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THE MAXIMAL k-MACHINES

1. Introduction

The aim of this paper is to glve some properties of the
k-machines, all computations of which are with the maximal
cycle length i.e. 2k (only the k-machines defined in a two-
~element alphabet M with total transition function quk*-M )
will be conéidered)1 . Such kemachines will be called maximal,

.Problems related to maximel k-machines have been studied
by many authors.z) In Hall’s paper [4] the cardinality of the
set of all maximal k-~machines (k fixed) has been given. Yoeli
in [8] shows the possibility of obtaining a maximal k-machine
from a given one by modification of its transition function,
but he does not give an algorithm for this. Fredricksen in
the papers [1] and [2] using Yoeli’s method gives an algorithm
for constructing a maximal k-machine for arbitrary k>1.
Using this algorithm we can not obtain all meximal k-machines.
Golomb in [3] has investigated the problem of the existence
of maximal cycles for linear k-machines., To every k-machine
is assigned a unique polynomial of degree k, the properties
of which allow an answer to the question whether the cycle
of all its computations is maximal or not, A necessary and
sufficient condition for the transition functions of kemachi-
nes to be maximal has not yet been given, even for the linear
case,

) The formel definition as well as the fundamental properties
of the k-machines in the more general case have been given
in [5].
Technical applications of the maximal k-machines have been
glven in Golomb’s monograph [3].
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2 J. Zurawiecki

This paper consists of some new results relating to
rmeximal k-machines. The set Dk of all k-machines (k is
fixed) whose transition functions satisfy the condition
q(ﬂ1,t2,...tk) # ¢(tystps000ty), when f1 # t4, will be con-
gidered here (the transition function of every maximal k-ma=-
chine satisfy above condition). In the set Dk the distance
between two k-machines (having the transition functions ¢ and
Y, respectively) will be introduced as the cardinality of the
get of all sequences (t2,... k)e M -1 for which ¢(a, tz,... k)
# y(a,tsy...t, ) for all aeM,

In the metric space D (with the distance taken as the
metric) for an arbitrary k-machine, all maximal k-machines
belong to some spheres, That k~machine is the center of these
spheres (one for all) and their radii are determined uniquely
by that center. If as the center of the spheres is taken the
k-machine with transition function ¢(t1,... ) = t1, then
the above property 1mplies that we will know the number of
ones (or zeros) which are the values of transition functions
of maximal k-machines at the points (O,tz....tk), (or
(1ytpseeaty)).

Unfortunately, the results which have been obtained here
do not solve completely the problem of maximal k-machines,
but in author’s opinion these results will lead to the solu-
tion in the future.

2. Basic definitions
The notations of [5] will be used here.
Definition 2.1. By a k-machine Ak we mean
a pair «(M,¢9), where M = {0,1 1is &n alphabet and (p:Mk*-M
is a total function (the tranaition function of k-machine Ak)
Definition 2,2, By a computation of the k-~
-machine 4, = {M,p0) we mean every sequence T¢ M" such that
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The maximal k-machines 3

The set of all computations of the k-machine Ak will be
denoted by C(Ak)3 .

Definition 2.3, A sequence Te M is said
to be periodic iff the following condition is satisfied
(2.2) 3051 Ysq (Tlpeg = T)g) -

The least value of p satisfying (2.2) is called the period
and T|1,p E the cycle of T.

Iet D" ‘denote +the set of all k-machines (k is fixed)
all computations of which are periodic, The k-machines of the
class Dk will be called periodic, In this paper only
periodic k-machines will be considered,

Definition 2.4, Let us define the relation
She M° x M° (a restriction operation) as follows

(2-3) Sh(U,V)®3i >1' (U = Vli) »

where M° denotes the set of all periodic sequences,
Remark 2.1, It follows immediately from the above
definition that Sh 1s equivalence relation in Mo. An
equivalence class designated by an element Te¢ M° with
regspect to the relation Sh will be denoted by [T] .
Definition 2.5, By a complexity degree of
Ak (denoted by deg(Ak)) we mean the cardinality of the‘get
of all equivalence classes designated by relation Sh in the
set C(Ak)4).

Definition 2.6, By a distance between two
k-machines = (M,¢y) and B = (M,y) (denoted by dist (A
k)) we mean the cardlnality of the set {Ue Mk 1

cu Coal) £ yal))} .

» A set EcM™ is said to be & k-computation set iff there
is a k-machine Ak such that E = C(A ).

4) For each computation Te C(4,) all its restrictionc belong

to C(A ) (it has been showl in [s1 ).
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4 . J. Zurawjecki

Definition 2.7. A k-machine 4, 1is included
in a k-machine Bk (denoted by AkEEBk) iff the following
condition is satisfied

(2.4) dist(h,,B,) = deg(,) - deg(B,) .

b efinition 2.8. By a dimension of a
k-machine Ak = (M, ¢ ) in the point aeM (denoted by
dim (Ak)) we mean the cardinality of the set {Ue ¥,
Uly,1 =8 ¢(U) #a} .

3. Bagic theorems
Some theorems which are necessary for understanding the
further results will be given.
For arbitrﬁry gsequence Ue,Mk let *U denote such a
sequence VeM that U|; v and U =V .
a 11,1 # V4,1 l2,x = Y2,k

Theorem 3.1, A k-machine Ak = (M,p) 1is
periodic iff the following condition is satisfied

(3.1) Ve uk Co(U) £ (™))

The proof of this theorep has been given in [10].

We remind that only periodic k-machines will be con-
sidered.

Remark 3.1. It follows from Theorem 3.1 that the
dimension of an arbitrary periodic k-machine Ak defined in
two~element alphabet ddes not depend on the point aeM,
and will be denoted by dim(Ak).

Theorem- 3,2, For arbitrary k-machines Ak
and B, - if dist(4,, B,) = 1 then Ideg(Ak) - deg(B)| = 1.

An idea of the proof of Theorem 3.2 is based on Yoeli'’s
paper [8] and will be not recalled here,

Theorem 3.3. (D ,dist) 1s a metric spuce.

Proof. It follows immediateiy from the definition
of dist that for all k-mechines 4, and ‘Bk we have
5)

The fundsmental properties of the relation =
studied in [9]. have been
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The maximal k-machines 5

dist(Ak,Bk);>O (dist(Ak,Bk) =0 iff Ak = Bk) and
dist(Ay,B,) = dist(B,4,).

Let us consider arbitrary k-machines 4, = (M,y), B, =
= (M,y) and Cp = (M,$¢). The condition dist(Ak,Bk)s;dist(Ak,
Ck) + dist(ck,Bk) follows from the condition

(3.2) Ge(EUPF) ,

where E = {UcM Vs o(0U) £ ¢(60)}, P = [UeM: y(ou) 4
#6(00) end @ = {UeM™"; g(00) £ y(ow)} .

By a ball and sphere of center Ak and radius r>0
will be understood the sets B(A,,r) = {B e D: aiat(a,,B,)
<:r} and Sph(4,,r) = {Bke p¥, dist(4,,B,) = r} , respec-
tively ‘.

Lemma 3.1, For arbitrary k-machines Ak and Bk’
d = diat(Ak,Bk) - ldeg(Ak) - deg(Bk)I is an even number,

The proof of this lemma has been given in [9].

Lemma 3.2, For arbitrary k-machine Ak and the
numbers p end q, the difference p-q 1is an even number
1£f for arbitrary k-machines B, ¢ Sph(4,,p) end Cy € Sph(A, )
the difference deg(?k) - deg(C,) 1is an even number,

Proof. Suppose that p>q. There exists,

D, € Sph(Ak,q) such thet dist(Ak,Bk) = dic6(4,D,) +
+ dist(Dk,Bk). Then we have

(3.3) diet(Dy,B,) = p - q .

On the other hand it follows from lemme 3.1 that
T = diet(AkBk) - (deg(B,) - deg(Ak)) and s = dist(4,,D) -
- (deg(D,) - deg(Bk)) are even numbers. Then we have
deg(Dk) - deg(B,) = dist(4,,By) - dlst(Ak,Dk) -r +8 and
then

(3-4) deg(Dk) - deg(Bk) = D=qQ-r+8,

As r and s are even numbers, the difference deg(Dk) -
- deg(Bk) is even iff p-q is even,

6) It r=0 then B(a,Y) =¥
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6 J. Zurawieckl

It follows from Lemma 3.1 that + = dist(Ak,Dk) -
- (deg(4,) - deg(D,)) eand u = dist(A,C,) - (deg(4,) -
- deg(Ck)) ere even numbers, As dist(Ak,Dk) = dist(Ak,Ck),
the deg(Ck) - deg(Dk) is an even number,

The condition (3.3) implies that deg(Ck) - deg(Bk) is
an even number iff p - q@ is an even one.

4, The maximal k-machines set

Some sets consisting of the maximal k-machines as well
es the sets which do not consist of meximal k-machines will
be shown.

For arbitrary k-machine 4, = (M,¢) let A, denote thg
k-machine B, = (M,y) such that ¢(U) # y(U) for all Ue M,
Definition 4.1, A kemachine 4, 1is said

to be maximal iff the following condition is satisfied

(4.1) VBkeDk (dist(A,,B,) = 1 => deg(B,) > deg(4,)) .

The set of all maximal k-machines will be denoted by
u(D").

Definition 4,2, A k-machine Ak is said to
be minimal iff the following condition is satisfied

(4.2) VBkwk (dist(A,,B,) = 1—>deg(B,) < deg(4,)) .

The set of all minimal k~machines will be denoted by
m(Dk). ,
Remark 4.1. It follows from the conditions (4.1)
and (4.2) that the sets M(Dk) and m(Dk), can be understood
as the sets of all k-machines for which the function deg
attains a local minimum and maximum, respectively. The
notions of the maximal k-machine and of the minimal one are
used with respect to the period of their computations but not
with respect to their complexity degree.

Definition 4.3, Let 4, Dbe an arbitrary
k-machine, Each number r»0 satlisfying the condition
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The maximel k-machines 7

(4.3) 35,4 (r = deg(r) - 1 + 21 & r<2"" - geg(d_ + 1)

is called the principal radius of Ak7)'

The set of all principal radii of Ak will be denoted by
R(A,).

Theorem 4,1, 4 k-machine Ak is maximal iff
deg(Ak) = 1.

The proof of this theorem has been given in [7].

Corollary 4.1. A k-machine Ak ts maximal
iff period of its arbitrary computation is of 27,

Theorem 4,2, For arbitrary k-machine Ay all
maximal ke-machines Bk such thet Akcz Bk belong to the
sphere Sph(Ay,deg(4,)-1).

Proof. If Bk is a maximal k-machine, then it
fallows from Theorem 4,1 that deg(B, ) = 1. 4s A =B,
it follows from Definition 2,7 that dist(Ak,Bk) = deg(Ak)-1.

Corollary 4.2, For arbitrary k-machine 4,
there are no maximal k-machines in the ball B(4,,deg(4,)-1).

Corollary 4.3, For arbitrary k-machine A,
we have

sPh(Akodeg(Ak)-“) n M(Dk) 8.

Remark 4.2, It follows from Corollary 4,2 that
the equation deg(Ak).- j + 2p + deg(Ik) -1 = 2"'1 has the
unique solution p>0. Thus r, = deg(4 )-1 is always the
principal raedius ofk Ak'
s dist(a,K) =21 it follows from Lemma 3.1 that
deg(Ak) is even iff deg(Ik) is even., Then r, =‘2k'1+1 -
- deg(ﬂk) is the principal radius of 4.

Theorem 4.3, For arbitrary k-machine Ak .

u(e U Sph(A,T)
I‘GR(A‘)

1

7) Let us observe that dist(A ) 2 2% and the sets of
all  k-machines which belong to the sphere Sph(Ak,r) and

k=1

Sph(&,,2 -r) are identical.
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8 Jo Zurawiecki

Proof ., ILetB §ph(Ak,deg(Ak)-1) be an arbitrary
maximal k-machine, It follcws from Corollary 4,3 that such
a k-machine exists. Consider a k-machine Cke Sph(Ak,r+1),
where reR(A.). 4As p = (deg(Ak)-1)-(r+1) = deg(Ak)-1-
-deg(Ak)+1-2i-1 = «(21+1) 1is an odd number, it follows
from Lemma 3.2 that q = deg(Bk) - deg(ck) # 0, and tyus'
deg(C,) # 1. Besides that, Corollary 4.2 implies that there
are maximal ke-machines neither in the ball B(Ak,deg(Ak)-T)
nor in the ball

B(A,,deg(E,)-1) = {Bk ¢ DK: aist(4, B, ) 2“"1-deg,(};k)+1} .

8)

Remapk 4.,3. Theorsm 4.3 does not decide whether
each sphere Sph(Ak,r), where re¢ R(Ak), containe the
maximal k-machines,

Let Az = (M,9,) be a k~machine the transition function
of which 1s defined as follows go(U) = U|, ; for all veM®,
The orenm 4.4. Ir Ak is a maximal k-machine,

then the following condition is satisfied

(4.4) BreR(A?k) (dim(4,) =) .

Proof of this theorem immediately follows from Theorem
4.3 and remarks that dim(AY) = O and dist(Ap,4,) = dim(4,).
Theorem 4.5, For arbitrary number k>1 we

have
up = (VU spaagm .
Aem(d) reR(a)

Proof. Iet P= ﬁk U Sph(Ak,r) . Tt
4,¢m(D”) reR(A))
follows from Theorem 4.3 that M(Dk):F.’ We shall prove the
inverse inclusion,

8) It follows from Remark 4.2 that the number 21("1 - deg(Ik)+
+1 1is the greatest principal radius of Ak'

- 516 =



The meximal k-machines 9

Let Bke E. Then there exists Cke m(Dk) such that
Ck@; Bk « It follows from Theorem 4.2 and the definition of
F that the k-machine Bk must belong to the sphere
Sph(Ck,deg(Ck)-1). Then we have dist(Bk,Ck) = deg(Cy) -

- deg(Bk) = deg(Ck)-1 and thus deg(B,) = 1.

Remark 4.4, It can be proved that Ay is a
minimel k-machine (A e m(D¥)) 1ff each of its computation
is a (k=1)=computation, in particular if its computation set
is the union of two (k-1)-computation sets. This will be

the subject of a separate paper.
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