2(R®),

There 1s some connection between the spaces Br(Q) and
B.( Q')
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Remwma»k, As is easily seen, if Q<= Q , then
Bp(Q)2B. Qg = {fly : £¢B,(Q)} . But the functions exist
of class Br on Q' which are not restrictions of the
functions from BPGI) (LEQ£Q).

2. The nonlinear partial differential equations and
Lipschitz dynamical systems

Now we consider some special cases of the nonlinear
equations with unknown function u(t,xq,...,xn). The linear
operator L in (3) will be replaced by the nonlinear
differential operator P (acting in n variables x1,...,xn):

P(g)(Xyy000y%y) 1= f(xq,...,xn,...,(Qag)(xq,...,xn),...),

where|%l< m and P is the RP valued function of
<é+q51> variables.
J=0 J
In the simplest (quasilinear) case, in the equations like
this

n+pe

(6)° 9 (t,%) = P(uy) (x)

already the products of unknown function u and lts derivati-
ves occur (or powers of unknown function - e.g. in the non-

2
linear Klein=Gordon equation: g;% = Ag + mzqs).

Suppose moreover that u (and P) are real valued, i.e.
p=1. Then if we would like to use the analogous scheme as
before, we have to assume additlonally that a space of
funetions (on which the vectorfield P 1is constructed) forms
an algebra., We also need some metric on this space to formulate
the Lipschitz condibtion for the vector fleld P, At first, we
will show that in general the vector fields, satisfying the
Lipschitz condition on the algebras equipped with the
Fréchet metric, have no unique integral curves,
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Let an open set Q c R® be bounded, Then the space Y :=
< (Q) with the standard metric d (invariant under trans-
lations) defided by the formula

oo Z suplDa(f-g),
Ag,g) = alt-g) =Y ln =t
n=0 2 + : sug}Da(f-g)l

letl=n

is the Fréchet space and forms the algebra under addition and
multiplication of functions,

Proposition 2, Let L ¢ Y¥Y—Y be the
differential operator with constant coefficients, of order nm,

i.e. L —Z ﬁDg. Then L is bounded.

|Akkm
Proof, Let keN be such integer that for any S

have |aﬂ| < k., Then

a(1f) < E d(aﬂDﬂf)< kl%: a(ngt).
/3([11

The second inequality follows by the properties of metric:
aﬂ aB
a(¥ w)<a(m) (as |£|<1)  ana  a(en) <k an).

Furthermore

e X
a(pgz) = p__ 27 1ol =d 02 Doy

. ==
j=0 1 +'F sup |D, _ , l

: sup |D
<§2-3 e LM ST -1gEl
1+ ' EI :lﬂl sup |D f| 1=|8| 1+Z sup[D,f[
Tl=d+

< 2face).
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Thus

d(1£) < ke :2'“ a(f).
IAem

Taklag

m
. Bl J -
M=k 2Pk j;oa(m*g“)

igl<m

we obtain for any feY ¢ d(LL)<M d(f)e Q.E.D.

It occurs that even the linear, bounded (and so Lipschitz)
operators L do not generate the one - parameter groups on
the space Y, ' '

Example 4 ITet L:= & and Y :=c=([0, 1]).
We construct two different integral curves 910 90 of L
passing by OeY. Let £ ,f,¢ C”(R1) be given by the formu-
las:

0 for xe [0,1]
fo(x) = O fq(x) = exp-x"2 for x>0

'exp-(x—’l)-2 for x<1

It is easy to see that 9or 9q ¢ Rq-———'Y, given by

[(pi(t)] (x) 3= £, (t+x), 1 = 0,1,

are differentiable curves in ¥, é% Qi(t) =L qi(t), and

qo(t) £ ¢1(t) for each t # 0, but qo(O) = ¢1(O)W= O.

So if we want to integrate the Lipschitz vector fields on
a Fréchet space, we need some additional conditions for a
netric d., The study of the construction of integral curves
leads in the case of PFréchet spaces of functions to the
following notions
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Definition, By the Fréchet algebra we mean such
Fréchet space (Y,d) that Y 1is algebra and for any
(fy8)e ¥ Y

(7) d(fg)<d(r)a(g).

However the condition (7) is strongly restrictives

Theorem 3% Let (Y,d) be the Fréchet algebra with
unity. Then exists on Y such norm | | that (Y, J) is
Banach algebra, and the topology on Y given by thls norm is
the same as the original topology.

Proof, We use Kolmogorov’s theorem (see e.g. [2])
which states that the Hausdorff topological vector space is
normsble 1ff exists in it a bounded and convex neighborhood
of O, We first prove that balls in Y are bounded, It
follows by the inequality d(rf)< d(r)d(f) (reR) and

1im d(r) = O (that is Ve>01r £ 0 d{r)<e). Denoting by
r—-0

K(O,r) the open ball in Y with center O and radius r,
we obtaln from the above

Ye>0 Vr >0 Idr £0 » K(0,r ) c K(O, €T,).

Rewrliting-we have

Vro>0 ve>0 3240 K(O,ro) clK(O,cro).

The last inclusion means that K(O,go) is the bounded neigh-
borhood of O in Y (as the balls K(O, eroze=>0, nake ‘a
basis of neighborhoods of O), On the other hand, ¥ 1s
locally convex (as Y 1s the Fréchet space), and thus Y

has a basis of convex nelghborhoods of O, so in particular
exists a convex neighborhood coatalned in K(0,1). Because any
subset of & bounded set in topological vector space is bounded,
the convex neighborhood contained in K(0,1) 1is algo
simultaneously bounded, Hence by the mentioned Kolmogorow
theorem the space Y 1is normable,
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Now let H. l,l be a norm on Y . determining the original
metriec topology. The contlnuity of multiplication in the
algebra Y implies thatt a congtant C exists such that for
any f,8eY [2g) ,<C | ||,||| g I,. Taking the equivalent
norm § ¥ = C1Hll,, we obtain from the above that [£g] =

=Clfgl, <2 12) 4080, =121 I &). Thus (Y,] 1) is
shch Banach algebra that Y has the same topology as defined
by d. Q.E.D,

" Remark. The condition (7) and the local convexity of
Fréchet algebra imply (for algebra with unity!) the result
formulated in Thm 3, The following problem remains open: does
there exist a nonnormable metric algebra (with unity) full=-
filling the condition (7) ? This condition would then mean
that Y 1is locally bounded. However 1t is well known that there
exist the locally bounded (and thus metrizable - see [2])
nonnormable topologlcal vector spaces; e.g. the spaces Lp(R)
for p<1 are of that type.

Farther on we will consider the Banach algebras of
functions such that differentiations are continuous operators.
Unfortunately it occurs that this algebras are very poor (the
trivial example of such algebra is the space of constant
functions)., The theofem formulated below for the functions of
one variable sufficiently motivates the above statement in the
case of several variables too.

Proposition 3. Let B with the norm | | be a
Banach algebra of functions such that Bec C™(R) and the
differentiation D ¢t B3f+——=f'e B 1is continuous. Then the
functions gt(x) ¢= sin tx, ht(x) 1= tx’ (t # 0) and
h(x) := x are not in B (gt,ht,h¢ B).

Proof. Suppose, that for some te¢R we have By € B.
Then gé € B, and for any ne N the function 8nt belongs to
B, ag it is the golynomial of g% and gt. Notice a%sg that
D%g . = -(nt)° g, what implies that |D2g,.| = n“t° gy

Snt = 5
On the other hand |D%g | < %% g, |s where the constant M
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is the norm of D, Thus we obtain inequality (valid for any
neN):

12t° < 1P,

This inequality holds iff t = 0. So g ¢ B for ¢ #O.
Suppose now that hye B, Then h , = (b )%e¢B, and |Dh .| =
= nltlﬂhntl. By the same argument as before, these equalities
(for any ne€ N) are compatible with the existence of a bound M
iff t =<0, Hence h, ¢ Bn for ¢ # O.n e
Now if heB, then h%eB. But Dh® = nh™ ', while [Dn"|<
<u [n?] < ¥ In®™" |n], and thus for any neN one obtains
inequality

n<M|hf.

This is impossible, which proves that h¢ B. Q.E.D.

One ¢an replace the norm in the above proposition by the
metric d sytisfying (7). Then if ‘D 1is bounded, we obtain
the same result. However the proof does not work in the case
when D 1s continuos but simultaneously unbounded,
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