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ON A RANDOM LINEAR PARABOLIC EQUATION

In this paper we consider the linear parabolic equation

n n
(0.1) Lu-z ,s.ij(x,’c,t.J)ux x +Ebi(x,t,w Ju, +e(x,t, wlu-uy =0
i,3=1 175 i=1 i

with real random coefficients defined in a strip

G = {(x,t): xe RY, o<t< T} 1). Under suitable assumptions,
applying the same method as in [4] (see also [1], chapter 1),
we prove the existence of a fundamental solution Z(x,t,¢,7,w)
(xy€ ¢R% O<T <t<T) of equation (0.1). Next this fundamentsl
solution 1is used in proving of the existence of a solution
u(x,t,w) of the Cauchy problem

(0.2) Lu = £(X,%,0), (X,6)e6, = R® x(0,T> ,
(0.3) u(x,0,0) = g(x,0), xeRD.

1. Preliminaries

Let (£2,F,P) Ve a probabilistic space. By Lp(.Q‘)
(1< p<oo) we denote the Banach space of all real random
variables f(w)  defined on (Q,F,7) with finite norm

P
llflp =U|f.(w)|p P(dm)] if 1< p<oo, ﬂf|w= eis“s)up |f(w)|-

1) Througﬁout this paper we shall use only real random
functions, Therefore the adjective "real" will be omitted.

- 465 -



2 H.Ugowski

Let u(x,w), x¢ DcRX be a real random function defined
on (2,7,P) (see [3], p.59)2). If u: D—oLp(.Q), then the
strong limit, strong continulty and strong derivatives of u
are called respectively the Lp-limit, Lp-continuity and
Lp-derivatives of wu,

We shall consider the equation (0.1) under the following
assumptions, denoted collectively by (H) (cf.[4]).

(H) For some $2,¢¥ such that P(Qo) = 1 the following
conditions are satisfied

aij(x,t, W) = aji(x,t, w)y (xt,0)eGx Q;
there are positive constants 10,1,\(11 > 2,) such that

n
(1.1) A, |E |2< E a4 (%, 5,0) €4 £5 <y |g|2, (x,t,0)G x Q,teR",
Co1,§=1

2 ¢ 2
where |£] =%__,;§i;

there exist constants A >0, e (041) such that for any
(Xpty ), (X3t w)eG x £, holds the inequality

. o @2
(1.2) |aij(x,t,w) - aij(x',t,&))l < A==+ |[t=t]" );
there is a conatant A,>0 such that for any (Xet, w) € GxQ
Ibi(x,t,w)l, Ic(x,t,w)|<A1.

Moreover we assume that the coefficients b, (x,t, w),
c(x,t, w) are measurable random functions (see [3], p.211),
L -continuous (p € <1,00> being some constant) for te<O0,T>
and there are satisfied the inequalitles

2) T.e. that u 1 DxQ — R and u(x,w) 1s measurable
for each =xeD, In the sequel we shall use the concept of
random function also for runetion u(x, w) defined for
xeD,weQyc &2 (where P(2;) = 1) and, of course, measurable
with respect to w (see [3], P.59 or [2], p.140).
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Random linear parabolic equation 3

%

(1.3) v (x,t,-) - bi(x',t,-)|p, Ic(x,t,-) - c(xit,.) |]p< Ay -
XyX'e Rn, t e <0,T> , A2>O being a constant.

Renmar ke, It follows from (1.2) that aij(x,t, w) are
measurable random functions, lioreover the condition (1.1)
inplies that |aij(x,t,w)| <A (x,8) e Gy, we [P

For (x,t)eG, we Q, there exists a matrix [gl.a (x,%, w)]
inverse to the matrix [aij (x,%, w)]. Obviously a'J(x,t, w)
are random functions satisfying, by (1.1), (1.2), the following
conditions:

n
(1.4) p°}§|2<ijz_1 aij(x.t,w)eiéj <,u1|§]2. (x,t)eC,0eQ , ger"

(o < Hg < Aq being constants depending only on 10 and 11)
and

of2
(1.5 |a"0x,, )= 2", w3 <ty (fn]® o Jot] ) (med Gt e,

we 9, (A3 being a constant depending only on A, A, and }L‘).
Let us introduce the function

W?’e(x,t,é,r, w) =

_n il 3 atd(p,8,0)(xy-¢, )x - £,)
=|:‘Hr(t_,r)] 2{det[aij(Q.an)” 2 exp |- i,§=1 E(t-r)i i J ) .

0KT<t<T, X9 eRP, B8e<0,T>, weS .

Wq's (x,t,g,r, w) 1is a random function, continuous in
Xy, b,£6,T4¢4+8 uniformly with respect to we .oo and it
possesses derivatives (in the usual sense) of any order with
respect to the varlables X,t,£,7, uniform with respect to
we 520 (i.e. that difference quotients tend to derivatives
uniformly with respect to we .QO). These derlvatives are
random functions with the same property of continuity as w?’e
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4 H.Ugowski

and they are also L -—derivatives for each q e <1,c0> , Using
(1.4) we obtlain the following estimates

-2 [ g’lx—§|2
(1.6) 'Wg,g(x,t,e,r.w)'<C,](t-T) 8Xp|= =T ],

oW (X’ts X% )i -(n+1)/2 2
(1.7) ‘ 9,8 axie il léc,](t-'l‘) o) exp[— _ti%f_}riL.],

2
] Wng (Xy by 8yTyw)

W, g(x,t,£,r,0)
%, hild
(1.8) l ﬁxiaxj

at

]

—(n+2)/2 2
<c,(t=r) (n+2)/, exp[— E'_x;ﬁl_]

t-r

n
for x,,¢0e R, 8e<0,T>,. O<?T< t<T, we 8 , where

c,> 0 is some constant (depending only on A, and /‘L]),
U= %2 y O<u<u,

2., The fundamental solution

We shall prove the following theorem.

Theorem 2,1, If assumptions (H) are satisfied, then
there exists a random function Z(x,t,g,t’, w), defined for
Xy€ € R, O<t<t<®, we Q4 ( 2, ¢ 8, being some set such
that P(Q,]) = 1) and possessing the following properties:

1° Z(x,t,g,r,a)) is ‘continuous in x,%,¢, v uniformly with
respect to we .Q,‘ and we have

2 2
{2.4) IZ(X,tyeof,&))|<C(t-f) ex‘p[— _ELX_;_E_%_] ’

C, i being some positive constants;
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Random linear parabolic equation 5

20 there exist derivatives in(x,t,e,'r,w), uniform with

respect to we .Q,\ and we have the estimate

-(n+1)/2

2
(2.2) in(x,t,g,'t, 0)] < C(t=1) oxp|- Hx=tl

t-T

20 there eéxist Lp-derivatives inx_(x,t,.g,t, w),

Zt(x,t,g,t', w) which are L _-continuous in x,t,£,T and
fulfil the lnequalities

(2.3) "inxj(xvtc§’fy')"p, "Zt(x,tonTo')up<

- 2)/2 - 2
< C(t-1) (n+2)/ ex‘p[— Mj_:l .

t-7 4

4° for fixed teR®, 7€<0,T) the function Z(x,t,&,t, ®)
satisfies, with respect to xe Rn, te(r,T>, weR

. Xot,¢,7
(where P(Qx,t,g,'r) = 1), the eq-ua.tlon

n
Lx’t[z(xstvéo't" w)_] = g—j;]aij(x’t"")zxixd(x’t’e’r’ w) +

+ gbi(x’t' c.))in(x.t,g,'t.w)+c(x,t,w)z(x.t,§ .‘E.w)-Zt(X.t.g.’C,w) = 0%

50 1f g(x,w), xeR® is a measurable, L_-continuous
(qe €1,00>) and L ~bounded random function (i.e,
Ig(x,- )ﬂq< const., x¢R%), then

(2-#) 1lim f Z(X,t,é,f, w)s(E, &))de = 8(x, CL)) (L ) B)a
t=T o.n q

R
where the convergence is uniform with respect to xeD (Dcr®
being a bounded domain) and e <0,T).

3) I.e. that the 1imit is taken in the L_-sense. The
integz):al in (2.4) is an improper integral inthe Ly-sense (see
sec.4).
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6 H.Ugowskl

The above-mentioned function Z(x,t,é,r, w) 1is called a
fundamental solution of equation (0.1).

Pro o £, Using the same method as in [4] (see also ['l])
we prove that

t
v(205.) :Z(xotne’t'ld) = 'e'r(xotoeofpw) *!“{nwg ,0 (x4%,¢ ooo“’)¢@,a:§,f:w)dg’

where ¢ is a solution of the integral equation
(2.6) ¢(x,t,¢,7,w) = ¢1(x,t,§,7,w)+j\ dﬂ{n¢1(x,t,g.B,w)tt(c,a,f,'t‘, w )d¢
with
G4 (X, 84¢4Ty ) = I"x,t[wg,t(x't’f"t’w )] .
Hence it follows that ¢ is given by formulas

(2.7) P(xyby¢y7yw) = : ¢m(xs tyé,7, W),
M=

(2.8) $p 4\ %stséyTy0) -ff¢1(x. 60608008, (6,8,8,T 'm)dgda ,

m = 1 29000

Indeed, bi(x,t,w) and c¢(x,t,w) are measurable functions
with respect to the variables x,t for each WEQyy Q1 cQ,
being such a set that P(Q,.) = 1. Consequently the integrals
in (2.8) exist (as Lebesgue integrals) in the set

(2.9) X6 e R?, O<T<t<T, weQqe

Since for functions ¢, the estimates (4.58) of [4] hold-
true, therefore the series (2.7) is uniformly convergent for
t-160, x, geRn, weQ, and satisfy equation (2.6) in the
set (2.9). Moreover, we have

. ~(n+2~-a}/2 27 '
(2.10) [q)(x,t,g,_t',w)l< Ce(t-t'), frene exp[-%, O < s
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Random linear parabolic equation 7

Using Lemma 4.1 one can show that

(2.11)  ¢(x,t484Ty ) = @(x,t46,T, w) +

+ i‘.vn_,:bi(x,t.g,t‘, u.)X 'h(x't'?'f' w) +c(x,t, U)X(x,t,f.f, w),

where Py Yy are random functions with the following proper-
ties:

(1) they are defined in the set (2.9) and continuous in
X,t,¢,¢ uniformly with respect totae!%;

(11) they satisfy inequality (2.10);

(ii1) if

(2.12) | x-x'| 2<a('c:-'r) for some e>0,

then there hold the estimates

I?(x’to &af’w)'(?(_x;ty Ev'rsw)lo Itpicx,toﬁgfgw)-(ﬂi(x‘,t,ﬁ vTrw)lv
(2.13)

thvto §9To“))‘1(x"tv€-9ro‘°)|<

-(n42=245)/2
<Gy (t-17) |

2
exp[- F‘-lx:él ]’
where 0<pu,<a/2, O<,u3<¢x-2,ué.

Relations (2.11) and (2.13) immediately imply, under the
condition (2.12), the estimate

T O ER S AT A M

~(u+2-2p5) /2 'x_r'%exp [_ wix-¢12 ]

<G, (t-1) =T

Now we shall consider the function

t
(2.15) Vix,b,6,7,0) = [ [ W, o(x,606,0,0)6(¢,8,¢,7,w)ag a0,
tre °'



8 H,Ugowski

In view of (1.6),(2.11),(1) and (ii) this function possesses,
by Lemma 4.1, the property (i) and there holds true the
estimate

—(n-0)/2 ] 2
(2.16) |v(x,t,e,r,w)|<c5(t-r) (n-c0/ exp[.di_'iéggl }

in the set (2,9). Taking into considerations relations (2.11),
(1.7), properties (i),(ii) and Lemma 4.2 we conclude that

there exist derivatiwes V_ uniform with respect to we 5%,

X,

i

which have the property (1). Moreover, these derivatives are
given by formula

ow ( 15,¢,8,
f e, (Xrt5¢ w)q)(g 8¢ 008
n

t
(2.17) Vx_(xotoésf’w) = J‘ Ix.
i 1 1

R

and there holds true the estimate

~(n+1-a) /2 Mgl ©
(2.18) |vx. (x,t,e,'t.w)| < Cg(t=1) s exp[- 9%5'—]
1

in the set (2.,9).
In order to prove the axistence of derivatives Vk x. let
us introduce the function 13

T(Xy6,8,€,8,0) = fwg o (%060 8,8,0) 8(¢,8,¢,7,0)dt
RR %’

Observe that bk(Q,G,w), c¢(¢,8,w) are measursble functions
with respect to {eR" for fixed 8e Bc (0,T), we SycQ,

B being a set with Lebesgue measure |[B| = T, P(Qg) = 1,
Hence, with the aid of properties (i),(ii) and relations (2.11),
(1.6), we obtain, by Lemma 4,3, the following assertions:

(h) the funetion J is defined in the set

x,geRn, O0<t<tcT, BeBnir,t), We Q3

(II) J is & measurable function;
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Random llnear parabolic equation 9

(111) 8¢ B Dbeing fixed the function J is continuous in
x,t,6,7 uniformly with respect to we Qg
(IV) J is 1 _~continuous in x,t,8,%,7.

In virtue of Lemma 4.4 there exist derivatives Jx 'Jx x
i i

uniform with respect to we Qs’ which are given by formulas

J

W, o (x,t,¢,8,w)
T, (xyt, 8,8, 0,00 = [ —S2 T e 0,8, 7,000
(2.19) ¢ RY *

aw e(xtgew)

inxj(x,t999§9'f,w) =f ¢(§ 8,£,T,w)dt

R2 axiaxa.

and possesses properties (I)-(IV).
It results from (1,8) and (2.10) that the estimate

~(2-a)/2 -(n+2)/2 " 2
(x.‘t.Q.E.t’.w) <(:7(9'?)( ? (t-7) " exp [-&%{I_—]

holds in the set

x,geRn, O<t<t< T, 8¢€Bnlt, t;'r y WEQ,.

Observe that relation (4,.36) of [4] and the estimates of the
moduld |I,|,|I,|,|I5, ]Iff’] remain valid in the set

6y = {x,¢cB, ocr<ter, 8eBn(HL,b)}, weq,.

Proceeding as in [4] and using (1.8),(2.14) and generalized
Minkowskl?s ine?uality ([7], p.21), we obtain the same estimate

of the norm (of the integral IL(;') of [4]) in the

set G, as that of II“)I (in [4]). Consequently we have

(2.21) Pz, (x,t,8,¢,7,- )np“e("-ﬂ)-(e my2 )'(n+e-2p2)/2 [___(_]
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10 H.Ugowski

in the set G,. According to the estimates (2.20),(2.21) and

Rerark 4,9 the function V possesses Lp-derivatives vxx

in the set K

n
(2,22) x, £eR, O<ctr<t<T, we Q. 6, 8,7 (P(gx,t,g,r) =1),

which are given by formulas

& ,
(2.23) Ve x, (Kaboby700) = [ T o (x,6,8,¢,7,0)00.
1 J 14 L 3
Moreover, these derivatives are Lp-continuous in the set
(2.24) x, £eR%, O<r<t<T

and we have the estimate
=(n+2-24,)/2 sy @
(2.25) Hvxixj(x,t,g,c,-)Hp<c9(t-r) o exp[_ ul%c.rﬂ ]

in the set (2.24).

" In order to prove the existence of Lp-derlvativg Vt
observe that the function J possesses, by Lemma 4,4, the
derivative

W, o (x,5,8,8,0)
Jt(X,t,Q,Q,f’w) = f 40 = 6; e P(Cs8y6yT,0)A8 =
RD
z:n 32W (X, 642 ,0,w)
28 ’ *
" 7= R0 : CEFLES 8y 5(6+8,0)8(548,¢,7,0)d8

uniform with respect to w e Q,. The last integral has the form
(2.19). Therefore we obtain from the reasoning concerning

the integral (2.19) the uniform Lp-convergence of the lntegral
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Random linear parabolic equation 1

.
(2.26) th(x,t,G,g,T,w)da in G, = {x,6¢R%t=126> 0} .
T

and the uniform convergence of the integral
t

(2.27) f"Jt(x,t,e,g,r,-)"pdo in G,.
T

Moreover, the function (2,26) is defined in the set (2.22),
it 1s L _-continuous in (2,24) and there holds true the
estimate

~Qn+2-241, )/2 (e 412
< € 5(t-1) f2 exp [_ }L_"i-_ﬂ__]

t-1

t
(2.28) H!Jt(x,t,e,g,t,' a6

in the smet (2,24),
Now we prove the existence of L
by formula

p-derivative Vt given

t
(2.29) Vt(x,t,g,f,w)=¢(x,t,e,r.w)+f T (Xy8,8,£,7,w)d6 .
(4

Taking At>0 we have

t
V(x’t+At’E’t,wA)EV(x’t’& 2T2) - ¢(x, t,¢ ,f,w)-JJt(x,t,e.;E,T,w)d&

t+ At
=14+ i% 4‘ J(x,t + At,8,6,7,w0)d0 - d(xy6,€,1,0),

where

t

I .=fIJ(x,t+At,9.f;»fA%J)-J(_x,t,G.G.T.w) - Jt(x't’g‘e’t,w)] a0 .
T

There is t € (t,t+At) such that
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12 H,Ugowskl

&
1 =f[Jt(x,t:' 18080750) = T (X,6,046,7,0)]d8 =

v
T4,

-

T+, &
+f Jt(x,t' v8,6,7,0)d8 + f Jt(x,ﬂ 20,8 ,7, w)A0 +
¥ t-72

& A
Ty (%, 88, ,t,0)a8 ..tj"’ Ty (x,6,0,6 ,7,0)d8 +
=2

f-
2
+t::!f)]1 [Jt(x’ t ,G,Q,T,w) - Jt(x,t,a,g ,t,w)] aa =-I,1-I2+13+I4+15,

Dqs Do >0 being constants,

The uniform Lp-convergence of the integral (2.26) in G2
implies that, for any £¢>0 and sufficlently small
N4sMp € (0,6/72),

[rlp<e s =123,

Further we have
t

t .
IZafp < f HJt(x,t',a,g,c,-)"pde <f "Jt(x',t',e,e,r,—)“pdﬂ .
50> &=
Hence, in view of the uniform convergence of the integral
(2.27) in Gy, it follows that "14||p<£ for sufficiently

small 0,>0 and At>0.

Note that in integral I5 we have t-0> Doy which implies
that t-t<t=-8 1if 4tce€ (0,0,). Under the condition t-t<t-8
there holds true the estimate

awc.g (x,t,¢,6,0) awg.e‘(X,‘b,ﬁ,B,m)|<
(2.30) gt - 9t

. ~(n+d4)/2 [ P 2;]
<C 4 (6= £)(5-8) exp| - — |
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Random linear parabolic equation 13

Oonstants 171,r}2>0 being fixed, 1t results from estimates
(2.30) and (2.10) that

bD2 (oW, o (xte,0,0) O, o(x,t.0,0,0)
n

'L‘+r)
1
for A4t e (O,r)}) provided 93>0 1is sufficiently small, Thus
we have proved that 1lim I} = O.
At-0+0 P

In order to obtain (2.,29) it remains to prave the validity
of relation

t+ At
(2.51)  1n |4e J‘ T(x,6+86,8,6,7,°)d8 = B(x,5,¢,7,*)] =0

At first observe that there is a set B cR", |[R™\B |=0
such that for every fixed {e B the functions bk(g,e,w),
¢(¢,8,0) are measurable, This implies the existence of the
integral

t+ At
¢(x,8,¢,t,0)d0 for xeB , §eRn, O<t<t < T, weQx,P(Qx)z 1.

Therefore, taking advantage of the equality
fo g(x,t+Ab,g,9,m)d§ =1
RE

we can write, for xe¢B_, £e¢R%, t-136>0,
t+At
e J T(x bea,8,8,7,0)8 - 3lx,5,¢,T,0) =

t+ At

= 72% { as LW§.'9 (xyt+4t4¢,8,0) <§[(g 1816yTy0) =d(x,8,¢ ,r,w)] al+
R
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14 H.Ugowski

t+4t
+ z']i {é(x,é,e,t.w) t}!n[';.s(xotfmogosow)"wx’g(xot‘*dt:;oevw)]d;} a6+

t+At
+Z1‘E [ [¢(x'8’€'f""’) - ¢(x|t'e’tl w)]_.dﬁ = 1‘1 + 1'2 + I'B.

To evaluate the lntegral I',l we break 1t into two inte-
grals I',],l and I',]z by formulas

t+ At t+ AL
D= [+ Ta=mw [
t I&_ t R\Kr

where K, ={¢ e R%3|¢ x| <r} , Tre(0,Vab)., Taking arbitrary

>0 1t follows from the estimates (1.6) and (2.14) that

‘“I‘,MI <t for any At>0 and sufficiently small » >0, Now
P

fix »r. Then, in view of the estimates (1.6) and (2.10), we
conclude that |I4,|<¢ for Ate (0,p) provided p>0 1is
sufficiently small. Consequently A%j—'[—no II',]I = 0 uniformly

with regard to x e B, te<6,T> (650, T'e (6,T)),te<0,t-6>,
eeRn. Proceeding in a similar way and using, instead of
(2.14), the estimate

lwc'e (X, 6+46,£46,0) - L (x,t+4t,;,e,w)|<

-n/2 a ! 2
<C,,(t+a6-8)  |£-x] °"P[“#1I:£+Aﬁ ] ,

one c¢an prove for I'2 the same conclusion as for I',l.
Finally, it follows from the uniform L _-continulty of
$(x,t,¢,7,0) for x,£eD (D being a bounded domain),
t-1>6>0 that |I'5| < ¢ for étE(O,y) provided N> 0 1is
sufficiently small.
Thus we have proved that (2.31) holds true uniformly with
respect to xeB nD, £eD (D being a bounded domain),
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Random linear parabolic equation 15

0<6<t<T (T¢(6,T)), O<T< t~d, It remains to show the
validity of (2,31) for amy x,{eR”, O<t<t<T. For this
purpose let us write

t+ At
Ait' .[ J(xyt+46,08,6,1,0)d8 -d(x,b,¢,7,0) = Hy+ By + H3’
where

t+ At

H,y = A—"t %f [T(xyt+86,8,¢,7,0) = J(y,t+At,e,e,r_,m)] ae,
t+ At

Hy = 25 J(7,6+06,8,¢,7,0)d0 - §(y,6,¢,7,0),

H3 = ¢(y,tv€s70w) - ¢(x,t,§,f.w)-

Using the estimate

'Wg’s(xotqéo Byw) - Wg'e(Yotiﬁyepw”(_

e (6= 9)-(n+1)/2 [exp(—&’gaj—a>+ exp<—-&|—%'—:—5-l—2>j|

and (2,10) we obtain the inequality

<C,|3|x—y

-3 ~(n42-a)/2
(2.32) |H1|<C17(At) | y=x]| -« (t=7) .

Now fix x,¢ eRn, OKT<t<T and let Je& B,+ According to the
previous considerations for any £>0, 9°>O there is n>0
such that if 0 < At<p, |y-x|<n,, then ||H2||p<£. Taking

y€ B, nK(x,8t) it follows from (2.32) that |H,|<E for

At e (0,91) provided 1, ¢ (O,n) 1is sufficiently small, Finally,
if N € (0yn,) 1is sufficiently swmall, then

HH3|IP<£ for yeK(x,rB).
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16 H,Ugowskl

This completes the proof of the relation (2.31). At the same
time we have proved that

V(x, b+88,8,7,+ )-V(x,t,¢,T,-) % '
1i - 1Pebatye )= |4 10:8,6,T,0 =0.
Atonclml a ot )%[ - E )delp

The reasoning in the case At<O0 1is similar to that used
for At>0. Thus (2.29) is proved. ‘

Recalling the relation (2.5) and the results obtained for
the function (2.415) we conclude the validity of assertions
1°-3° of Theorem 2.1, The assertion 4° easily follows from
relations (2.5), (2.15), (2.17), (2.23), (2.29) and (2.6).

To end the proof it remains to show that (2.4) holds true.
For this purpose observe that ‘

(2l35) lim
t -t

ﬁ‘;we’r(x’t’f’fo')g(b')dﬁ ~g(x,+) q?o

uniformly with respect to xe€ D, te<0,T), D being a bounded
domain,
Indeed, writing,

Lwé'f(xotﬁ’fvw)g(ﬁy@)de -g(x,w) =
= J;We,r(xrtyfof,w)[?(Gyw)-g(x,w)]dg +
R

+ fg(xow).[wﬁﬂ’(x’ 66,70y o (x,t, e’f’w)] as» I‘:‘ *Ip
R ’ |

and evaluating integrals Iq and Ig similarly as Ia and
Ié in the proof of (2.31) we obtain (2.}3). Now the estimate
(2.,16) yields

ﬂR-’; V(xgtpﬁatp" )g(ei' )deuq <

o .

| I O K
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which together with (2.33) completes the proof of (2.4). At
the same time we have proved Theorem 2.1,

3., The Cauchy problem .

In this section the fundamental solution 2Z(x,t,{,T,w)
will be used in proving of the existence of a solution of the
Cauchy problem (0.2), (0.3). For this purpose we additionally
introduce the following assumption.

(H,) The random functions fx,t,0), g(x,w), xeR?,

t e<0,T> we$ are measurable, .Lq-continuous G)— + a— < ’l) and

1 ~bounded. Moreover, f(x,t,w) satisfies for xeR® a local

H6lder condithion in the sense Lq with exponent a, uniformly

with respect to te<0,T> , i.,e. for any bounded domain DcR*
there is a constant M>O0 such that

f£(x,t,°) - £(x', t,-)uq<M|x-x*]¢, X,x'e¢ D, © e <0,T> .

Theorem 3,1, Let assumptions (H) and (Ho) be
satisfied. Then the function

t
(3.1) u(x,t,w0)= fz(x,t,g,o.w)g(&,w)dg-f fZ(x,t,&,‘t‘.w)f(e,'t',w)dsd’f
R® o g% A

has the following properties:
1° 1t is L -continuous in Gj;
3° there exist Lq—derivatives u, (x,t,0) which are
L -continuous in Go; 1
o .
3” there exist Lr-derivatlves Uy x

j und ut which are
T ° (I )% Q> ?

4° y(x,t,w) 1s a solution of the problem (0.2), (0.3),
i.e. '

(3.2) Lu(x,t’w) = f(x,t,w), (x,t)EGo, WE Q,x,t (P( Qx,t)= 1),

(3.3)  u(x,0,0) = &(x,0), xeR%weQ, (P(Q) =1).
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18 H.Ugowski

Pr oo f, We use the argumentation of the proof of
Theorem 2,1 (see also [1], chapter 1), Let us denote

(3.4) v(x,b,0) = nZ(x‘r»t.e.O.w)s(e.w)de ’
R

(3.5) G(X,t,f,&)) = Z(X.t'E'opw)g(e,G))o

The qucontinuity of G in the set

(3.6) x, e R%, te(0,T>

and the eatimate

n
=5 2
(3.7) lay by, )] < Uyt 2exp - A1)

yield, in view of Lemma 4,6, the ualform Lq-convergence of the
integral (3.4) in the set

(3.8) xeD (D Dbeing a bounded domain), te (0,T>,

Hence, by Lemma 4,7, the function v(x,t,w) 1is L _~continuous
in Gg. With the aid of assertion 4° of Theoram 2.1 setting

additionally

(3.9) v(x,040) = g(x,0)y xeR?, weQ

we obtain a random functlon Lq-continuous in G,
Now consider the integral

(3.10) fzx (X, 546 40s)8 (£ w)d &
D i
Since the function (3.5) possesses L -derivatives

(3.11) G, (e ta€20) = Zg, FrBst s OB (£40),s
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Random linesar parabolic equation 19

which are Lq—continuous in the set (3.6), therefore, by the
estimate

~(n+1)/2

fox sty <t - Ep]

and by Lemma 4.6, the integral (3.10) is uniformly Lq—con-
vergent in the set (3.8)., In virtue of Lemma 4,8 there exist
in G0 Lq-derivatives

(3.12) in(x-,t,w) = fnzxi(xotoerovw)g(étw)de ’
R

which are Lq-continuous in Go.
Similarly, obsenving that function (3.5) possesses L —de-
rivatives

Gy ¢ (Xt t40) = 2 o (x,5,¢,0,w)g(¢,0),
™3 173
Gt(x,t,g,w) = Zt(x,t,e,o,w)g(g,w)
and using the estimate
v -(n+2)/2 a1
Hij_x (xvtvﬁp')iro HGb(x’t’e")n <M3t exp[_&?ﬂ__]
: 3 . T
we conclude the existence in G0 of Lr-derivatives

(3.13) Tz x, (5000 = {n e, (6050620108 £ 0008

(3.14) Vt(X,t,w) = fnzt(xotoe’opw)S(eow)df ’
R

which are Lr-continuoua in Go.
At present we conslder the functions

| N -
(3.15) w(x,b,0) = f{nz(x.,t:,g,t,w)f(g,r,w)dgdr ,
' 0
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(3.16) P(xybybyTyw) = 2(X,50€,7,w)E(§,T,0).
Since the function (3.16) is Lq-continuous in the set’
(3.47) x,6e R%, O<cr<t<T

and there holds the estimate

s

therefore, by Remark 4.9, the function w(x,t,w) is Lq—conti—
nuous in G . Moreover, (3.18) yields

(3.18) IlF(x,t.e,r.-)"q<M4(t—r)'

]Iw(x,t,o)"q<M5t ,

which implies that

lim gw(x,t,-)
t =0

- O
q

uniformly with respect to x e RP, Thus, setting additionally
(3.19) w(x,0,w) = O, xeRY, we@

we find that w(x,t,w) is L -continuous in G,
Note that function (3.16) possesses in (3.17) L,-deriva-
tives

in(x, tyfyTyw) = zxi(x’ Ty ¢ 9T1‘0)f($"fp&))

which are Lq—continuous in (3.17) and satisfy the inequality

' ~(n+1)/2 2.
"Fx_(x,t,s.r.->||q< Mg (6-7) exp[-i-“—’;:é'—] .
i
Hence, taking advantage of Remark 4,9 we find that there exist
in G0 Lq—derivatives wx_(x,t,w), given by formulas
i
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4
(3.20) wxi(x,t,w) =‘f 4; in(x,t,g,r,w)f(e,r,w)de ar
0

and L _~continuous in Go‘

In order to prove the existence of Lr-derivatives Wy
1%5
and Wy let us lntroduce the function

(3.21) (%, 8,7y 0) = l{nwm(x,t,e,f,w)f(e,r,wmg.

Ovserve that f(¢,7,0) 1is measurable for every fixed
TeBC<0,T>, where |B| =T, Hence, in view of Lemma 4.7, the
funetion (3.21) is uniformly Lq-continuous in every ssot

(3.22) xeDy te<6yyT>,7eB n <0yt-6,> (0<6,<6,),

D being a bounded domain., Consequently, the function (3.21)
is Lq-continuous in the set

(3.23) x ¢ R, te (0,75, ve Bn<O,t).

This implies, by Lemma 4.8, the existence (in the set (3.23))
of Lq-derivatives

W, . (x,5,¢,7,0)
Jx (X,8,7y0) = L‘. L¥14 ’ﬂ; !

£(€,T w)dE
(3.24) i R

[ 0W, 1 (xy8,¢,7,0)

’t’ [} = t ] '
J.(x T,w) 9%, axd (¢4t ,w)at

)
XX
i R
which are uniformly I -continuous in every set (3.22), The
function (3.24) can be treated analogously to (2.,19) and (4.36)

of [4]. Hence, in the set

(3.25) xeD (D being a bounded domain), te(0,T>,teB n<0,t),
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there holds true the estimate

(t )—(2- a)/2
-1 ,
o<

M7:>O being a constant depending on D. Using this estimate
and Remark 4,9, we see that the integral

(3.26) “inxj(x,t,r,-)

t
(3.27) {inxj(x,t,f,w)df

is uniformly Lq-convergent in every set

(3.28) xeD (D being a bounded domain), te<§,T>, 6¢(0,T).

Thus, in virtue of the above-mentioned remark, the function

t t
(3.29) "1(x9tow) =fJ(x.t,‘r,w)dT = ffn we r(x.tyﬁ.f-w)f(é.fow)dtdﬁ
(] o g '

possesses in G° Lq-derivatives

62‘_\' (x,t,0) % 2w (x,t
"4\ Xs Ty _ - £,t\ % leﬂ'ow)
(3.39) “ox, 9%, 7, oinxJ(x,t.'t.w)dr = _[dtkfn 7%, o,

f(E 9"700) dg,

which are L -continuous in Gge
At present, proceeding like in the proof of the formula

(2.29), we show that there exists in G, Lq-derivative

| (x5, 6, t
(3.31) iqw_la':_—f‘) = £(x,t,w0) +th(xot,T1Q)dfv
[o]

which is L _-contlinuous in G,.
At first, taking into considerations the relation

n
T (%, 6,70} = 2:;:%aij(x,t,aDJx

(%,6,7,w)
i,J= J

ix
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and the estimate (3.26), observe that the integral
t

(3.32) o, (6,7 0)ar
0

is uniformly Lq-convergent in the set (3.28), wfnereas the
integral

%
(3.33) flJt(x,t,'r,-)lqdr
[o]

is uniformly convergent in (3.28).
Now, let 4t>0, t>¢>0 and ne(0,6). Then we can write

w,(x,t+dt,w) - w,(x,t,0) t
A y L ~- f(x,t,w) -ch(x,t,'r,w)dr =
: )

where
t
I = J‘ J(X, b+8b,T,0) = J(X,6,t,0) ar
1 At !
=N
I, = tjr’Jt(x,t:,'t,w)d'r .
rac ) = J(X,5yT,w)
I3 = f[ X,ﬁ"l‘AtJT,w A; (x’ 29 - Jt(X,t,T,w)]dT )
A
t+ At
I o J(x,t+4t,7,0)dr - £(x,t,w).
At %

The uniform Lq-convergence of the integral (3.32) implies
that for any £é>0 and sufficiently small n>0 we have
Hlaqu . The inequality

HJ(X.HM.T.‘E‘T(XJ-"-')| < lJt(x,t','c',-)ﬂ , te <t,t+at>
q q
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(following from Lemma #4,5)and the uniform convergence of the

integral (3.33) yield
t

"qugt‘[q HJt(x,t’,t,')nqdr<e

for sufficiently swall »n>0 and At >0,
flow fix p> 0. Then obserwing that

_ t]r)dff [awf,r (x,t‘,g,r,w) - awf T(x’t’s’f"")
[o]

15 = 3% B ]f(é.f,w)dé

R0
(where %t'e (t,t+2\t)) and using the estimate (2.30) we have
“IBH <& for sufficiently small At>0, Consequently

aq

Atljgm "I,]+12+13'"q = 0.

It remains to show that

(3.34) lim I} = O.

At—+=0+0 q
At first, like in the proof of relation (2.31), we establish
(3.34) for xeB_, where B cR", |R'™\B | =0 is such a set
that £(§,7,0) 1is measurable for every fixed ¢e B . Indeed,
for xeB, the expression. I..can be.written as follows

I= I,]TI2+I3 '

where
t+ AL
I,' = —35 | dri{‘nwe’,t(x,t+At,g,'r,w).[f(§,'[,w) -f(x,'r,w)] at ,
t+4t
12 = 31; ! f(x.'t.Q)L{n[we.t(x,t+At.€.t,w)—wx'r(x,t-mt,g,r,m)]dg ar,
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t+ AL
I = é%‘4~[f(x,r,w) - f(x,t,w)]dr .

The further argumentation 1s similar to that used for inte-
grals IH, I, and Ié in the proof of (2.31). Next, like in
the above-mentioned proof, one can show the validity of (3.34)
for any X€ Rn.

Since the case At <0 can be treated is a similar way as
the case At>0, the formula (3.31) is completely proved.

a W
Now we discuss the existence of L ~derivatives 5——3g— and

o

w
EZ of the function

!

%
(3.35) w, (%, 8, ) -ff v(x,t, e,r,w)f(g,'r,w)dgdr .
o R?

Vv being given by formula (2,15). For this purpose note that
the function

Fx,t,8,T,0) = V(x,6,¢,T,0)E(¢,7,0)
possesses Lr-derivatives

sU9Caly = V. 1By 8, T, w)E(8,T, ’
xj(xtg‘-'l’w) xixa.(x'ae't'w) (¢y7,0)

which are L -continuous in the set (3.17). Thus, applylng the
estimate (2.25) and Remark 4.9, we conclude that there exist
Lr-derivatives

) wz(x,t W) ff

(3.36) T (x bty t,w)E(8,T,w)atar ,

which are ercoutiuuous in Go.
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Now observe, that substituting the formula (2.15) in
(3.35) and using the estimates (1.6) and (2.10) one can change
the order of integration in (3.35). So we have

t
w2(x,t,a» = j‘J‘We r(x,t,g,r,w)f(g,r,w)dgdf ,
. o gh- ’

where
t
F(x,t,0) = J‘j‘¢(x,t,§,f,w)f(§,t,w)d§df.
0 Hnot
R
With the aid of the estimate (2.10) and by Remark 4,9 the

function f(x,t,w) is Ihfcontinuous in G. In virtue of the
estimate

‘Mxyt,sﬂ's') - ¢(x', t:eof,°)lp<

\ 2
~(ns2-24, )/2 I Myl 2 e
< Mg(t-17) fo |x-x'| ? exp -"—":—_é—'— + exp -&%L ,
following from (2.14) and (2.10), we get
5 Hs . n
12(x,t,)-F(x, t,0)] <Mglxx| 7, x,x ¢ te<o,1>,
Moreover, we may assume that Zf(x,t,w) is measurable. There-

fore, according to the considerations concerning the deriva-

Eiw:I
tive 3% * there exists in G° Lr-derivative

dw,, (x, t,w) }
(3.37) —S—p— = E(x,t,0) + O.Tt(x,t,t,w)dt ,
where
W, . (X,6,¢,1y0)
(3.38) T (X, 8,7, 0) = f AL até ’wf(g,t,w)dg .

RP
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dw
Moreover, the derivative 3;2- is L ~continuous in G, This

coupletes the proof of assertions 1° - 30 of Theorem 3.1.

Now combining relations (3.41), (3.4), (3.12)=(3.15),(3.20),
(3.21),(3.29)~(3.31),(3.25)-(3.38) and (2.5) we find tze
validity od (3.2). Finally, relation (3.3) immediately
follows from (3.1), (3.4), (3.15), (3.9) and (3.19). Thus
Theorem 3.1 is proved,

4. Lemmas

In this section we state lemmas which were used in the
previous sections, For the sake of simplicity they are often
formulated for more particular cases than it follows from
their applications. However appropriate generalizations of
these lemmas can be easily obtained.

Lemma 4.1. Suppose g(x,t,w), X € R>, te<0,T>weQ
is a bounded measurable random function, whereas f£(x,5,8,%,¢,w)
is a random function defined in the set

(4.1) G3 = {xe D (D¢ Rk being a bounded closed domain),
tLeR?, 0<t<D-6(6>0), t+6<t<T, T<8<t}, weQ

and continuous in x,t,8,7,¢ uniformly with respect to we(%,

where P(Qq) = 1. Moreover we assume that for any pe¢(0,d72),

7> 0 the function f 1is bounded in the set

('4.2) G, = {xcn,;g|<1,o<r<T-6,r+6<t<'r, T+A<8<t-B}y we 2,

and that the improper Lebesgue integral

§
(#.3)  n(x,t,7,0) = [ [ £0x,5,6,7,¢,0)8(¢,0,0)a d8

is uniformly convergent in the se}
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(4.4) G5 = {xeD, O<t< T-6, t+6<t<T} , we 91 4).
Under thesle assumptions the function h(x,t,?,w) is
continuous in the set G5 uniformly with respect to we Q,I.
Lemma 4,2, Let all the assumptions of Lemma 4.1 be
satisfied., Suppose there exist 1in the set {G3,‘ we 91} deriva~

tives :t‘x uniform with respect to we Q99 which are conti-
' 1
nuous in G uniformly with respect to we Q,]. Moreover we

assume that for any Be (0,d/2), >0 the functions f, ~are
bounded in the set (4.2) and that the integrals i

t
(4.5) fffx (x,t,@,’t’,;,w)g(;,@,w)d;dﬂ
T Rn 1

are uniformly convergent in the set (4.,2). Under these

assumptions there exist in the set (4.4) derivatives hx
i

uniform with respect to we Q,‘, continuous in G5 uniformly
with respect to we Q’l and they are equal to the integrals
(4.5).

Lemmna 4.3, We assume that f(x,¥,z,w0), Xe <aqsb,>,
Ye<a,by> , z€ (a ,b ), we Q, (¥ Q,]) = 1) 1is a random
function contlnuous in X,¥,2 uniformly "with respect to we Q,]
and bounded in every set

(4.6) x€<a,],b,l> 9 y€<a2,b2> y 2e<d, ﬁ>c(35,b5)’w€ Qplo

Let h(y,z,w), Je <Byyb,>, Z € (a;,bB), weQ, be a bounded
neasurable random function, Lp-continuous in y,z. Suppose
that the improper Lebesgue integral

4) L.e. fox- any ¢>0 there are nqy7p>0 such that for
any 74972 (0y04) and any bounded domaid A>{¢eRP:j¢] < 02}
there %ds in the set (4.4) the inequality

B, 6,7, 0) - f ff(x,t,e,r,c,w)g(g,e,w)dcdﬂl“e
TH, A
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b
3
(4.7) g(x,37,0) = f £(x,3,2,0)h(y,2,0)dz
a
3
is uniformly couwergent in the set

(4.8) Xe<a,b,> , (yyw) € Ay,

A°c<a2,b2> b 4 Q,] being such a set that for every fixed
(y,w)e A, the function h{y,z,w) 1is measurable with respect
to z € (a3,b3) 5). Then the function g(x,y,w) possesses the
following properties:

1° it is defined for x € <@ 9b,> (y,) ¢ A

2° measursbility in the set <a1,b1> X <a2,b2> X Q,];
o} y .
3~ uniform Lp-continuity for xe <a1,b1> ’ yeBo c <a2,b2>,

where Bo is some set with Lebesgue measure |B°| = b2—a2;
40 continulty in x ¢ <a1b,\> uniform with respect to
(yyw)e A

Lemma 4.4, Let assumptions of Lemma 4,3 be fulfilled.
Suppose that

(1) there exists a derivative f_(x,y,z,w) uniform with
respect to we Q’l’

(i1) the derivative fx is continuous in x,y,z uniformly
with respect to weQ,] and bounded i1n every set (4,6),

(1ii) the integral

b

(4.9) j}fx(x,yysz)h(yoz’w)dz
a3

is uniformly convergent in the set (4.8).

Under these assumptions the function (4.7) possesses a
derivative gx(x,y,w) uniform with respect to we ch Q,I_(yeBo,
P(Q_) =1) which is equal to the integral (4.9). Moreover, for
this derivative properties 1040 of Lemma 4.3 hold true.

5) Obviously |4y|= (1xP) (Ao) = bp-ay, where 1 1is the
Lebesgue measure in R.
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Proofs of Lemmas 4.1 ~ 4.4 are similar to those of
appropriate theorems for nonrandom functions,

Lemma 4,5, If a random function f(x,w), xe<a,b>,
we S has Lp-derivative 'f‘(:‘z,w) Lp-bouuded in <ag,b>, then

(#.10) I (xy+) - f(y.')ﬂp< Alx-y], X,J € <a,b> ,

where A = sup I (x.°)ﬂp-

Proof, Take an arbitrar:y £> 0, Since for any xe<a,b>
we have
leGae)- 26,00,

1y-x| !

A> ﬂf'(x,-)ﬂp = 1lim
y—x

therefore exists &= d(x,e)>0 such that

(4.11) ﬁf(y,.)-f(x,-)l < (A+e)[y~x] if ye(x~-d,x+d8)n<a,b> = K(x,4).
P : .

For any x,y € <a,b> (x<y) there exist intervals K; =
= K(xi, d’i), 3 N (x=x1'< oes <xn=y)- such that

n _ _

<X,3> C UKi’ Choosing arbitrary vy, e (xi,xim) NKynKy 4y
1=1

1=1,...y0~1 1t follows from (4.11) that

HERSEICAN I EICIS R JOMD] I ﬂf(yq,-)-f(xz,-)lp +
TN EJC IR JC2VID] M RORR FICNSTE IEE JCNED] I

<(A+€) [lx,l-y1]' L R 2 N LT Iyn_,‘-xnl]= (A+e)|x-y

This yields (4.10).

Now we state definitions and lemmas concerning integrals
of random functions in the L -sense, These Lp—integrals in-
volve as a particular case the Lebesgue integrals of random
funetions occurring in Lemmas 4,1-4.4.

- 494—



Random linear parabolic equation 31

Let f(x,w), xeXc<a,b> (|X] =b-a), we be a random
function uniformly Lp-continuou.s in X. Then the integral

b
(4.12) ff(x,w)dx = ff(x,w)dx
a x

is taken in the L _-sense, i.e. as a strong Rlemann integral
(see [5], p.192 and [6] p.17, cf.[3], pp.267-269).

Now let f(x,w), xe¢Xc<a,b) (be(ayo0) or b=zoo,
l<a,b)\X|£0), weS2 be a measurable random funcdtion uniformly
Lp-continuous in every set Xn<a,f>, pge(a,b). In this case
we understand the integral (4.12) as an improper strong Rie-
mann integral, i.e.

ff(x,w)dx = lim ff(x,w)dx (.).
a A+Db & P

If this Lp-limit exists, then we say that the integral (4.,12)
is L -converg;ent It is easy to see that the convergence of

the integral {Hf(x, )I dx is a sufficient condition for

the Lp-convergence of the integral (4.12).
We introduce the following assumption.
(4,) A random function f£(x,y,z,0), x ¢ <a,1,b1>,

YeYC <ayyby> (1Y = by=ay), ze€ Z c <azybs) (|<a3,b3)\z{=5),

w €82 is measurable for every fixed x,y and uniformly Lp-
-continuous in every set

(4.43) xe<a1,b,‘> s YeY, z2€Zn <a3,/3>, /3€(a3,b3).

Definition., Let assumption (H,]) be satisfied and
let the integral

(4.14) g(x,y,w) = J}f(x,y.z.w)dz
a
3
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be Lp-convergent for every fixed (x,y.) e <a4,b,> x Y. We say
that the integral (4.14) is uniformly Lp-convergent in
<a,b,>x Y if for any €>0 there is 76(33’b3) such that
the inequality

B b3
"g(xfy’.) = ff(XQy,zl')dzﬂ = "Bf f(x,y,z,')dz" <&
a3 p P

is fulfilled for all ﬁe(q,bB), (x,5) e <apb> x Y.

One can easily obtjain the following lemma,

Lemma 4,6, If assumption (Hq) is satisfied and the
integral

|2 (x,v,2,)

\Nmmc‘

dz
P

is uniformly convergent in <a1,b1> x Y, then the lntegral
(4,14) is uniformly Lp-convergent in <a1,bq> x Y.

Lemma 4,7, If assumption (H,,) is fulfilled and the
integral (4.14) is uniformly Lp-convergent in <ap b >x ¥,
then the function (4.14) is uniformly'Lp-continuous‘1n
<a1,b1> x Y.

Lemna 4,8, Let the assumption of Lemme 4,7 be
sabtisfied. Suppose that there exists L_-derivative fx(x,yghwx
uniformly Lp-continuous in every set (4.13) and that the
integral

o'

(4.15) | £, (%y7,2,0)dz

3

is uniformly Lp-convergent in <a4,b1> x Y. Then the function
(4.14) possesses Lp-derivative gx(x,y,w), uniformly L -conti-
nuous -in <a1,bq> x ¥ and equal to the integral (4.15).

The above two lemmas can be proved in the standard manner
like the appropriate theorems for nonrandom functions., Namely,
at first we prove that they hold true for proper integrals in
the Lp-sense. Hence, by Theorem on uniform Lp-continuity and

o
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Lp-differentiability of Lp—limit of random functional se-
quence, Lemmas 4,7 and 4,8 follow,
Remazrk 4.9. et us introduce the following defini-

tions of uniform Lp—convergence for integrals

Y
(4,15) s(x,y,0) = éf(X,y,Z,(«))dZ,
y. b
(4.17) g(x,y,w) =f f(x,y,z,S,w)dsdz.
8.2 8.3

Definition, Assume that f(x,y,2,w), xe<a,],b,|> ’
Yy e (a2,b2> (= oo <a2<b2), zezy = <a2,y)nZ (Zc<a2,b2>,

12| = b2-a2), WweR is a random functlon measurable for every

fixed (x,y) and uniformly L _-continuous in every set

p
Xe<aqyb >, ¥ e<ar,by>, zeZy_B(a2<a‘2<b2, O<g<ay=as).
We say that the integral (4.16) is uniformly Lp—convefgent in

the set

E = <a b > x <ayyb,> (a'2 € (a2,b2))

if for any €>0 there is 6>0 such that

I=n
"8(15,'39’) - ff(x,y,z,')dzi <€, ne(0,6),(x,y)e€E.
ay P
Definition. Let arandom function f£f(x,y,2z,s,w0),
Xe<agby>, € (a2,b2> y ZE€ Zy,‘ se€S ¢ <a3,b3)

( |<a3,b5)\sl = 0), we S Dbe measurable for every fixed

(x,y) and uniformly Lp—-com:inuous in every set

XE€ <a1,b1> s Ye <a:2,b2>, zezy_ﬂ, seS n<a3,'5>,
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where aj e(az,bz), ﬂe(O,aé-aa), gs(aB,bE). The iantegral (4.17)
is called uniformly L_~-convergent in the set E 1if for any
¢ >0 there exist 6,>0, d,¢ (a5,b3) such that

=0 %2
g(x,3,°) ‘f ff(x,y,z,sp)dsdzH <é
8y & p

for all 04 € (0, 61), Ny € (52’b3)’ (x,y)€ E.

Using these definitions one can find that Lemmas 4,6-4.8
hold true (with obvious modifications) also for integrals
(4,16) and (4.17).
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