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Introduction 
The partial d i f ferent ia l equations that occur in physics 

and controll the time evolution of a considered physical s i -
tuation can be treated as a dynamical systems on a Hilbert 
(or Banach) spaces of functions (e.g. the wave equation, the 
Klein-Gordon equation) or on an infinite-dimensional manifolds 
modelled on Banach spaces (e.g. the Euler equation in the 
hydrodynamics). One obtains however the vector f i e lds which 
are not continuous and in general are defined only on a dense 
subspace. Therefore the existencial theorems for such a 
problems are not the immediate consequences of the theorem 
about existence and uniqueness of the integral curves for a 
vector f i e l d (satisfying Lipschitz condition) defined on a 
Banach manifold. In the linear cases the existence theorems 
arise ft-om the Stone theorem i f one proves at f i r s t that the 
line&p operator defining the'vector f i e l d is skew adjoint 
under the real Hilbert space product (see e.g. [ 1 ] ) . 

However i f we have to do with the nonlinear densely defined 
vector f i e l d on the Hilbert space we have not any criterium 
which allows to determine i f this f i e l d generates (or is a 
generator) a local one-parameter semigroup (see §3 in [ l ] ) . 

In this moment the natural question occurs: can we choose 
the space of functions on which the vector f i e l d is construc-
ted from the partial d i f ferent ia l equation in such a way that 
this f i e ld is on i t suitably regular, i . e . generates on this 
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space a local one-parameter group. I t appeals that the 
appropriate choice of the space to reduce the problem to 
integration·of the smooth vector f i e l d on a Banach space is 
f a i r l y easy in the case of partial d i f f e rent ia l equations with 
the constant coefff icients. However in the nonlinear case an 
attempt of a realisation of this reduction leads to a very 
poor spaces of -funations, which is motivated in the mentioned 
below considerations (proposition 3). 

1. The spaces B^ÇQ) and their application fo r the 
partial d i f f e rent ia l equations with constant coef f ic ients 

Let Ω c Rn be an open subset. Consider the partial 
d i f f e rent ia l equation of the form 

e 

(1) ^ 
dt |a|<m 

where a = (α^,ο^, · . . ,an ) e ( { θ } υ is a multlindex, 
\α.\=α.Λ + &2 + . . . + α η , ( t , x 1 , . . . ,xQ ) e , Jf are th 

alcU 
real p * p matrices, D„:= — 2 and u is a 

1 a ? a n 
âx,j ,ôx2c ; . . .axn 

function on il * Ω which takes values in Rp. Assume that the 
given functions f , f ^ , . . . , f o n Ω are the. in i t i a l data 

f o r the equation (1) , i . e . (0,x) = f , ( x ) , 1=0,1,... ,k-1. 
at1 ^ 

Define the now unknown functions û  := d 4 , j=0,1 , . . . ,k-1 . 
a atJ 

Then the equation (1) i s equivalent with the following systems 

~ auo 
~W = U1 
au. 
I T = u2 

0uk-2 

where u..(Otx) = f j ( x ) are given. 

~5t~ = uk-1 
flu 
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Partial differential equations 3 

We can write this system in the form 

(2) f = ^ F D a u , 
latem 

where OC s R * Ω — - iï(t,x) := (u0 (t,x),..., u ^ (t*x) ), 
and V" are the kp χ kp matrices. The initial condition is 
then given "by the formulas u(0,x) = (fQ(x) (x),... »f^^ (x) ). 

The equation (2) we can treat as the equation for an 
integral curve of a vector field in the following ways if we 
interpret t·—»u(t,·) as a curve in some space of functions 
on Ω then we obtain the equation (2) for the (linear) vector 
field L on this space given by the formula 

L(f) i= 1 % f . 
la |<m 

The equation (2) takes then the form 

dCL 
(3) ^tr = lCGCJJ), at(·) s= u(t,.) 

and the given function 2(0,x) = u0(x) we interpret as a 
point, from which the integral curve t •—-u^ of L startt-
at the time t = 0. 

It is easy to see that if we want to consider the deriva-
tives in the common sense (not as in the distribution theory) 
and also assume that L maps the space of functions on Q 
into itself, then this domain of L ought to be a subset· of 
C°° (Ω). The sufficient condition for existence of the 
solutions of (3) on this space is e.g. the existence of some 
Banach norm on it such that L is the continuous operator». 

We will consider some spaces of functions on Ω 
taking values in R ^ with bounded on Ω derivatives. Define 

(4) at(f) s= max sup |Def(x)| , where f e C°° 'S.R1̂ ). κ |β|-1ί χ ' * 
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4 J.Rogqlskl 

We introduce the family of spaces of smooth func t ions indexed 
by the r e a l pos i t ive parameter r : 

i s a norm on B r(Q). Then (B r(Q), J · | | r) are the Banach 
spaces (the completness i s ev ident ) . Now we sum up the i n -
t e r e s t i n g p roper t i e s of these spaces in the following s t a t e -
ment. 

T h e o r e m 1. Let Βρ := ΒΓ(Ω). The spaces B r have 
the p rope r t i e s : 

1° For s < r we have B ß c B r , and t h i s inclusion i s con-
t inuous, i . e . | f | r < Jf J s f o r any f e B s ; 

2° In the case when B r are the spaces of r e a l (complex) 
valued func t ions , they do not form the a lgebras , but the 
mul t ip l i ca t ion of func t ions continuously maps Br*Bß 

moreover 

3° Bach d i f f e r e n t i a l operator L with constant ' c o e f f i -
c i en t s maps any space * Βρ in to i t s e l f and i s continuous on i t . 

P r o o fs 
ad 1° I t i s evident (see (4) and (5 ) ) . 
ad 2° Consider the func t ions f ( x ^ , . . . , x Q ) := s in rx^ and 
g ( x 1 , x 2 , . . . , x n ) := cos rx^ on Ω . Then 

I t i s easy to check that f · ( r defined by 

(5) | f I sup r~ k a , ( f ) O^ktZ 

l f S | r + s < I f | r I S - I s · 

a - ^ f ) = C r ^ , a 2 j + 1 ( f ) = D r ' J " r ' , «3=0,1 

«diere C = sup lein r x J and D = sup Icos r x J . 
xëQ " xeo ' " 

2d+1 
» ' » · · · 

xeQ 
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P a r t i a l d i f f e r e n t i a l e q u a t i o n s 5 

F o r t h e f u n c t i o n g w e o b t a i n 
a 2 ; j ( g ) = D r 2 á and a 2 J + 1 ( g ) = C r 2 j + 1 . 

So f , g € B p ( ||f I r = m a x (C,D} = | g | r ) . O n the o t h e r h a n d , 
f g ( x ) = I s i n 2 r x ^ and a k ( f g ) > 2 k ~ ^ r k m i n {O,D} . The a b o v e 
i n e q u a l i t y i m p l i e s that f g φ Β Γ · F o r t h e p r o o f of t h e s e c o n d s t a t e m e n t in this p o i n t it is c l e a r l y s u f f i c i e n t to e s t a b l i s h f o r any f u n c t i o n s f e Β and g e B s t h e f o l l o w i n g i n e q u a l i t y 

l f s l r + s < l f I r M s ' 
N o t e f i r s t t h a t 

s u p |D af(x)| < ||f II Ip-I 
xeQ "r 

w h a t is s t r a i g h t f o r w a r d c o n s e q u e n c e o f (4) and (5). N o w 
N I r + s = j u g ((r+s) - l c κ sup | D , ( i g ) ( x ) | ) = 

f M /pB^ s u p ( ( w e ) " * m a x s u p Y H u ) ... Γ α ) ( Ό α £ ) ( Ώ β _ α g ) k V |¿l=k x e Q 0 « t < ß V V V a n / M 

< s u p ( ( r + s ) " k m a x Σ Σ * ( ^ X - ( t * ) s u p | D Ä f ( x ) | sup ID. Λ β ( * ) | ) < k \ |^|=k 0<d<yg\ al/ \ a n / x e ß 1 χ € θ 1 β «" V 

= 1 ' L H . · 
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6 J.Rogulski 

because 

ΣΣ. (ñ H J" .'"-w. ΣΖ π CS 
0 < o l < A \ , D = 1 \ α ^ J J 0 < & ί β j = 1 N ^ J , 

3 ( r + s / 1 ( r + s / 2 . . . ( r + s / n = (r+s)'^'. 

ad 3° To prove that the operators L of the form L = ) &.uB 
Ijíkm P 

are continuous, i t is suf f ic ient to show the following 
inequalit ies: 
( i ) f o r a matrix A î R ^ — - H k p , we have 

| A - f | r < c If ¡ r > 

where the constant· 0 can depend on A, but not on f ; 

( " i l h f ! r < M * l f l lr · 

where the constants Mjj do not depend on f . 
I t is easy to see that ( i ) holds, i f as G any number 

bigger than |A|| is taken, because 

sup ¡D^AofWl = sup IA Daf(x)l < sup ¡A¡ | l^f(x)| = 
X€Q 1 xeQ xeo 

= I a ! | v ( x ) | . 

Nov/ 

¡Dflff = sup (r~k max sup Id f ( x ) | ) < 11 P " r k |a|=k Χ£Ω 1 1 

<sup max sup|Dyf(x)|) = r W sup r " ^ 1 a ^ j (f) = -k 
|fl=k+|^| x" 1 ' V k" 

= r l ß l sup (r~á a.· ( f ) ) < r l/51 sup (r~3 a , ( f ) ) = r l j 3 1 f f l l , 
\ß\

 d J r 
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Partial differential equations 7 

what proves (ii) - ELS one can take Ify = r'̂ '. Thus in the 
space B p we have estimated the norm of the operator D^i 

< r1̂ '. Using properly the functions 
α 

f_(x) != ΓΤ sia r(3t,+y,), y e R , 7 1=1 1 1 

oae can check that Jd̂ jJ = r1^' indeed. Q.E.D. 
As an Immediate consequence of Theorem 1, we obtain the 

following result. 
T h e o r e m 2. The differencial operators with 

constant coefficients generate on any space Br(ö) the one-
-parameter groups of hounded, linear operators. In particular, 
in the space X of functions on Η«¿3 taking values in jjkp 
and satisfying the condition» 
(ucX)-«—* (exists r > 0 such that 

(i) |u(t,·) I <«> for any t e R{ 

(ii) Vt 06 R V é > 0 3 6"|t-t0| <6—* 

—*»Ju(t,·} - u(t0,·) j r < e ; 

(ill) V t o e R V'£>0 3 S |t-t0| <6— 

the equation (2) with the initial condition u(0,·) = 
= f(·) € U Β„(Ω) possesses a unique global solution (defined 

s>0 s 

for all t e R and χ e Ω ). 

P r o o f . The first part of Theorem 2 is a straight-
forward consequence of Theorem 1. Next notice that the space X 
consists of all differentiable curves on the spaces Br(fí). 
If f(-)f Β (Û), then, accordingly to the first part of the 
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8 J . R o g u l s k l 

theorem, e x i s t s e x a c t l y one s o l u t i o n of (3) l a t h e space 
B s ( S ) : 

u ( t , · ) = e f c L f ( · ) . 

Obviously u e X . I t remains t o prove t h e un iqueness of 
s o l u t i o n i n t h e space X. Suppose t h a t v e X and ν 
s a t i s f i e s (2) wi th t h e same i n i t i a l c o n d i t i o n v ( 0 , · ) = f ( · ) . 
Then t ' — - v ( t , · ) i s a C ourve in some space Β (Λ) and 

d v t 
s a t i s f i e s ( 3 ) , i . e . = Lv^. Suppose now t h a t r > s . I f s o , 
t h e n i n accordance wi th t h e p o i n t 1° of Thm 1 t h e curve 
t ' — • i s a l s o a d i f f e r e n t i a t e curve on Β ρ (Ώ) , and 
s a t i s f i e s ( 3 ) . The un iqueness of i n t e g r a l cu rves on B p and 
t h e e q u a l i t y uQ = vQ imply t h a t u = v . I n t h e c a s é when 
r < s , t h e argument i s t he same, h u t u and ν p lay t h e 
r e v e r s a l p a r t s . Q.E.D. 

Not ice t h a t any f u n c t i o n u of t h e form u ( t , x ) = 
= g ( t ) f ( x ) , where f e (J Β (Ω) and g i s a r e a l f u n c t i o n of 

1 r 
c l a s s C on R, i s an element of t h e space X i n t r o d u c e d 
i n Theorem 2 . Though t h i s theorem s t a t e s e x i s t e n c e and u n i -
queness of s o l u t i o n s in t h e ca se of s i m p l e r e q u a t i o n s t h a n 
c o n s i d e r e d i n Cauchy-Kovalevska Theorem, i t admi t s t h e 
n o n a n a l y t i c f u n c t i o n s (X c o n t a i n s t h e f u n c t i o n s not d i f f e r e n -
t i a t e tw ice i n t ) . S t i l l t h e p rope r t h i n g to do i s t o p o i n t 
out t h a t t h e spaces Br(£2) c o n s i s t of t h e a n a l y t i c f u n c t i o n s 
only which can be widened a n a l y t i c a l l y on t h e whole RQ. This 
p r o p e r t y of Βρ - f u n c t i o n s f o l l o w s f rom t h e assumed bounded 
v e l o c i t y of t h e growth of d e r i v a t i v e s . On t h e o t h e r h a n d , t h e r e 
e x i s t a n a l y t i c f u n c t i o n s (even on R n ) w i th bounded a l l 
d e r i v a t i v e s which a r e not i n U Β_(Ω). 

r>0 r 

E x a m p l e 1 . Let Ω := (- i ) and f ( x ) := 1 3 . 
< 1 * 1 + x 

The f u n c t i o n f i s a n a l y t i c on R and on 5 has t h e 
un i formly convergent expans ion i n t o t h e power s e r i e s : 
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Partial dif ferential equations 9 

f ( x ) ?\B (x) = Y Z 
n=0 

The derivatives of function f are gj.ven be the formulas: 

k 

*(2k,w = rML·* ΣΖ (2ir) <--» (l+x¿)¿h-+n 1=0 v ¿ 1 ' 

1+k 21 
x t 

1 
and, as is easy to see, are bounded on the whole R . Now see, εα 
taking χ = 0, we obtain the following inequality? 
a ^ C f ) > (2k) I . As for each r > 0 the sequence ^ ^ is 
unbounded, we have f £ U Β (Ω). r 

r 
E x a m p l e 2, It occurs that the problem of solving 

the heat equation with the given init ia l data of class Bp is 
in the space X (described in Thm 2) well posed "in both 
time directions" (usually in the theory of parabolic equations, 
we have to do with the semigroups, i . the solutions are 

2 
döfined in future: t > 0 ) . For example, the equation i r = —£ 

dx 

has in this space the unique solution satisfying the init ia l 
condition u(0,x) = f ( x ) = sin χ ( f e B ^ H 1 ) ) , given by the 
formula: 

/ d2 \ «22. η η t 
u(t ,x) = (exp t —5 I sin χ = 2 ϊγγ ( - Ό s i Q x = e s i n x · 

\ dx / n=0 n ' 

E x a m p l e 3 · Consider the hyperbolic equation 
2 2 

^§• = -2-5-, ( t , x ) eR 2 with the init ia l data: (x) = g (0,x) 
3t¿ dx¿ » 0 

and h0 (x) = ^| - ( 0 , x ) , and let S0.hQ e U B r ( f i ' ) . Defining 

h:= to be the new unknown function, we obtain the 
following system: 
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10 J.Rogulski 

ft"* 

3x at 
with the initial datat 

g(Ofx) = g0(x) 

h(0,x) = h0(x). 

Now we obtain by Thm 2 that the above problem has a unique 
solution in an appropriate space X of some functions on R2 

2 taking values in R : 

,h(t r i 
= exp t 

D 2 0 = to W 
D 2 k 0 

,2k 
->\ho/ 

pq 
• ς : 

k2l+1 
í=o ( 2 1 + 1> ! 

v21 

d21+2 0 

t 2 k 2k f 3 , t 2 l + 1 21 
¿ 5 fei + (2Ϊ+ΤΓ! D \ 

t.2k r,2k ^ tEil τ\21+2„ 
- (2k)! D ho + feo Γ2ΪΪΪΤ! D S0 

Here D . denotes differentiation of the real valued 
1 à 

functions on R ι D = · Thus the wanted function g is 
expressed by the functions gQ, hQ, and their derivatives in 
thefform of the uniformly convergent eeriest 

.it ο Γ t 2 k d 2 k g° + Ρ ,t2l+1 ' a 2 \ e ( t' e ) • t o " ¡ ^ ιΞο ̂ ^ ' 

Front the example 1, the following doubt arises naturally: 
are the spaces Β rich enough for any applications? The 
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P a r t i a l d i f f e r e n t i a l eauations 11 

answer to t h i s quest ion i s p o s i t i v e . In the case, when the 
se t Ω i s bounded, any space Β'Γ(Ω) contains a l l polynomials, 
because f o r the polynomial of degree m the c o e f f i c i e n t s a^ 
defined by (4) vanish f o r k> m. Hence the spaces Βρ(Ω) are 
dense in C(Q) equipped with the standard norm (¿5 i s compact). 
Now we consider the case Ω = Rn . 

P r o p o s i t i o n 1. Let K(0,r) denote the closed 
b a l l in Rn with center O and radius r . If if e 0~(Rq) and 
supp ifc K(0 , r ) , then the Fourier t ransform T(<f) of the 
func t ion φ iá an element of B r(RQ) ( t h i s space cons i s t s of 
complex valued f u n c t i o n s ) . In p a r t i c u l a r , U Β (Rn) => JCC^R0)). 

r 
P r o o f . I t i s s u f f i c i e n t to f ind the constant C, such 

tha t f o r any multiindex α the fol lowing inequal i ty holds: 
sup |Da ?"((?) (Ç)I ^ α r , t t l . We have 

sup |d J(<p)(Ç)| = sup I / xe<p(x)dx| = 
i * Rn 

sup 
ξ 

I Γ**'*: 
K(0,r) 

l(j>(x)dx sup I 
K(0,r) 

Ι χΛφ(χ) | dx < 

< r 
leti J |(p(x)|dx (where 

K(0,r) 
X« 1 

So we obtain | î"(cf)j Γ < c *= f |c|>(x)|dx. Q.E.D. 
Ra 

As an Immediate consequence of the above proposi t ion and 
P l anche re l ' s theorem, we obtain the fol lowing r e s u l t : 

C o r o l l a r y . I f Br(Ra) and' L2(R^) denote the 
spaoes of Rp values func t i ons , then the subspace 

U Β (Ηα) η L 2 (R a ) i s dense in . L 2 (R q ) . 
r 

There I s some connection between the spaces Bp(Q) and 
B r ( Q ' ) t 
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12 J .Rogulskì 

Η θ m a ï k. As i s easily seen, i f Ω' <= Ω , then 
ΒΓ(Ω')=> ΒΓ(Ω)|δ, = [f jg, : f e B r ( Q ) } . But the functions exist 
of c lass B„ on which are not r e s t r i c t i o n s of the r _ 
functions from Βρ(Ω) ( i f Ω' ¿ 3 ) . 

2 . The nonlinear part ia l d i f f e r e n t i a l equations and 
Lipschitz dynamical systems 

Now we consider some special cases of the nonlinear 
equations with unknown function u ( t , x , j , . . . , x n ) , The l inear 
operator L in (3) wi l l be replaced by the nonlinear 
d i f f e r e n t i a l operator Ρ (acting in η variables x , p . . . , x n ) : 

where | oc I < m and Ρ is the R^ valued function of m 
η+ρ· ¿ H ( ) variables . 

D=0 V i / 
In the simplest (quasilinear) case, in the equations l ike 

this 

(6) ( t , x ) = P (u t ) (x ) 

already the products of unknown function u and i t s der ivat i -
ves occur (or powers of unknown function - e .g . in the non-
l inear Klein-Gordon equation: = Δφ + m2®8). 

dt 
Suppose moreover that u (and P) are real valued, i . e . 

p=1. Then i f we would l i k e to use the analogous scheme as 
before, we have to assume additionally that a space of 
functions (on which the veotorfield Ρ is constructed) forms 
an algebra. We also need some metric on th i s space to formulate 
the Lipschitz condition for the vector f i e l d P. At f i r s t , we 
wi l l show that in general the vector f i e l d s , sat is fy ing the 
Lipschitz condition on the algebras equipped with the 
Préchet metric, have no unique integral curves. 
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P a r t i a l d i f f e r e n t i a l equations 13 

Let an open se t Q c RE he hounded. Then the space Y 
= C°°(Q) with the standard metric d ( invariant under t r a n s -
l a t i o n s ) defined "by the formula 

-2SL C sup|D a(f-s) j 
c i ( f , 5 ) = d ( f - s ) '.= L L \ 

Q = 0 2 1 + Σ Ζ suH|Ar(f-g)| 
lai=n 

i s the Fréchet space and forms the algebra under addition and 
mul t ip l i ca t ion of funct ions . 

P r o p o s i t i o n 2 . Let L : Y — Y be the 
d i f f e r e n t i a l operator with constant c o e f f i c i e n t s , of order m, 
i . e . L = ) .a^Da. Then L i s bounded. 

Î knx 
P r o o f . Let k£ Ν be such integer that f o r any β we 

have | a ^ | < k . Then 

d (Lf ) < > . d(a*D,,f)< k Σ Ζ ^ D a f ) . 
lj3Km l/3l<ni p 

The second inequality follows by the propert ies of metric : 

J 
h ) < d ( h ) (as aß < 1 ) and d(kh) < k d(h) . 

Furthermore 

Οΰ m sup D flx 
d(Daf ) = Y Z | a - ' = j — - f < 

G=0 1 + > sup Di f 
lai =d 1 α + β 1 

< 1 2 2 - 1 lyl=3+lgl ' * ' 2m y ^ 2 - < 
D=0 1 + I sup Dyf| 1=1/81 1+> suplD^fl 

< 2 , / 3 ' d ( f ) . 
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14 J.Rogulskl 

Thus 

Takifig 

d ( L f ) < k · H I , d(f ) . 
IjJKm 

IjSKm d=0 V 3 / 

we obtain for any f e Y : d (L f )<M d ( f ) . Q.E.D. 
I t occurs that even the linear, bounded (and so Lipschitz) 

operators L do not generate the one - parameter groups on 
the space Y. 

E x a m p l e 4. Let L := ¿ and Y := C°° ( [0 , 1 ] ) . 
We construct two different integral curves cp̂ , <po of L 
passing by Ο ε Y. Let CM (H 1 ) be given by the formu-
las: 

f 0 ( x ) = 0; f ^ x ) = 

0 for χ e [0,1] 
_2 

exp-x for x > 0 

exp- (x-1 ) for χ < 1 
1 

It is easy to see that <fQ, cp̂  : R — » Y, given by 

[(p^t)] (x) := f ^ t + x ) , i = 0,1, 
are differentiable curves in Y, ^ (fj_(t) = L cj^Ct), and 

<f0(t) ¿ ( f1 ( t ) for each t ¿ 0, but q>0(0) = <p1(0) = 0. 
So if we want to integrate the Lipschitz vector f ie lds on 

a Préchet space, we need some additional conditions for a 
metric d. The study of the construction of integral curves 
leads in the case of Frechet spaces of functions to the 
following notion: 
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P a r t i a l d i f f e r e n t i a l equations 15 

D e f i n i t i o n . By the Freohet algebra we mean such 
Freohet space (Y,d) tha t Y i s algebra and f o r any 
( f , g ) e Y*Y 

(7) d ( f g ) < d ( f ) d ( g ) . 

However the condit ion (7) i s strongly r e s t r i c t i v e : 
T h e o r e m 3. Let (Y,d) "be the Frechet algebra with 

uni ty . Then e x i s t s on Y such norm | || t ha t (Y, || J) i s 
Banach algebra, and the topology on Y given by t h i s norm i s 
the same as the o r ig ina l topology. 

P r o o f . We use Kolmogorov's theorem (see e .g . [2]) 
which s t a t e s tha t the Hausdorff topological vector space i s 
normable i f f ex i s t s in i t a bounded and convex neighborhood 
of 0. We f i r s t prove tha t b a l l s in Y are bounded. I t 
fol lows by the inequal i ty d ( r f ) < d ( r ) d ( f ) ( r e R ) and 
lim d(r ) = 0 ( that i s \ / t > 0 3 r ¿ O d ( r ) < e ) . Denoting by 
r - 0 
K(0,r) the open b a l l in Y with center 0 and radius r , 
we obtain from the above 

Ve > 0 V r o > 0 3 r ¿ 0 r K ( 0 , r o ) c K ( 0 , t r 0 ) . 

Rewriting-we have 

V r o > 0 ν ε > 0 O K(0, r o ) c λΚ(0,£Γ0) . 

The l a s t inclusion means tha t K(0,r^) is the bounded neigh-
borhood of 0 in Y (as the b a l l s K(0, £rQ), e>0 , make a 
bas i s of neighborhoods of 0 ) . On the other hand, % I s 
loca l ly convex (as Y i s the Frechet space) , and thus Y 
has a bas is of convex neighborhoods of 0, so in p a r t i c u l a r 
e x i s t s a convex neighborhood contained in K(0,1) . Beoause any 
subset of a bounded se t in topological vector space i s bounded» 
the convex neighborhood contained in K(0,1) i s aleo 
simultaneously bounded. Hence by the mentioned Kolmogorov 
theorem the space Y i s normable. 

- 541 -



16 J.Rogulski 

Now let H "be a norm on Υ , determining the original 
metrio topology. The continuity of multiplication in the 
algebra Y implies thati a constant C exists such that for 
any f ,ge Y ||fg | ,,<0 ||f II,, Il g fl ̂ . Taking the equivalent 
noria II II »= C H we obtain from the above that ||fg| = 

= c ||fg II 1 < σ2 II f ι 1 II S II = Ilf II Il g II . Thus (Y, I η is 
silich Banach algebra that Y has the same topology as defined 
by d. Q.B.D. 

R e m a r k . The condition (7) and the local convexity of 
Frechet algebra imply ( f o r algebra with unity ! ) the result 
formulated in Thm 3, The following problem remains open: does 
there exist a nonnormable metric algebra (with unity) f u l l -
f i l l i n g the condition (7) ? This condition would then meat} 
that Y is locally bounded. However i t i s well known that there 
exist the locally bounded (and thus metrizable - see [2 ] ) 
nonnormable topological vector spaces; e.g. the spaces LP (R) 
f o r p<1 are of that type. 

Farther on we w i l l consider the Banach algebras of 
functions such that dif ferentiations are continuous operators. 
Unfortunately i t occurs that this algebras are very poor (the 
t r i v i a l example of such algebra is the space of constant 
functions). The theorem formulated below for the functions of 
one variable suf f ic ient ly motivates the above statement in the 
case of several variables too. 

P r o p o s i t i o n 3. Let Β with the norm I || be a 
Banach algebra of functions such that B c C ^ f R ) and' the 
di f ferent iat ion D : B s f ' - t ' e Β is continuous. Then the 
functions g t ( x ) s= sin tx, h t ( x ) != e , ( t 4 0) and 
h(x) s= χ are not in Β ( g t , h t , h£B ) . 

P r o o f . Suppose, that for some t e R we have g^e Β. 
Then g¿ e Β, and for any ne Ν the function gQ t belongs to 
B, as it is the polynomial of g^ and g ,̂. Notice also that 
D2gnt = - ( n t ) 2 Bnt , '.vhat implies that jl>2gnt| = n2t2 ||gQt||. 
On the other hand ¡D2gnT;| < |gat|i where the constant M 
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i s the norm of D. Thus we ob ta in inequa l i ty (val id f o r any 
η e Ν): 

ri2t2 < M2. 

This i nequa l i t y holds i f f t = 0 . So gfc φ Β f o r t ¡¿ 0 . 
Suppose now t h a t h^ f B. Then hQi; = ( h t ) a e B, and |DhQ t | | = 

= n I*51 | k Q t | | · By 'β*1® same argument as b e f o r e , these e q u a l i t i e s 
( f o r any η e Ν) a re compatible with the ex i s t ence of a bound M 
i f f t = *0. Hence h t £ Β f o r t / 0 , 

Now i f h e B , then h Q e B . But DhQ = nh11"1, while ||Dha||<. 
<M | | h a | < M llha-",|| I h I , and thus f o r any ne Ν one ob ta ins 

i n e q u a l i t y 

α < Μ I h I . 

This i s impossible , which proves t h a t h £ B . Q.E.D. 
One can r ep lace the norm in the above p ropos i t i on by the 

metr ic d s y t i s f y i n g ( 7 ) . Then i f D i s bounded, we ob ta in 
the same r e s u l t . However the proof does not work in the case 
when D i s cont inuos but s imultaneously unbounded. 
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