

Jerzy Zurawiecki

THE MAXIMAL k -MACHINES1. Introduction

The aim of this paper is to give some properties of the k -machines, all computations of which are with the maximal cycle length i.e. 2^k (only the k -machines defined in a two-element alphabet M with total transition function $\varphi: M^k \rightarrow M$ will be considered)¹⁾. Such k -machines will be called maximal.

Problems related to maximal k -machines have been studied by many authors.²⁾ In Hall's paper [4] the cardinality of the set of all maximal k -machines (k fixed) has been given. Yoeli in [8] shows the possibility of obtaining a maximal k -machine from a given one by modification of its transition function, but he does not give an algorithm for this. Fredricksen in the papers [1] and [2] using Yoeli's method gives an algorithm for constructing a maximal k -machine for arbitrary $k > 1$. Using this algorithm we can not obtain all maximal k -machines. Golomb in [3] has investigated the problem of the existence of maximal cycles for linear k -machines. To every k -machine is assigned a unique polynomial of degree k , the properties of which allow an answer to the question whether the cycle of all its computations is maximal or not. A necessary and sufficient condition for the transition functions of k -machines to be maximal has not yet been given, even for the linear case.

1) The formal definition as well as the fundamental properties of the k -machines in the more general case have been given in [5].

2) Technical applications of the maximal k -machines have been given in Golomb's monograph [3].

This paper consists of some new results relating to maximal k -machines. The set D^k of all k -machines (k is fixed) whose transition functions satisfy the condition $\varphi(t_1, t_2, \dots, t_k) \neq \varphi(t_1, t_2, \dots, t_k)$, when $t_1 \neq t_1$, will be considered here (the transition function of every maximal k -machine satisfy above condition). In the set D^k the distance between two k -machines (having the transition functions φ and ψ , respectively) will be introduced as the cardinality of the set of all sequences $(t_2, \dots, t_k) \in M^{k-1}$ for which $\varphi(a, t_2, \dots, t_k) \neq \psi(a, t_2, \dots, t_k)$ for all $a \in M$.

In the metric space D^k (with the distance taken as the metric) for an arbitrary k -machine, all maximal k -machines belong to some spheres. That k -machine is the center of these spheres (one for all) and their radii are determined uniquely by that center. If as the center of the spheres is taken the k -machine with transition function $\varphi(t_1, \dots, t_k) = t_1$, then the above property implies that we will know the number of ones (or zeros) which are the values of transition functions of maximal k -machines at the points $(0, t_2, \dots, t_k)$, (or $(1, t_2, \dots, t_k)$).

Unfortunately, the results which have been obtained here do not solve completely the problem of maximal k -machines, but in author's opinion these results will lead to the solution in the future.

2. Basic definitions

The notations of [5] will be used here.

D e f i n i t i o n 2.1. By a k -machine A_k we mean a pair (M, φ) , where $M = \{0, 1\}$ is an alphabet and $\varphi: M^k \rightarrow M$ is a total function (the transition function of k -machine A_k).

D e f i n i t i o n 2.2. By a computation of the k -machine $A_k = (M, \varphi)$ we mean every sequence $T \in M^\infty$ such that

$$(2.1) \quad \forall_{i \geq 1} (T|_{k+i, k+i} = \varphi(T|_{i, i+k-1})) .$$

The set of all computations of the k-machine A_k will be denoted by $C(A_k)$ ³⁾.

D e f i n i t i o n 2.3. A sequence $T \in M^\infty$ is said to be periodic iff the following condition is satisfied

$$(2.2) \quad \exists_{p \geq 1} \forall_{i \geq 1} (T|_{p+i} = T|_i) .$$

The least value of p satisfying (2.2) is called the period and $T|_{1,p}$ - the cycle of T .

Let D^k denote the set of all k-machines (k is fixed) all computations of which are periodic. The k-machines of the class D^k will be called periodic. In this paper only periodic k-machines will be considered.

D e f i n i t i o n 2.4. Let us define the relation $Sh \subseteq M^0 \times M^0$ (a restriction operation) as follows

$$(2.3) \quad Sh(U, V) \Leftrightarrow \exists_{i \geq 1} (U = V|_i) ,$$

where M^0 denotes the set of all periodic sequences.

R e m a r k 2.1. It follows immediately from the above definition that Sh is equivalence relation in M^0 . An equivalence class designated by an element $T \in M^0$ with respect to the relation Sh will be denoted by $[T]$.

D e f i n i t i o n 2.5. By a complexity degree of A_k (denoted by $\deg(A_k)$) we mean the cardinality of the set of all equivalence classes designated by relation Sh in the set $C(A_k)$ ⁴⁾.

D e f i n i t i o n 2.6. By a distance between two k-machines $A_k = (M, \psi)$ and $B_k = (M, \psi)$ (denoted by $\text{dist}(A_k, B_k)$) we mean the cardinality of the set $\{U \in M^{k-1} : \forall_{a \in M} (\psi(aU) \neq \psi(aU))\}$.

3) A set $E \subseteq M^\infty$ is said to be a k-computation set iff there is a k-machine A_k such that $E = C(A_k)$.

4) For each computation $T \in C(A_k)$ all its restrictions belong to $C(A_k)$ (it has been shown in [5]).

D e f i n i t i o n 2.7. A k -machine A_k is included in a k -machine B_k (denoted by $A_k \sqsubseteq B_k$) iff the following condition is satisfied

$$(2.4) \quad \text{dist}(A_k, B_k) = \deg(A_k) - \deg(B_k) . \quad 5)$$

D e f i n i t i o n 2.8. By a dimension of a k -machine $A_k = (M, \varphi)$ in the point $a \in M$ (denoted by $\dim_a(A_k)$) we mean the cardinality of the set $\{U \in M^k : U|_{1,1} = a, \varphi(U) \neq a\}$.

3. Basic theorems

Some theorems which are necessary for understanding the further results will be given.

For arbitrary sequence $U \in M^k$ let *U denote such a sequence $V \in M^k$ that $U|_{1,1} \neq V|_{1,1}$ and $U|_{2,k} = V|_{2,k}$.

T h e o r e m 3.1. A k -machine $A_k = (M, \varphi)$ is periodic iff the following condition is satisfied

$$(3.1) \quad \forall_{U \in M^k} (\varphi(U) \neq \varphi({}^*U)) .$$

The proof of this theorem has been given in [10].

We remind that only periodic k -machines will be considered.

R e m a r k 3.1. It follows from Theorem 3.1 that the dimension of an arbitrary periodic k -machine A_k defined in two-element alphabet does not depend on the point $a \in M$, and will be denoted by $\dim(A_k)$.

T h e o r e m 3.2. For arbitrary k -machines A_k and B_k - if $\text{dist}(A_k, B_k) = 1$ then $|\deg(A_k) - \deg(B_k)| = 1$.

An idea of the proof of Theorem 3.2 is based on Yoeli's paper [8] and will be not recalled here.

T h e o r e m 3.3. (D^k, dist) is a metric space.

P r o o f . It follows immediately from the definition of dist that for all k -machines A_k and B_k we have

5) The fundamental properties of the relation \sqsubseteq have been studied in [9].

$\text{dist}(A_k, B_k) \geq 0$ ($\text{dist}(A_k, B_k) = 0$ iff $A_k = B_k$) and
 $\text{dist}(A_k, B_k) = \text{dist}(B_k, A_k)$.

Let us consider arbitrary k-machines $A_k = (M, \varphi)$, $B_k = (M, \psi)$ and $C_k = (M, \xi)$. The condition $\text{dist}(A_k, B_k) \leq \text{dist}(A_k, C_k) + \text{dist}(C_k, B_k)$ follows from the condition

$$(3.2) \quad G \subseteq (E \cup F) ,$$

where $E = \{U \in M^{k-1} : \varphi(OU) \neq \xi(OU)\}$, $F = \{U \in M^{k-1} : \psi(OU) \neq \xi(OU)\}$ and $G = \{U \in M^{k-1} : \varphi(OU) \neq \psi(OU)\}$.

By a ball and sphere of center A_k and radius $r \geq 0$ will be understood the sets $B(A_k, r) = \{B_k \in D^k : \text{dist}(A_k, B_k) < r\}$ and $\text{Sph}(A_k, r) = \{B_k \in D^k : \text{dist}(A_k, B_k) = r\}$, respectively⁶⁾.

Lemma 3.1. For arbitrary k-machines A_k and B_k , $d = \text{dist}(A_k, B_k) - |\deg(A_k) - \deg(B_k)|$ is an even number.

The proof of this lemma has been given in [9].

Lemma 3.2. For arbitrary k-machine A_k and the numbers p and q , the difference $p-q$ is an even number iff for arbitrary k-machines $B_k \in \text{Sph}(A_k, p)$ and $C_k \in \text{Sph}(A_k, q)$ the difference $\deg(B_k) - \deg(C_k)$ is an even number.

Proof. Suppose that $p > q$. There exists $D_k \in \text{Sph}(A_k, q)$ such that $\text{dist}(A_k, B_k) = \text{dist}(A_k, D_k) + \text{dist}(D_k, B_k)$. Then we have

$$(3.3) \quad \text{dist}(D_k, B_k) = p - q .$$

On the other hand it follows from Lemma 3.1 that $r = \text{dist}(A_k, B_k) - (\deg(B_k) - \deg(A_k))$ and $s = \text{dist}(A_k, D_k) - (\deg(D_k) - \deg(A_k))$ are even numbers. Then we have $\deg(D_k) - \deg(B_k) = \text{dist}(A_k, B_k) - \text{dist}(A_k, D_k) - r + s$ and then

$$(3.4) \quad \deg(D_k) - \deg(B_k) = p - q - r + s .$$

As r and s are even numbers, the difference $\deg(D_k) - \deg(B_k)$ is even iff $p-q$ is even.

6) If $r = 0$ then $B(A_k, r) = \emptyset$

It follows from Lemma 3.1 that $t = \text{dist}(A_k, D_k) = (\deg(A_k) - \deg(D_k))$ and $u = \text{dist}(A_k, C_k) = (\deg(A_k) - \deg(C_k))$ are even numbers. As $\text{dist}(A_k, D_k) = \text{dist}(A_k, C_k)$, the $\deg(C_k) - \deg(D_k)$ is an even number.

The condition (3.3) implies that $\deg(C_k) - \deg(B_k)$ is an even number iff $p - q$ is an even one.

4. The maximal k-machines set

Some sets consisting of the maximal k-machines as well as the sets which do not consist of maximal k-machines will be shown.

For arbitrary k-machine $A_k = (M, \varphi)$ let \bar{A}_k denote the k-machine $B_k = (M, \psi)$ such that $\varphi(U) \neq \psi(U)$ for all $U \in M^k$.

Definition 4.1. A k-machine A_k is said to be maximal iff the following condition is satisfied

$$(4.1) \quad \forall_{B_k \in D^k} (\text{dist}(A_k, B_k) = 1 \rightarrow \deg(B_k) > \deg(A_k)).$$

The set of all maximal k-machines will be denoted by $M(D^k)$.

Definition 4.2. A k-machine A_k is said to be minimal iff the following condition is satisfied

$$(4.2) \quad \forall_{B_k \in D^k} (\text{dist}(A_k, B_k) = 1 \rightarrow \deg(B_k) < \deg(A_k)).$$

The set of all minimal k-machines will be denoted by $m(D^k)$.

Remark 4.1. It follows from the conditions (4.1) and (4.2) that the sets $M(D^k)$ and $m(D^k)$, can be understood as the sets of all k-machines for which the function \deg attains a local minimum and maximum, respectively. The notions of the maximal k-machine and of the minimal one are used with respect to the period of their computations but not with respect to their complexity degree.

Definition 4.3. Let A_k be an arbitrary k-machine. Each number $r > 0$ satisfying the condition

$$(4.3) \exists_{i>0} (r = \deg(A_k) - 1 + 2i \& r \leq 2^{k-1} - \deg(\bar{A}_k) + 1)$$

is called the principal radius of A_k ⁷⁾.

The set of all principal radii of A_k will be denoted by $R(A_k)$.

Theorem 4.1. A k-machine A_k is maximal iff $\deg(A_k) = 1$.

The proof of this theorem has been given in [7].

Corollary 4.1. A k-machine A_k is maximal iff period of its arbitrary computation is of 2^k .

Theorem 4.2. For arbitrary k-machine A_k all maximal k-machines B_k such that $A_k \subseteq B_k$ belong to the sphere $\text{Sph}(A_k, \deg(A_k)-1)$.

Proof. If B_k is a maximal k-machine, then it follows from Theorem 4.1 that $\deg(B_k) = 1$. As $A_k \subseteq B_k$, it follows from Definition 2.7 that $\text{dist}(A_k, B_k) = \deg(A_k)-1$.

Corollary 4.2. For arbitrary k-machine A_k there are no maximal k-machines in the ball $B(A_k, \deg(A_k)-1)$.

Corollary 4.3. For arbitrary k-machine A_k we have

$$\text{Sph}(A_k, \deg(A_k)-1) \cap M(D^k) \neq \emptyset.$$

Remark 4.2. It follows from Corollary 4.2 that the equation $\deg(A_k) - 1 + 2p + \deg(\bar{A}_k) - 1 = 2^{k-1}$ has the unique solution $p \geq 0$. Thus $r_1 = \deg(A_k)-1$ is always the principal radius of A_k .

As $\text{dist}(A_k, \bar{A}_k) = 2^{k-1}$, it follows from Lemma 3.1 that $\deg(A_k)$ is even iff $\deg(\bar{A}_k)$ is even. Then $r_2 = 2^{k-1} + 1 - \deg(\bar{A}_k)$ is the principal radius of A_k .

Theorem 4.3. For arbitrary k-machine A_k ,
 $M(D^k) \subseteq \bigcup_{r \in R(A_k)} \text{Sph}(A_k, r)$

7) Let us observe that $\text{dist}(A_k, \bar{A}_k) = 2^{k-1}$ and the sets of all k-machines which belong to the sphere $\text{Sph}(A_k, r)$ and $\text{Sph}(\bar{A}_k, 2^{k-1}-r)$ are identical.

P r o o f. Let $B_k \in \text{Sph}(A_k, \deg(A_k)-1)$ be an arbitrary maximal k -machine. It follows from Corollary 4.3 that such a k -machine exists. Consider a k -machine $C_k \in \text{Sph}(A_k, r+1)$, where $r \in R(A_k)$. As $p = (\deg(A_k)-1)-(r+1) = \deg(A_k)-1-\deg(A_k)+1-2-1 = -(2i+1)$ is an odd number, it follows from Lemma 3.2 that $q = \deg(B_k) - \deg(C_k) \neq 0$, and thus $\deg(C_k) \neq 1$. Besides that, Corollary 4.2 implies that there are maximal k -machines neither in the ball $B(A_k, \deg(A_k)-1)$ nor in the ball

$$B(A_k, \deg(A_k)-1) = \{B_k \in D^k : \text{dist}(A_k, B_k) > 2^{k-1} - \deg(A_k) + 1\} .^8)$$

R e m a r k 4.3. Theorem 4.3 does not decide whether each sphere $\text{Sph}(A_k, r)$, where $r \in R(A_k)$, contains the maximal k -machines.

Let $A_k^0 = (M, \varphi_0)$ be a k -machine the transition function of which is defined as follows $\varphi_0(U) = U|_{1,1}$ for all $U \in M^k$.

T h e o r e m 4.4. If A_k is a maximal k -machine, then the following condition is satisfied

$$(4.4) \quad \exists_{r \in R(A_k^0)} (\dim(A_k) = r) .$$

Proof of this theorem immediately follows from Theorem 4.3 and remarks that $\dim(A_k^0) = 0$ and $\text{dist}(A_k^0, A_k) = \dim(A_k)$.

T h e o r e m 4.5. For arbitrary number $k \geq 1$ we have

$$M(D^k) = \bigcap_{A_k \in M(D^k)} \bigcup_{r \in R(A_k)} \text{Sph}(A_k, r) .$$

P r o o f. Let $F = \bigcap_{A_k \in M(D^k)} \bigcup_{r \in R(A_k)} \text{Sph}(A_k, r)$. It

follows from Theorem 4.3 that $M(D^k) \subseteq F$. We shall prove the inverse inclusion.

8) It follows from Remark 4.2 that the number $2^{k-1} - \deg(A_k) + 1$ is the greatest principal radius of A_k .

Let $B_k \in \mathbb{R}$. Then there exists $C_k \in m(D^k)$ such that $C_k \equiv B_k$. It follows from Theorem 4.2 and the definition of F that the k -machine B_k must belong to the sphere $Sph(C_k, \deg(C_k)-1)$. Then we have $\text{dist}(B_k, C_k) = \deg(C_k) - \deg(B_k) = \deg(C_k)-1$ and thus $\deg(B_k) = 1$.

R e m a r k 4.4. It can be proved that A_k is a minimal k -machine ($A_k \in m(D^k)$) iff each of its computation is a $(k-1)$ -computation, in particular if its computation set is the union of two $(k-1)$ -computation sets. This will be the subject of a separate paper.⁹⁾

REFERENCES

- [1] H. F r e d r i c k s e n : The lexicographically least de Bruijn Cycle, J. of Combinatorial Theory 9(1970) 1-15.
- [2] H. F r e d r i c k s e n : Generation of the Ford sequences of length 2^n , n Large, J. Combinatorial Theory 12(1972) 153-154.
- [3] S.W. Golomb : Shift-registers sequences, San Francisco (1967) 24-89.
- [4] M. Hall : Combinatorial theory, Waltham (Massachusetts) 1967.
- [5] Z. Grodzki : The theory of shift-registers, Information and Control 21(1972) 196-205.
- [6] Z. Grodzki, J. Żurawiecki : The (k,m) -computation sets, Reports on Mathematical Logic 6(1976), 79-86.
- [7] W. Skarbek, K. Zembrowski : On maximal cycles of the Boolean k -machines (in Polish), CC PAS Reports 245(1976).
- [8] M. Y o e l i : Counting with nonlinear binary feedback shift-registers, IEEE Trans. Electronic Comp. (1963) 357-361.
- [9] J. Żurawiecki : Properties of k -machines II, Elektron. Informationsverarbeit. Kybernetik 13,10(1977) 519-524.

9) The condition when k -computation set is the union of two $(k-1)$ -computation sets has been given in [6].

[10] J. Żurawiecki : Boolean shift-registers,
Demonstratio Math. (1977) 405-415.

INSTITUTE OF MATHEMATICS, HIGHER ENGINEERING SCHOOL, LUBLIN

Received March 14, 1977.