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THE MAXIMAL k-MACHINES 

1. Introduction 
The aim of this paper is to give some properties of the 

k-machines, all computations of which are with the maximal ν cycle length i.e. 2 (only the k-machines defined in a two-
k * -element alphabet M with total transition function cpiM -*-M 

1 ) will be considered) . Such k-machines will be called maximal. 
•Problems related to maximal k-machines have been studied 2 \ 

by many authors. ' In Hall's paper [4] the cardinality of the 
set of all maximal k-machines (k fixed) hiap been given. Yoeli 
in [8] shows the possibility of obtaining a maximal k-machine 
from a given one by modification of its transition function, 
but he does not give an algorithm for this. jPredricksen in 
the papers [1] and [2] using Yoeli's method gives an algorithm 
for constructing a maximal k-machine for arbitrary k > 1. 
Using this algorithm we can not obtain all maximal k-machines. 
Golomb in [3] has investigated the problem of the existence 
of maximal cycles for linear k-machines. To every k-machine 
is assigned a unique polynomial of degree k, the properties 
of which allow an answer to the question whether the cycle 
of all its computations is maximal or not. A necessary and 
sufficient condition for the transition functions of k-machi-
nes to be maximal has not yet been given, even for the linear 
case. 
1) The formal definition as well as the fundamental properties 

of the k-machines in the more general case have been given 
2) l n [ 5 ]· 
' Technical applications of the maximal k-machines have been 
given in Golomb*s monograph [3]. - 509 -
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This paper consists of some new results relating to 
le 

maximal k-machines. The set D of all k-machines (k is 
fixed) whose transition functions satisfy the condition 
(p(̂ 1.'fc2,...tk) φ (C(t1,t2»...tjc), when t^ ¿ t^, will be con-
sidered here (the transition function of every maximal k-ma-
chine satisfy above condition). In the set D the distance 
between two k-machines (having the transition functions φ and 
ω, respectively) will be introduced as the cardinality of the k—1 
set of all sequences (t2,.. .t^) e M for which <f(a, t2,...t^) 
Φ ifi(a,t2,.. ,tk) for all aeM. 
In the metric space D^ (with the distance taken as the 
metric) for an arbitrary k-machine, all maximal k-machines 
belong to some spheres. That k-machine is the center of these 
spheres (one for all) and their radii are determined uniquely 
by that center. If as the center of the spheres is taken the 
k-machine with transition function cp(t^,...t^) = t^, then 
the above property implies that we will know the number of 
ones (or zeros) which are the values of transition functions 
of maximal k-machines at the points (0,t2,...t^), (or ( ̂  « ' * * * ̂fc) ) · 

Unfortunately, the results which have been obtained here 
do not solve completely the problem of maximal k-machines, 
but in author's opinion these results will lead to the solu-
tion in the future. 

2. Basic definitions 
The notations of [5] will be used here. 
Q e f i n i t i o n 2.1. By a k-machine A. we mean k 

a pair -(Μ, <p), where M = fO,l} is an alphabet and (f :M M 
is a total function (the transition function of k-machine A^i 

D e f i n i t i o n 2.2. By a computation of the k-
-machine A^ » <M,(p) we mean every sequence Tt M°° such that 

(2·1)* V i > 1 (Tlk+i,k+i = ^Tli,i+k-1» · 
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The eet of all computations of the k-machine A, will be κ 
denoted by 

D e f i n i t i o n 2.3. A sequence Te M°° is said 
to be periodic iff the following condition; is satisfied 

<2·2> 3 P > 1 V Ì > 1 ( Tl P +i - Tli> · 

The least value of ρ satisfying (2.2) is called the period 
and T L „ - the cycle of T. » Ρ k 

Let D denote the set of all k-machines (k is fixed) 
all computations of which are periodic. The k-machines of the 
class D will be called periodic. In this paper only 
periodic k-machines will be considered. 

D e f i n i t i o n 2.4. Let us define the relation 
Sh= IT χ IT ( a restriction operation) as follows 

(2.3) S h ( U , V ) ^ 3 i > 1 (U = V ^ ) , 

where M° denotes the set of all periodic sequences. 
R e m a r k 2.1. It follows immediately from the above 

definition that Sh is equivalence relation in M°. An 
equivalence class designated by an element Τ e M° with 
respect to the relation Sh will be denoted by [T] . 

D e f i n i t i o n 2.5. By a complexity degree of 
Ak (denoted by deg(Ak)) we mean the cardinality of the ,set 
of all equivalence classes designated by relation Sh in the 
set C(Ak)4). 

D e f i n i t i o n 2.6. By a distance between two 
k-machines A. = (Μ,φ) and Β. = (Μ,ψ) (denoted by diet (A, . 

f k 1 k Bk)) we mean the cardinality of the set |Ue M : 
V a e M ( cp(aü) ¿ y(aU))} . 

A set EcM°° is said to be a k-computation set iff there 
is a k-machine A^ such that E = C(Ak). 
Por each computation Τ e C(A. ) all its restrictions belong 
to C(A, ) (it has been shown in [5l ). 
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D e f i n i t i o n 2.7. A k-machine A k is included 

in a k-machine B k (denoted by B
k ) iff "the following 

condition is satisfied 

(2.4) diat(Ak,Bk) = deg(Ak) - deg(Bk) 

D e f i n i t i o n 2.8. By a dimension of a 

k-machine A. = (Μ,φ ) in the point a e M (denoted by 
( k 

dima(Ak)) we mean the cardinality of the set [Ut Μ ι 

U| 1 t 1 = a, φ(υ) φ a} . 

3. Basic theorems 
Some theorems which are necessary for understanding the 

further results will be given. 
Jj 

Por arbitrary sequence Ut M let *U denote such a 
sequence V ε M k that 1 i V ^ 1 and U|g = V|2 . 

T h e o r e m 3.1. A k-machine A k = (Μ,φ) is 

periodic iff the following condition is satisfied 

(3.1) V U e M k C(P(U) * ' 

The proof of this theorem has been given in [10]. 

ΙΛβ remind that only periodic k-machines will be con-

sidered. 

R e m a r k 3.1. It follows from Theorem! 3.1 that the 
dimension of an arbitrary periodic k-machine A k defined in 
two-element alphabet does not depend on the point a e M, 
and will be denoted by dim(Ak). 

T h e o r e m - 3.2. Por arbitrary k-machines A k 

and B k - if dist(Ak, Bfc) = 1 then |deg{Ak) - deg(Bk)| = 1 . 

An idea of the proof of Theorem 3.2 is based on Yoeli's 
paper [Bj and will be not recalled here« 

[r 
T h e o r e m 3.3. (D ,dist) is a metric space. 

P r o o f . It follows immediately from the definition 

of dist that for all k-machines A k and B k we have 

5) 
The fundamental properties of the relation s have been 
studied in [9] . - 512 -
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dist(Ak,Bk)>0 (dist(Ak,Bk) = 0 iff Ak = Bk) and 
dist(Ak,Bk) = dist(BkfAk). 

Let us consider arbitrary k-machines Ak « (Μ,φ), Bk = 
= (Μ,ψ) and Ck = (M,f)· ^ e condition dist(Ak,Bk)<dist(Ak, 
Ck) + distCCk,Bk) follows from the condition 

(3.2) Gs(EuP) , 

where E » {UeMk"1i φ(0ϋ) ξ(θυ)}, Ρ = {utMk""1: ψ(0ϋ) ¿ 
t ξ(θυ) and G » {U€Mk~1: c?(0U) φ !f/(0U)} . 

By a ball and sphere of center Ak and radius r>0 
will be understood the sets B(Ak,r) = j^eD^: dist(Ak,Bk) 
< r} and Sph(Ak,r) = {BkeDk: dist(Ak,Bk) = r]· , respec-
tively6̂ '. 

L e m m a 3.1. For arbitrary k-machines Ak and Bk, 
d = dist(Ak,Bk) - |deg(Ak) - deg(Bk)| is an even number. 

The proof of this lemma has been given in [9]. 
L e m m a 3.2. Por arbitrary k-machine Ak and the 

numbers ρ and qt the difference p-q is an even number 
iff for arbitrary k-machines Bke Sph(Ak,p) and Cke Sph(Ak,q) 
the difference deg(Bk) - deg(Ck) is an even number. 

P r o o f . Suppose that pi»q. There exists. 
Dke Sph(Ak,q) such th®t dist(Ak,Bk) = di_fc(Ak,Dk) + 
+ dist(Dk,Bk). Then we have 

(3.3) dist(Dk,Bk) = ρ - q . 

On the other hand it follows from Lemma 3.1 that 
r - distíA^) - (deg(Bk) - deg(Afc)) and s = dist(Ak,Dk) -
- (deg(Dk) - deg(Bk)) are even numbers. Then we have 
deg(Dk) - deg(Bk) - dist(Ak,Bk) - dist(Ak,Dk) - r + s and 
then 

(3.4) deg(Dk) - deg(Bk) » p - q - r + s . 

As r and s are even numbers, the difference deg(Dk) -
- deg(B. ) is even iff p-q is even. 

If r • 0 then B(Akt*) - # 
- 913 -
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It follows from Lemma 3.1 that t = dist(Ak,Dk) -
- (deg(Ak) - deg(Dfc)) and u > dist(Ak,Ck') - (deg(Ak) -
- deg(Ck)) ere even numbers. As dist(Ak,Dk) = dist(Ak,Ck), 
the deg(Ck) - deg(Pk) is an even number. 

The condition (3.3) implies that deg(Ck) - deg^) is 
an even number iff ρ - q is an even one. 

4. The maximal k-machinea set 
Some sets consisting of the maximal k-machines as well 

as the sets which do not consist of maximal k-machines will 
be shown. 

Por arbitrary k-machine Ak => (Μ,φ) let Ak denote the 
k-machine Bk • (M,i//) such that φ(υ) j* i//(U) for all UtMk. 

D e f i n i t i o n 4.1. A k-machine Ak is said 
to be maximal iff the following condition is satisfied 
(4.1) VBktDk (dist(Ak,Bk) = 1 deg(Bk) > deg(Ak)) . 

The set of all maximal k-machines will be denoted by 
M(Dk). 

D e f i n i t i o n 4.2. A k-machine Ak is said to 
be minimal iff the following condition is satisfied 

(4.2) VB ktD k (dlet(Ak,Bk) - 1^deg(Bk) < deg(Ak)) . 

The set of all minimal k-machines will be denoted by 
m(Dk). 

R e m a r k 4.1. It follows from the conditions (4.1) k k 
and (4.2) that the sets M(D ) and can be understood 
as the sets of all k-machines for which the function deg 
attains a local minimum and maximum, respectively. The 
notions of the maximal k-machine and of the minimeli one are 
used with respect to the period of their computations but not 
with respect to their complexity degree. 

D e f i n i t i o n 4.3. I<et Ak be an arbitrary 
k-machine. Each number r>0 satisfying the condition 
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The maximal k-machinea 7 

(4.3) 3 i > 0 (r = deg(A^) - 1 + 2i 4 r<2 k~ 1 - deg(Äk + 1) 

7) is called the principal radius of A^ '. 
The set of all principal radii of A k will be denoted by 

R(Ak). 
T h e o r e m 4.1. A k-machine A^ is maximal iff 

deg(Ak) « 1 . 
The proof of this theorem has been given in [7]. 
C o r o l l a r y 4.1. A k-machine A. is maximal 

k 
iff period.of its arbitrary computation is of 2 , 

T h e o r e m 4.2. For arbitrary k-machine Ak all 
maximal k-machines B k such that A^ ε Bk belong to the 
sphere Sph(Ak,deg(Ak)-1). 

P r o o f . If B^ is a maximal k-machine, then it 
fqllows from Theorem 4.1 that degCB^) = 1 . As A^ e B^, 
it follows from Definition 2.7 that dist^^B^) = deg(Ak)-1. 

C o r o l l a r y 4.2. Por arbitrary k-machine A k 

there are no maximal k-machines in the ball B(Ak,deg(Ak)-1 ). 
C o r o l l a r y 4.3. For arbitrary k-machine A k 

we have 

Sph(Ak,deg(Ak)-l) η M(Dk) / 0 . 

R e m a r k 4.2. It follows from Corollary 4.2 that 
the equation deg(Ak) - 1 + 2p + deg(Sk) - 1 = 2k~1 has the 
unique solution p^O. Thus r1 = deg(Ak)-1 is always the 
principal radius of A^. 
As dist(A,,,i. ) = 2 k~ 1, it follows from Lemma 3.1 that 

— k—1 deg(Ak) is even iff deg(Ak) is even. Then r 2 = 2 +1 -
- deg(Äk) is the principal radius of A^. 

T h e o r e m 4.3. For arbitrary k-machine A k 

M(D k)c U Sph(A.,r) 
r i R ( A k ) 

Let us observe that dist(Ak,Sk) =t 2k"1 and the sets of 
all-k-machines which belong to the sphere Sph(Ak,r) and 
Sph(Äk,2k"1-r) are identical. 

- 5 1 5 -
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P r o o f . Let B^ Sph(Ak,deg(Ak)-1) be an arbitrary 
maximal k-machine. I t follows from Corollary 4.3 that such 
a k-machine ex i s t s . Consider a k-machine C^e Sph(Ak,r+1>, 
where r e R ( A k ) . As ρ » (deg(Ak)-1 ) - (r+1 ) » deg(Ak)-1-
-deg(Ak)+1-2i-1 a - ( 2 i + l ) i s an odd number, i t follows 
from Lemma 3.2 that q » degíB^) - deg(Ck) / 0, and thus 
deg(Ck) Φ 1. Besides that , Corollary 4.2 implies that there 
are maximal k-machines neither in the bal l B(Ak,deg(Ak)-T) 
nor in the ba l l 

B ( l k , d e g ( l k ) - 1 ) - e Dk: d i s t U k f i j r 2k" 1-deg.(Sk)+l} . 8 ) 

R e m a p k 4 .3 . Theorem 4.3 does not decide whether 
each sphere Sph(Ak»r), where r c R ( A k ) , contains the 
maximal k-machines. 

Let Ak = (M,cp0) be a k-machine the transit ion function 
of which i s defined as follows <p0(U) » U^ 1 for a l l UeMk. 

T h e o r e m 4 .4 . I f Ak i s a maximal k-machine, 
then the following condition i s sa t i s f ied 

(4 .4) 3 r e R ( A ° ) ( d i m < V " r ) · 

Proof of this theorem immediately follows from Theorem 
4.3 and remarks that dim(Ak) = 0 and dist(Ak ,Ak) = dim(Ak). 

T h e o r e m 4 .5 . Por arbitrary number k > 1 we 
have 

M(Dk) - O U Sph(Ak,r) . 
Ak«mCDk) reR(A k ) 

P r o o f . Let Ρ = η . υ Sph(A.,r) . I t 
Ak«m(DK) rtR(Ak) K 

follows from Theorem 4.3 that M(Dk)cF. We shall prove the 
inverse inclusion. 

8 ) I t follows from Remark 4 .2 ' tha t the number 2k~1 - deg(Sk)+ 
+1 i s the greatest principal radius of Ak· 
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Let B^e 5. Then there exists Ck€ m(D ) such that 
C^'e B^ * It follows from Theorem 4.2 and the definition of 
Ρ that the k-machine B^ muat belong to the sphere 
Sph(Ck,deg(Ck)-l). Then we have dist(Bk,Ck) = deg(Ck) -
- deg(Bk) = deg(Ck)-1 and thus deg(Bfc) = 1. 

R e m a r k 4.4. It can be proved that A. is a k 
minimal k-machine (Ak& m(D )) iff each of its computati«» 
is a (k-1)-computation, in particular if its computation set 
is the union of two (k-1)-computation sets. This will be 9) the subject of a separate paper. 
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