
DEMONSTRATIO MATHEMATICA 
Vol. XI No 2 197t 

Henryk Ugowski 

ON A RANDOM LINEAR PARABOLIC EQUATION 

In this paper we consider the linear parabolic equation 
η η 

(0.1) Lu- (x,t,ω κ χ + Σ Ι \ 
(x,t,w)u + c(x,t, ω )u-u. = 0 

1,3=1 13 X iX j 1=1 1 x i 11 

with real random coeff icients defined in a strip 
G = { ( x , t ) : x eR n , 0 < t < T } Under suitable assumptions, 
applying the same method as in [4] (see also [ i j , chapter 1), 
we prove the existence of a fundamental solution Ζ(χ , ΐ , ξ ,Γ ,ω) 
( χ , ( ε Ε α , 0 < r < t < ; T ) of equation (0.1). Next this fundamental 
solution is used in proving of the existence of a solution 
u(x,t,o)) of the Cauchy problem 

( 0 . 2 ) Lu = f ( χ , ΐ , ω ) , (Χ ,T ) e Go = RQ X (0 ,T> , 

(0.3) u(x,0,ω) = g(x,cj), χ e Ηα. 

1. Preliminaries 
Let ( Ω , Ι , Ρ ) be a probabilistic space. By L p ( ß ) 

( 1<p<oo ) we denote the Banach space of a l l real random 
variables f ( u ) .defined on ( Q , T t ( P ) with f i n i t e norm 

Lí|í( ω)ΙΡ P(do) i f 1 ^ p < o o , I f I = ess sup |f(«)|, 
ω e û 

1 ) ' Throughout this paper we shall use only real random 
functions. Therefore the adjective "real" w i l l be omitted. 
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2 H.Ugowski 

Let u(x,cj), x eDcR^ be a real random function defined 
on (Ω,Τ,Ρ) (see [ 3 ] , p.59)2^. I f us D — L p ( ß ) , then the 
strong l imit , strong continuity and strong derivatives of u 
are called respectively the Lp-limit, Lp-continuity and 
Lp-derivatives of u. 

We shall consider the equation (0.1) under the following 
assumptions, denoted col lect ively by (H) ( c f . M ) . 

(H) For some such that P(£?0) = 1 the following 
conditions are sat is f ied 

a i ; j ( x , t , c j ) = a ^ x . t j c j ) , (x, t , ω ) e G * Ω0$ 

there are positive constants λ0»λ^(λ/] > λ 0 ) such that 

η 
(1.1) (x,t,cj}eG * Ω^ξεβ11, 

i,3=1 

2 α 2 
where |ξ| = Σ Ζ ; 

i=1 1 

there exist constants kQ> 0, ote(0,1) such that fo r any 
( x , t , c j ) , (x',t', ω ) e G * ÙQ holds the inequality 

• I α <*/2 

(1.2) |a i ; j(x,t fco) - &13(χ',ΐ',ω)| < A0(|x-x'| + |t-t'| ) ; 

there is a constant A^>0 such that f o r a*ny (x , t , co) e 
Ib^ (x , t ,ω ) ¡ , |c(x,t, ω )| < A,,. 

Moreover we assume that the coef f ic ients b^(x,t , ω ) , 
c ( x , t , co ) are measurable random functions (see [3 ] , p.211), 
Lp-continuous (p € < 1 , o o > being some constant) f o r t c<0 ,T> 
and there are sat is f ied the inequalities 

2Ì 
' I . e . that u t Dr Ω —>- Η and u(x, ω ) is measurable 

f o r each xeD . In the sequel we shall use the concept of 
random function also f o r runction u ( x , ω ) defined fo r 
χ 6 D, eoe Ω χ c Ω (where Ρ(2χ ) = 1) and, of course, measurable 
with respeot to ω (see [3] , P.59 or [2J, p.140). 
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Random l i n e a r parabol ic equat ion 3 

( 1 . 3 ) ¡ b ^ x . t , · ) - b ^ x ' . t . o j p , | c ( x , t , · ) - c ( x ' , t , . ) I < A 2 | x - x ' f , 

x , x ' € R n , t· e <0,T> , A 2 > 0 being a cons tan t . 
R e m a r k· I t fo l lows from (1.2) tha t a. .(x,"fc> co) ειτθ ι j 

measurable random f u n c t i o n s . Moreover the condi t ion (1.1) 
implies t h a t (x,t,co)| < ( x , t ) e G, eoe 

Por ( x , t ) e G , ω e Qq t he re e x i s t s a matrix [ a ^ ( x , t , u ) ] 
inverse to the matr ix j a ^ (x, t , ω )J . Obviously a L ^ ( x , t , w ) 
are random func t i ons s a t i s f y i n g , by (1 .1 ) , (1 .2 ) , t he following 
cond i t ions : 

2 n 

(1 .*) /i0fÇ| < H Z ( x . t j e e . ö c f l , 
i , j=1 

(Ο < μ0 < μ^ being cons tan ts depending only on λ 0 and λ.^) 
and 

( 1 . 5 ) l a ^ í x . t . t í j - a ^ í x ' . í , ω ) | < Α 3 ( [ χ - χ ' | Λ + I t - f f ^ ) , ( x , t ) , (x'f t' )eG, 

ωεΩ 0 (Aj being a constant depending only on Aq, λ 0 and Λ )̂« 
Let us introduce the f u n c t i o n 

w ? t 0 (x , t ,£ , r , ω) = 

= £w(t-T)] {det^jCç.fl.oj) exp _ l i M 
•^Cf.e .MXxi-Ç^Cx.-fJ 

-τζϊΐψτ 

0 < r < t < T , Jc,ç,<?£Rn, ße<0,T> , ( o e f l 0 . 
W^β ( x , t , ç , r , ω) i s a random f u n c t i o n , continuous in 

β uniformly with r e spec t to ω ε Ώ 0 and i t 
possessés d e r i v a t i v e s ( in the usual sense) of any order with 
respec t to the v a r i a b l e s x , t , ^ , r , uniform with respec t to 
ωε£?0 ( i . e . t ha t d i f f e r e n c e quo t i en t s tend to d e r i v a t i v e s 
uniformly with r e spec t to ω e ) . These d e r i v a t i v e s are 
random func t ions with the same property of con t inu i ty as flf^ fl 
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4 H.Ugowski 

and they are also L^-derivatives f o r each q£ <1,e»> . Using 
(1.4) we obtain the following estimates 

_ Q 2 

(1.6) |wÇ)9(x,t,^,r,u))| exp[- ^ f ' j 1 , 

(1.7) 
awo fl ( x , t , e , r , ω ) ι - (n+l)/2 

d x |<C1 ( t - r ) exp t - r 

(1.8) 
9 WQtg (χ, t , f , r , ( j ) 

ö x i a x j 

3w? fl(x,t,ç,r,(o) 
' 3ΐ " 

C C ^ t - r ) 
-(n+2)/2 

exp ; À - z ì i ! 
t - r 

f o r e Β , 0 e < O , T > , . O < r < t < T , ω e Ω0, where 

C1> 0 is some constant (depending only on and A^)f 

/¿=ΤΓ» 0<μ<μ 

2. The fundamental solution 
We shall prove the following theorem. 
T h e o r e m 2.1. I f assumptions (H) are sat is f ied, then 

there exists a random function Z ( x , t f £ , r , ω ) , defined for 
χ,ξ e Rn, O c r c t c T , ως. Ωλ ( ΩΛ e Ω0 being some set such 
that P(ö^) = 1 ) and possessing the following properties: 

1° Z(x,t,ç fr,o)) is continuous in x , t , Ç , r uniformly with 
respect to ως. and we have 

(2.1) |z (x , t f ç , r , cû )|<C( t - r ) exp gl x-tr 
t - r 

C.yu. "being some positive constants; 
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Random linear parabolic equation 5 

2° there exist derivatives Z_ (x,t , ξ , τ ,ω) , uniform with 
i 

respect to ω e Ω^ and we have the estimate 

(2.2) z_ (x , t ,ç , r , co) 
-(n+1)/2 

<C ( t - r ) exp _ jilx-ξΙ 
t - r 

5° there exist L-derivatives Zv „ (x,t ,É,r, ω ) , P XjX.. 
Ζ^ίχ,ΐ,ξ,Γ» ω) which are Lp-continuous in χ , ΐ , ξ , Γ and 
f u l f i l the inequalities 

( 2 · 3 ) l ^ x . ^ ' M . r . ^ l l p » | | z t ( x » t ' ^ r » , ) | p < 

-(n+2)/2 
<C( t - r ) exp • Αϊ»-* ! ' 

t - r 

4° for fixed ξεΗη, re<0,T) the function Z(x,ΐ,ξ ,t, ω ) 
sat isf ies, with respect to χ e RQ, te ( t ,T> , *. t *» "» V » » 
(where Ρ(£> · „ ) = 1), the equation 

η 
t [ z ( x f t t ç , r , co)] = ZIZa i ; . (x,t ,ca)Z x χ (x,t ,£,r , ω) + 

η 
+ Zj>i (*.t , ω)ζ (x,t,f,r,w)+c(x,t|U)z(*,t,ç,r^)-z.(x,t,f,r^) = ο·, 

i=1 1 x i * 

5° i f g(x,co), χ e Rn is a measurable, L^-continuous 
(qe<1,oo>) and L^-bounded random function ( i . e . 
j g ( x , · ) j < const., xeR n ) , then 

(2 .4) lim / Z(x,t ,£,r, u)g(Ç, ω)άξ = g(x, ω) (L ) 3 \ 
t - r ¿n 

where the convergence is uniform with respect to χ e D (DcRa 

being a bounded domain) and re <0,T). 

^ I .e . that the limit is taken in the Lq-sense. The 
integral in (2.4) is an improper integral inn;he Lq-sense (see 
sec.4). 
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6 H.Ugowski 

The above-mentioned function Z(x,t,Ç,r» ω) is called a 
fundamental solution of equation (0.1). 

P r o of. Using the same method as in [4·] (see also [lj) 
we prove that 

ì r (2.5) Z(x,t,f,r,<u) = VUT(*,t,i,r,u}) + fd8j f̂fl(x,t,i,θ,ωΜΑξ,τ,ω)^ 
t * 

where φ is a solution of the integral equation 

(2.6) φ(χ,ΐ,̂ ,Γ,ω) = ̂(x.t.e.r.fcO + l Λθξ^χ,ί,ζ,θ,ωΜζ,θ,ξ,Τ,ωΚζ 

with 

^(Xf^if »r, ω) = L3Cft[
wçlr

(x,t'S,T*£'3 *]· 

Hence it follows that φ is given by formulas 
(2.7) $>(Xft,É,r, ω) = £ φ_(χ,ΐ,ί ω), 

m=1 

t 
(2.8) Φα+ι\.χ,*,ξ,Τ,ω) =ff Φη(χ,*^ίθ,ω)φα(ζ,β,ξ,τ,'ζύ;)άζάβ , 

r Ra 
m = 1,2,... 

Indeed, b̂ (x,t,<«>) and c(x,t,o)) are measurable functions 
with respect to the variables x,t for each 
being such a set that Ρ(Ω̂ ) = 1. Consequently the integrals 
in (2.8) exist (as Lebesgue integrals) in the set 

(2.9) χ,ξ e Rq, 0 < r < t < u e a v 

Since for functions <pm the estimates (4.58) of [4J hold 
true, therefore the series (2.7) is uniformly convergent for 
t-t><5>0, χ, 6>€a, and satisfy equation (2.6) in the 
set (2,9). Moreover, we have 

(2.10) |0(x,t,£ ,r,w)|< C2(fc-r)
 ÍQ+2 ^ e x p j, οκμτ<μ, 
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Random l i n e a r parabol ic equation 7 

Using Lemma 4.1 one can show tha t 

(2.11) φ(χ,t.ç.r, ω) = cp(x,Μ,Γ,ω) + 

II 
+ ω)ι ^ ( χ , ί , ξ , Γ , ω)+c(x , t ,w)x(x , t ,ç , r , ω) , 

issi 

where ψ,ψ^,ζ are random func t ions with the following proper-
t i e s : 
( i ) they are defined in the se t (2.9) and continuous in 
x , t , Ç , f uniformly with respect to ue f l ^ i 
( i i ) they s a t i s f y inequal i ty (2 .10); 
( i i i ) i f 

o 

(2.12) < a ( t - r ) f o r some Ε>0, 

then there hold the est imates 

(2.13) 
|*(x , t ,ç , r ,ù))-*(x ' , t ,É, r ,co) |< 

where 0 < Μ ^ < CL/2 , Ο <Μ^ <CT . 

Relat ions (2.11) and (2.13) immediately imply, under the 
condi t ion (2 .12) , the est imate 

|<Î>(x,t,Ç,r,·) - $ ( x * , t , ç , r , - ) J D < 
(2.14) v 

Now we s h a l l consider the func t ion 

(2.15) V ( x , t , * , r , u ) = f f v a ( x t t f ζ , Θ , ω ) φ ( ζ t θ , ζ t τ t ω ) d ζ d θ . 
V Ra ζ ί 
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8 H.Ugowski 

Ια view of (1.6),(2.11),(i) and (ii) this function possesses, 
by Lemma 4.1, the property (i) and there holds true the 
estimate 

-(η-α)/2 Γ », ι 
(2.16) |v(x,t,Ç,r,w)| <C5(t-r) exp -itJfEf 

in the set (2.9). Taking into considerations relations (2.11), 
(1.7), properties (i),(ii) and Lemma 4.2 we conclude that 
there exist derivatives V uniform with respect to ωββ., xi ' 
which have the property (i). Moreover, these derivatives are 
given by formula 

4 r r 9wt «^.^»ζ.θ.ω), (2.17) V (χ,ΐ,ξ,τ,ω) = J J 4(ί,θ,ξ,τ,α)άζάθ i f Βα i 

and there holds true the estimate 
-(n+1-a)/2 

(2.18) |νχ> (xft,^,rfo3)| < C6(t-f) exp _ Μ"Ιχ-ξΙ t-r 

in the set (2.9). 
In order to prove the existence of derivatives V. x.x. let 

us introduce the function 
. Λ . i 3 

J(x,t,ö,£,r,cj) = / w β (x,t,f ,fl,u)#(£t0t$,r,<u)dfi . 

Observe that b^SfS»")» ο(ζ,θ,ω) are measurable functions 
with respect to ζ e RQ for fixed fleBc (Ο,Τ), ωεί^οΩ^, 
Β being a set with Lebesgue measure |B| = Τ, Ρ(Ω0) =1» 
Hence, with the aid of properties (i),(ii) and relations C2.11), 
(1.6), we obtain, by Lemma 4.3» the following assertions: 
φ ) the function J is defined in' the set 

x,$eRa
t Ο<τ< t<Τ, 0eBn(r,t), coejQ0; 

(II) J Is a measurable function; 
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Random linear parabolic equation 9 

( i l l ) St Β being f ixed the function J is continuous in 
x , t , £ , r uniformly with respect to ω ε Ω θ ; 
( IV) J is Lp-continuous in x , t , 9 , f , r . 

In virtue of Lemma 4.4 there exist derivatives J f J 
x i x i x j 

uniform with respect to (J£Ûe, which are given by formulas θ 

r aw. « ( x , t , ¿ ,θ ,ω ) 
J x ( x , t f e , f t t f o ) ) = J — ^ g j - φ(ζ ,θ,ξ,τ,α)άζ , 

(2.19) 1 3a * 

r 92W (χ , ΐ , ζ , θ ,ω ) 
J x χ = I φ(ζ,β,ϊ,τ,ω)άζ 

1 3 Rn i ¿j 

and poesesses properties ( i ) - ( i v ) . 
I t results from (1,8) and (2.10) that the estimate 

-(2-<x)/2 -(n+2 )/2 
Jx χ ( » . ' Μ . ^ . ω ) <C?(S-r) ( t -r ) exp ." t-r J 1 ;) 

holds in the set 

x,£eRn, Oc t e t <T f θ £ Β η (r, ^ r ^ » ω ε Ω θ . 

Observe that relation (4.J6) of [4] and the estimates of the 
moduli l l ^ l , j l 2 | f j l j l , r e m a i n valid in the set 

Oy, = [ x ,ÇeR n , 0 < r < t c T , e e B n ( y , t ) ] , ω e Ω0. 

Proceeding sis in [4 ] and using (1.8) , (2.14) and generalized 
Minkowski·^ inequality ( [7 ] » P»21), we obtain the same estimate 
of the norm ||lj*1 (of the integral I^1^ of [4]) in the 

^ ( in [ 4 ] ) . Consequently we have set Ĝ  as that of Η 

(2.21 ) . )|p< C 8 ( t - t _ r ) " ( η + 2 " 2 ^ 2 ) / 2 β Χ ρ [ - ^ 
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10 H.Ugowski 

in the set Gyj. According to the estimates (2.20), (2.21 ) and 
Remark 4.9 the function V possesses L -derivatives V Ρ i i in the set d 

(2.22) x,$eRQ, 0 < t < t < T , M £ û X | t f Ç f T (PtoX|tfffr)=1), 

which are given by formulas 
t 

(2.23) Vx x (x,t,fprtto) = / Jx χ (x,fc,0,̂ ,r,o))d9. 
i d χ i ¡j 

Moreover, these derivatives are Lp-continuous in the set 

(2.24) x, £eRa, 0 <r< t<T 

and we have the estimate 

-(n+2-2/^)/2 
(2.25) |νχ^χ (x,M,tv)| p<C g(t-r) ¿ exp _ μ'Ίχ-él

21 
t-r 

in the set (2.24). 
In order to prove the existence of L^-derivative V^ 

observe that the function J possesses, by Lemma 4.4, the 
derivative 

ra w (χ,ΐ,ζ,β,ω) 
«Μχ,ΐ,Θ,ξ,ΐ-,ω) = J ¿ ^(ί,β,ξ,Γ,ω)άζ = 

Rn 

f dW, ¡¡(χ,ϋ,ζ,θ,ω) , 

= 2 J S> clx 3χ-
uQ i «j 

uniform with respect to ω e. íl9. The last integral has the form 
(2.19). Therefore we obtain from the reasoning concerning 
the integral (2.19) the uniform Lp-convergence of the integral 
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Random l i n e a r parabolic equatioα 11 

u 
( 2 . 2 6 ) J J f c ( x , t , 0 , Ç f r , w ) d e in G2 = (χ , ζ e fín,t- X>.5> θ } . 

and the uniform convergence of the Integra l 
t 

( 2 . 2 7 ) J |jtU,tffl,$frf.)I dö in G2. 

Moreover, the function ( 2 . 2 6 ) i s defined in the set ( 2 . 2 2 ) , 
i t Is Lp-continuous in ( 2 . 2 4 ) and there holds tru'e the 
estimate 

(2.28) 
t 

)ae 
-<Jn+2-2/i_ )/2 Γ ,, Λ 

In the se t ( 2 . 2 4 ) . 
Now we prove the ex is tence of Lp-derivat ive V̂ . given 

by formula 
t 

( 2 . 2 9 ) V t ( x , t , Ç , r , a j ) = <p(x , t f ç , r ,ù>)+J J t ( χ , ϋ , Θ , ξ , τ , ω ) ά θ . 
r 

Taking At > O we have 

V ( x t t + A t t ç t r t œ ) - V ( x , M , r , a ) _ , ^ , ω ) - j l r t U , t , 0 ^ r , a j ) d f l = 

t+Zfc 
= 1 + J E ·[ + - φ ( χ , ΐ , ί , Γ , ω ) * 

where 
t 

I _ J t ( x , t t 0 , ç , r , u ) j de . 

There is t' ε ( t , t + A t ) such that 
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12 H.Ugowski 

I = J [ J t ( x , t ' , β , ξ , τ ,ω) - J t ( x , t , 0 , | , r , w ) ] d 0 

r+ h 
= - f J t(x , t j - , f l ,$ , r ,w)d8 - J J t ( x , t , f l , ç ,Γ,ω)<38 + ? 

r+ h 
/

' I li 

J t ( x , t ' ,β,ξ,τ,ω)άθ + J , θ , ξ , ΐ , ω)<30 + 
r 

Ύ 

" t - í Τ [J t(x , t* , Α , ζ , τ , ω ) - J t(χ , fe,θ,ζ ,Γ ,ω)] <3Θ r r - I ^ I g + I j + I ^ + I ^ 

bei-QS constants. 
The uniform Lp-convergence of the integral (2.26) i n G2 

impl ies that, fo r any ε > 0 and s u f f i c i e n t l y small 

Further we have 

t r 
l l ^ l p η l J t ( x » t ' ' 0 ' ^ t » ' ) | | p d 0 . 

Hence, i n view of the uniform convergence of the integral 
(2.27) i n G2, i t fo l lows that ¡ I ^ p C í s u f f i c i e n t l y 
small 7 2 > O and A t > 0 . 

Note that in integral we have t - S ^ / ^ i which implies 
that t ' - t < t - 0 i f 4 t e ( 0 t 9 2 ) . Under the condition t i - t<t-8 
there holds true the estimate 

(2.30) 
a w ¿ « ( χ ^ , ζ , β , ϋ ) 8 ( x , t , g t 8 , a ) 

" 3t 

< c 1 1 ( t ' - t ) (t—Θ) 
-(n+4}/2 

exp _ ¿ r l x - i L 
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Random linear parabolic equation 13 

Constants being f ixed, i t results from estimates 
(2.30) and (2.10) that 

T 2 r l · | i 5 | f / " J J - ~3Έ ^ t 
r+?i Rr" 

for At e (0,/^) provided 9 j >0 is sufficiently small. Thus 
we have proved that lim fllL = 0. 

At-o+o "P 
In order to obtain (2.29) i t remains to prove the validity 

of relation 

( 2 . 0 1 ) Ilm I i Γ J(x,t+At,0,Ç,τ,· )dfl - φζχ,ΐ,ξ ,τ, * ) L = O. 
4t~0+0 ^ 

At f i r s t observe that there is a set B0cRû , |rc\B0|= 0 
such that for every fixed ζ e Bq the functions bk(^,0,cj), 
c(£,fl,u) are measurable. This implies the existence of the 
integral 

t+At 

J φ(χ,θ,ξ, f,w)dö for xeB0, ÇéRQ, 0<r< t<T , ωεΩχ,Ρ(Ωχ.)= 1. 

Therefore, taking advantage of the equality 

/ W β(χ,ϊ+Δϊ,ζ,θ,ω)άζ = 1 _ η * Rn 

we can write, for χεΒ 0 , £êR , t - rx f>0 , 

t+At 

i J J(x,t+4t,9,S,r,<o)de - φ ( χ ,Μ , τ ,ω ) = ¿t -t 

t+At 
= At 

R' 

i+At ç 
J d8 J Ŵ . g (χ, t+At,£ , β,ω) ,θ,ξ,τ,ω)-φ(χ,θ,ξ ,Γ,ω)] d£· 
t -ο η ' 
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14 H.Ugowski 

t+4t 

To evaluate the Integral i'̂  we break i t into two inte-
grals ΪΛ Λ and "by formulas 

where Κρ = [ς e RQ:|¿ -x| < r ] , r e (0,Vä<S). Taking arbitrary 
ε>0 i t follows from the estimates (1.6) and (2.14) that 

<ε for any At>0 and sufficiently small r > 0 . Now 

f i x r . Then, in view of the estimates (1.6) and (2.10), we 
conclude that |l'i2|<£ £ o r ^ΐ ε ( 0*? ) provided η>0 is 
sufficiently small. Consequently îm Jl'^j = 0 uniformly 

with regard to xoe B0, te<& ,T"> (<S>0, T*e (<S,T)),re<0,t-d> , 
ξ ε Rn. Proceeding in a similar way and using, instead of 
(2.14), the estimate 

one can prove for the same conclusion as for i!^. 
Finally, i t follows from the uniform Lp-continuity of 

φ(χ,ΐ,ξ,Γ,ίΟ) for x,ÇeD (D being a bounqed domain), 
t - t>5>0 that Jl'3j <e for &t e (0,y) provided η> 0 is 
sufficiently small. P 

Thus we have proved that (2.31) holds true uniformly with 
respect to XÊB nD, £eD (D being abounded domain), 
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Random l i nea r parabolic equation 15 

0 <d< t CT1 (T'e (<5",T)), 0 < r < t - d . I t remains to show the 
v a l i d i t y of (2.31) f o r any χ , ξ ε β η , 0<r<t<T. For th i s 
purpose l e t us write 

t+4t 

^ £ J(x ft+At tθ tξ fτ,u))dθ -φ(χ , ΐ , ς ,Γ ,ω) = H 1 + Hg + 

where t+At 
Η1 = ¿ / [J(x,t+Ä!,f l f f tr t«j) - J(y ,t+4t,ö,f , r ,ω)] d0, 

t 

t+Ät 
Hg = ¿ f J ( y t t + û t , e , ç t Î , u ) d 9 - φ ^ , ϊ , ξ , τ , ω ) , 

tj 

Hj = $(y,t f f , r ,eo) - φ(χ , ΐ , ί , Γ ,ω) . 

Using the estimate 

and (2.10) we obtain the inequal i ty 

, , - Ì - ( n+2—d) /2 
(2.32) |Hn|<C 1 7(At) ¿ | y - x | . ( t - r ) 

Now f i x x , £ e R a , 0 < r < t < T and l e t y £ B Q . According to the 
previous' considerations fo r any i>0, η0> 0 there i s η>Ό 
such that i f 0 < 4 t < 9 , |y-x|<i70, then ||H2Íp<£· T a k l n S 
y € BQ η K(x, Δΐ ) i t fo l lows from (2.32) that ¡Ĥ , ¡<í£ f o r 
4 t e ( 0 , ^ ) provided η^ e (Ο, η) i s su f f i c i en t l y small, f inal ly, 
i f e ( 0 , y Q ) i s su f f i c i en t l y scial i , then 

jH3|^<£ fo r y e K(x,y^). 
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This completes the proof of the relation (2.31). At the same 
time we have proved that 

At-OtO AX J % "P 

The reasoning in the case 4 t<0 is similar to that used 
for 4 t>0 . Thus (2.29) is proved. 

Recalling the relation (2.5) and the results obtained- f o r 
the function (2.15) we conclude the val idity of assertions 
1°-3° of Theorem 2.1. The assertion 4° easily follows from 
relations (2.5), (2.15), (2.17), (2.23), (2.29) and (2.6) . 

To epd the proof i t remains to show that (2.4) holds true. 
For this purpose observe that 

(2.33) lim J - g ( x , . ) 

uniformly with respect to χ e D, re <0,T), D being abounded 
domain. 
Indeed, writing , 

JW (x,t,f,r,w)g(Ç,cj)dS -g (χ, ω ) = 
in ß 

= f w , r ( x , t , f ,T , W ) r g ( i , a ) ) - g^ ,a ) ) ]dç + 

+ /g ( x , o ) [w r ( x , t , ^ r ,w ) -W X } î (χ , t , ç .r .u) ] άζ % Ι^ + 
Εη 

and evaluating integrals IÜ| and similarly as and 
1*2 in the proof of (2.31) we obtain (2.^3). Now the estimate 
(2.16) yields 

A 
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which together with (2.33) completes the proof of (2Λ). At 
the same time we have proved Theorem 2.1. 

3. The Cauchy problem 
In this section the fundamental solution Z(x,t,£,r,co) 

will be useà in proving of the existence of a solution of the 
Cauchy problem (0.2), (0.3). For this purpose we additionally 
introduce the following assumption. 

(Hq) The random functions f(x,t,cj), g(x,u), χ e Rn, 
t € <0,T> ωεΩ are measurable, L^-continuous + < V) and 
L -bounded. Moreover, f(x,t,oj) satisfies for xeR Q a local q ' ' 
Holder condition in the sense L^ with exponent a, uniformly 
with respect to tt<0,T> , i.e. for any bounded domain D c 
there is a constant M > 0 such that 

|f (x,t, · ) - f (x1, t,*)| <Μ|Χ-ΧΊΛ, Χ,Χ' ε D, t e <0,T> . 
q 

T h e o r e m 3.1. Let assumptions (H) and (HQ) be 
satisfied. Then the function 

t 
(3.1) u(x,t,ω)=/z(x,t,çto,co)g(ç,co)ciç- Γ /ζ(χ,ΐ,ξ,r,cj)f($,r,CJ)d̂ dT 

Rn ° Rn 

has the following properties: 
1° it is L^-continuous in Gj 
2° there exist L -derivatives u_ (x,t,cd) which are q -λ-. 

Lq-continuous in GQ{ 
3° there exist L -derivatives u_. _ und u+. which are r/1 1 i ^-continuous in dQ = ± + 1 J 

u(x,t,co) is a solution of the problem (0.2), (0.3), 
i.e. 

(3.2) Lu(x,t,w) = f(x,ΐ,ω), (r,t)ïG0, (P(fl t)=1), 

(3.3) u(x,0,co) = βΐ(χ,ω), xeRn,cjei3_ (Ρ(Λ_)=1). 
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18 H.Ugowski 

Ρ r o o f . We use the argumentation of the proof of 
Theorem 2.1 (see a lso [1], chapter 1) . Let us denote 

(3.4) v(x,t,co) = f Z(x, t ,ç ,0,co)g(ç,cj)d | , 
Ra 

(3.5) G(x,t,f,co) = Z(x,t,£,0,(o)g(Ç,co). 

The Lq-continuity of G in the se t 

(3.6) x , ( a B , t e ( 0 , T > 

and the estimate 

Γ 2" 
(3.7) ^ ( χ , ΐ , ξ , Ο Ι Ι ^ ω ^ 2 exp[ - Ä l ^ l L 

y i e l d , in view of Lemma 4 .6 , the uniform L^-convergence of the 
i n t e g r a l (3.4) in the se t 

(3.8) x e D (D "being abounded domain), t e (0 ,T>. 

Hence, by Lemma 4 .7 , tüe func t ion v (x , t , t í ) i s L^-continuous 
in G0. With the aid of a s se r t ion 4° of Theoraa 2.1 s e t t i n g 
addi t iona l ly 

(3.9) ν(χ,Ο,ω) a g(x,co), χ 6 Rn , ω ε ΰ 

we obtain a random func t ion L^-contlnuous in G'. 
Now consider the i n t e g r a l 

(3.10) / Z „ (x , t t$,0,cj)g(ç,w)dç . 
Rn i 

Since the func t ion (3.5) possesses L^-der ivat ives 

(3.11) G_ ( χ , ΐ , ξ , ω ) = Z_ (x, t ,e ,0,w)g(Ç,(o), x i 
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which a re L^-continuous in the s e t ( 3 . 6 ) , t h e r e f o r e , "by the 
e s t ima te 

- ( n + 1 ) / 2 
G x i

( x » t ^ ' * ) | < M 2 t θ χ ρ t 

and by Lemma 4 . 6 , t he i n t e g r a l (5 .10) i s uniformly ^ - c o n -
vergent in the s e t ( 3 . 8 ) . In v i r t u e of Lemma 4 . 8 t he re e x i s t 
i n G„ L - d e r i v a t i v e s o q 

(3 .12) ν χ (x-,t,co) = f Ζχ ( x , t , ç , 0 , u ) g ( ç , c j ) d ç , 
Rn 

which a re L^-continuous in G 0 . 
S i m i l a r l y , obseuving t h a t f u n c t i o n (3.5) possesses L r -de-

r i v a t i v e s 

GXjX ^ M » " ) = Ζχ (x , t , ^ t O t <u)g(ç t t j ) f 

G t (x , t , ^ ,<¿) = Z t ( x , t , ç , 0 ^ ) g ( ç , u ) 

and us ing the es t imate 

we conclude t h e ex i s t ence i n GQ of L r - d e r i v a t l v e s 

(3.13) ν χ χ (x , t , c j ) = / Ζ χ χ (x,t ,ç,0,o>)g(ç,£o)dç , 
i 3 gQ i d 

(3.14) T t ( x t t t w ) = f z t ( x f t , ç , O f c j ) g ( ç t c j t y , 
Ra 

which a r e L r -con t lnuous l a GQ. 
At p resen t we cons ide r t h e f u n c t i o n s 

(3 .15) w ( x , t , u ) = J f Z ( x , t , $ , r , ( j ) f ( f t r , a > ) d f d r , 
0 K0 
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20 H.Ugowski 

(5.16) F(x,t,Ç,r,u>) = Z ( x , t , f , r , a ; ) f ( f , r ,c j ) . 

Since the function (3.16) i s L^-continuous in the set ' 

(3.17) x , ( e R , 0 < r < t < T 

and there holds the estimate 

(3.18) | ï ( 3 c f t t ç t r f · ) ! <M 4 ( t - r ) ¿ 

η 
'2 . flIx-Sl 

t - r 

therefore, by fifemark 4 .9 , the function w(x,t,w) i s L^-conti-
nuous in G0# Moreover, (3-18) y ie lds 

which implies that 

w(x , t , . ) | | <Met , 
q ? 

lim ¡w(x , t , . ) | | = O 
" "α t —O " "q 

uniformly with respect . to χ e R a . Thus, set t ing additionally 

(3.19) w(x,0, ω) = 0 , χ e RQ, ω e Ω 

we find that wf(x,t,co) i s L^-continuous in G. 
Note thart function (3.16) possesses in (3.17) L q -deriva-

t ives 

( χ , Μ , τ , ω ) = Ζ ( x , t , ξ ,τ,ω)ί(ξ,τ,ω) 
x i x i 

which are L^-continuous in (3.17) and s a t i s f y the inequality 

r (n+D/2 
Κ · ) < M , ( t - r ) exp 

JL.s Λ Ό 
gl χ-61 

~ t - t 

Hence, taking advantage of Remark 4.9 we find that there ex i s t 
in G L -der ivat ives w (x,t ,o)), given by formulas o q xj 
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(3.20) w (χ , ΐ ,ω ) = f J Ζ (x t t ,ç , r ,w) f (ç , r ,w)dç dr 
x i J0 RQ x i 

and L^-continuous in GQ. 
In order to prove the existence of L -derivatives w__ „ r x l X j 

and ŵ  l e t us introduce the function 

( 3 . 2 1 ) J ( x , t , t , u ) = f w ( x , t , f , r ,w ) f ( ξ ,Γ ,ω )άξ . 
RQ 

.Observe that f ( £ , r , ω) is measurable f o r every f ixed 
r e Β c<0,T> , where |B| = T . Hence, in view of Lemma 4.7» the 
function (3.21) is uniformly L^-continuous in every set 

(3.22) X ÊD, t e «5V,,T> , r e Β η <0 ft-(T2> ( 0 < í 2 < d^), 

D being a bounded domain. Consequently, the function (3.21) 
is L^-continuous in the set 

(3.23) x t R Q , t£ (0,T>, re Bn<0 , t ) . 

This implies, by Lemma 4.8, the existence (in the set (3.23)) 
of Lq-derivatives 

f 3W ( χ , ΐ , ξ , τ , ω ) 
Jx (x , t , r ,w) = J dx f (e,r,u)d£ , 

(3.24) 1 Rn i 

Ç à2^ ( χ , ΐ , ξ ,Τ ,ω ) 
J (χ , ΐ ,Γ ,ω ) a J 1 f ( í , r , « * )d* , 

i o g ì i J 

which are uniformly L^-continuous in every set (3.22). The 
function (3.24) can be treated analogously to (2.19) and (4.36) 
of [4] . Hence, in the set 

(3.25) χ ε D (D being abounded domain), te(0,T>,reB η <0,t), 
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there holds true the estimate 

( 2 et) /2 
(3.26) I ( x , t , t , · ) < M^(t-r) , 

Mr7>0 "being a constant depending on D. Using this estimate 
and Remark 4 .9 , we see that the integral 

t 

(3.27) f j _ y (x,t ,r ,cj)dr 

i s uniformly L -convergent in every set 

(3.28) xe D (D being a "bounded domain), t£<<f,T>, <Se(OtT). 

Thus, in virtue of the above-mentioned remark, the function 
t t 

(3.29) w (x.t.oj) = Jj(xft,f,<u)dr = / / ν r(x,t,ç,r,w)f(s,r,«)cj!<te 
o 0 Rn 

possesses in GQ L^-derivatives 

, ... } f Γ 02W, r (x , t , i , t ,< j ) 
( 3 · 3 0 ) » J J , ( x , t , t , M ) d t s J d t J i ' V ' Z t ( M dì, 

* J o l j ° R n * J 

which are L -continuous in G„. q o 
At present, proceeding l ike in the proof of the formula 

(2.29), we show that there exis t s in GQ L^-derivative 

£(w . (x,t,<¿>) f 
(3.31) —Lbî = f(x,t,u>) +J Jt(x,t,r,cj)dr, 

which i s Lg—continuous in GQ. 
At f i r s t , taking into considerations the relation 

η 
σ^(χ, ΐ ,τ ,ω) = l _ _ a i ; j ( x , t , t j ) J x χ (x,t,r,u)) 

i , j =1 i d 
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and the estimate (3.26), observe that the integral 
t 

(3.32) /jt(x,t,T,«)dr 
o 

Is uniformly L^-convergent in the set (3.28), whereas the 
integral 

(3.33) /|jt(x,t,r,-)| dr o ^ 

is uniformly convergent in (3.28). 
Now, let At>0, t > i > 0 and ^e(0,i). Then we can write 

w.U.t+Ät.oj) - w,.(x,t,o)) t 
— M

 1 f(χ,t,ω) - J Jt(x,t,r,w)dr = 
o 

= I 2
+ I 3 + τ ' 

where 
t 

I - f J(x.t+At,r,(j) - J(X|t,τ,u>) d r 
1 ir-7 

I 2 = I Jt(x,t,î,u)dr , 
t-9 

I 3 = J [ ^ . ^ ¿ Μ , ω ^ - J(*,ttt,*>) . J t ( X f t t T f t ì ) dT , 
Ό 

t+At 

I = - 1 J J(x,t+dt,r,u)dr - f(x,t,co). ZJt t 

The uniform L^-convergence of the integral (3.32) implies 
that for any ε > 0 and sufficiently small η>0 we have 
|ΐ 2^<ε . The inequality 

I J(x,t+At,f, 0-J(x tt tT t · )j < |jt(x,t'tr,.)| , t'e <t,t+At> 
q 
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(following from Lemma 4.5) and the uniform convergence of the 
integral (3.33) yield 

t 

for suf f ic ient ly s 
mall Q O and At > 0. 

How f i x η > 0. Then obserwing that 
V r pv/, r (x,t ',ç,t,<j) aw Γ3= J^U"^* w 
ο H 

f (É,r,u)df 

(where t ' e ( t , t +A t ) ) and using the estimate (2.30) we have 
|ljJ <e for suf f ic ient ly small At>0. Consequently 

lim ¡I.+Ιρ+Ι,ΙΙ = O. 
At-0+0 11 1 ^"q 

I t remains to show that 

(3.34) lim ||I J = 0. 
At—0+0 q 

At f i r s t , l ike in the proof of relation (2.31), we establish 
(3.34) f o r x e B 0 , where .BQ c fín, |Rn\B0| = 0 is such a set 
that f(^,r,£o) is measurable for every f ixed ξ e BQ. Indeed, 
fo r χ t Bq the expression. I . can be..written as follows 

I = v i g + i j , 

where 
t+At 

h = ~ k / d tJ W, τ ( χ , ΐ + Α ΐ , ξ , τ , ω ) [ ΐ ( ξ , 7 , ω ) - f (χ,τ ,ω) ] d* , 
t Rn 

t+At 

h s Zt J f ( x . r . " ) f / r(x.t+At,ç,r,w)-Wx r (x,t+At,í ,r,U ) ]d^dr , 
* Iri» ' 
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t+At 
= à I [f(x»r·") - f(x,t,u)]dr . 

t 

The further argumentation is similar to that used for inte-
grals i'̂ , and in the proof of (2.31). Next, like in 
the above-mentioned proof, one can show the validity of (3.34) 
for any χ e R a. 

Since the case Ab<0 can he treated is a similar way as 
the case At>O f the formula (3.31) is completely proved. 

32W2 
Now we discuss the existence of Lr-derivatives and 

'dwp 1 J 

-g^ of the function 

t 
(3.35) w2(x,t,w) =//v(xfttf,r,to)f(ç,r,«)dçar , 

o r q 

7 being given by formula (2.15). For this purpose note that 
the function 

F(x,t,Ç,r,o)) = V(x,t,Ç ,r,w)f (Ç ,τ,ιύ) 

possesses Lr-derivatives 

Fx ix j
( x» t'?' r» w ) = V (x.t.ç.r.ujf^.r,«), 

which are Lr-continuous in the set (3.17). Thus, applying the 
estimate (2.25) and Remark 4.9· we conclude that there exist 
Lp-d er ivat ives 

v a2wv>(x,t,(j) J r 
(5.36) ¿ á = J J V (xftf^rf«)f(Ç,rf«)dÇdr , 

i J O jB 1 J 

which are L -continuous in G . r o 
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Now observe, that substituting the formula (2.15) in 
(3.35) and using the estimates (1.6) and (2.10) one can change 
the order of integration in (3.35). So we have 

t 
w0 (x,t,cj) = J / w ç r(x,ttçtr,u)f(^fr,cû)dçdr , 

ο Hn 

where 
υ 

f(x,t,co) = J f φ(χ,ϋ,ξ,ΐ,ύ))£(ξ,ΐ,ω)άξάΐ . 
o Rn 

With the aid of the estimate (2.10) and bj Remark 4.9 the 
function 
estimate 
function f(x,t ,ω) is L—continuous in G· In virtue of the 

x,t,Ç,r,·) - φ(χ', M , r f ·)| < 
Ρ 

-(n+2-2(Up )/2 μ3 ι I I Χ-ΧΊ < Hg(t-r) 

following from (2.14) and (2.10), we get 

|f(x,t,· )-F(x', t, * )|r< Mglx-x'l^, x,x' e Rn, te<0,T>. 

Moreover, we may assume that f(x,t,<o) is measurable. There-
fore, according to the considerations concerning the deriva-

3w„ 
tive 

(3.37) 

where 

(3.38) 

8t , there exists in L -derivative ' o r 

awp(x,t,o) ? 
— Ê — g x — s f (χ,ΐ,ω) + JJ.(x,t,r^)dr , uu 0 

Γ 9wf f(x,ttçtrtcû) 
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3W2 
Moreover, the der ivat ive -ĝ — i s L^-continuous in G0· This 
completes the proof of asser t ions 1° - 3° of Theorem 3 . 1 . 

Now combining r e l a t i o n s ( 3 . 1 ) , ( 3 . 4 ) , ( 3 . 1 2 ) - ( 3 . 1 5 ) , ( 3 . 2 0 ) , 
( 3 . 2 1 ) , ( 3 . 2 9 ) - ( 3 . 3 1 ) » ( 3 . 3 5 ) - ( 3 . 3 8 ) and ( 2 . 5 ) we find the 
v a l i d i t y od ( 3 . 2 ) . F i n a l l y , r e l a t i o n ( 3 . 3 ) immediately 
follows from ( 3 . 1 ) , ( 3 . 4 ) , ( 3 . 1 5 ) , ( 3 . 9 ) and ( 3 . 1 9 ) . Thus 
Theorem 3 .1 i s proved. 

4 . Lemmas 
In t h i s sec t ion we s t a t e lemmas which were used in the 

previous s e c t i o n s . For the sake of s impl ic i ty they are often 
formulated f o r more p a r t i c u l a r cases than i t follows from 
t h e i r appl i ca t ions . However appropriate general izat ions of 
these lemmas can be eas i ly obtained. 

L e m m a 4 . 1 . Suppose g ( x , t , c j ) , χ e Rn , t e <0,T>|U£ß 
i s a bounded measurable random funct ion, whereas f (χ,ΐ,θ,τ,ξ,ω) 
i s a random funct ion defined in the se t 

( 4 . 1 ) Gj = { x t D (Dc fi^ being a bounded closed domain), 

4 e R n , 0 T-d(<5>0), r + i < t < T , r < 9 < t ] , u t û 

and continuous in x , t , 0 , r , £ uniformly with respect to 
where Ρ(Ω^) = 1 . Moreover we assume that f o r any j8e(0, <f/2), 

f > 0 the function f i s bounded in the s e t 

( 4 . 2 ) Ĝ  = {xeD,|4|cj- ;o<r<T-<S,r+í<t<T, τ + ß<e<t-ß}, ωε fl/) 

and that the improper Lebeqgue i n t e g r a l 
t 

( 4 . 3 ) h ( x , t , r , a ) ) = / / f ( x , t , e , r , 4 ,u)g(£ ,fl,w)d£ dfl 
r Ra 

i s uniformly convergent in the set 
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(4.4) Gj s [x£ D, 0<t < T-5f r + i < t < T } , ω ε Ω ^ 4 ^ . 

Under theste assumptions the function h(x,t tr f<o) is 
continuous in the set G^ uniformly with respect to ωεΩ^. 

L e m m a 4.2. Let a l l the assumptions of Lemma 4.1 he 
sat is f ied. Suppose there exist in the set {Gj,· ue Q^j deriva-
t ives f uniform with respect to which are conti-

Si ' 
nuous in Gj uniformly with respect to weflyj. Moreover we 
assume that fo r any β ε (Ο, <S/2), γ> O the functions f are Xi 
bounded in the set (4.2) and that the integrals 

t 
(4·5) I I fx (*»ΐ.β»^δ»ω)85(ί.β,ω)άίάβ 

X Rn i 

are uniformly convergent in the set (4.2) . Under these 
assumptions there exist in the set (4.4) derivatives h 

x i 
uniform with respect to ωεΩ^, continuous in Ĝ  uniformly 
with respect to uefì^ and they are equal to the integrals 
(4.5) . 

L e m m a 4.3. We assume that f ( x ,y , z , c j ) t x t <a/|,b/|>f 

ye<a 2 »b 2 > , ζ e ωεΩ^ (P( Ω^) = 1) is a random 
function continuous in x f y , z uniformly with respect to ωεΩ^ 
and bounded in every set 

(4.6) xe<a 1 ,b 1 > , ye<a 2 ,b 2 > t ze<a, ß>c (a^b^.coe Ωη. 

Let h(y f ζ ,ω ) , y e <a2 ,b2> , ζ e (a^,bj ) , ωε Ω^ be a bounded 
measurable random function, Lp-continuous in y , z . Suppose 
that the improper Lebesgue integral 

^ I . e . for any ε>0 there are such that f o r 
any 7<]>J2 (0 »? i ) an<ä ar*y bounded domain Δ d {ξ e Ηα: 11, | < ιρ2] 
there holds in the set (4.4) the inequality 

t-jr2 

|h(x,t,r, ω) - / / f (x , t fe,r , í ,u )g (¿ ,e ,u)d¿de|<£* 
Γ+jv, Δ 
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(4.7) g(x,yiw) = J f(x,y,z,<d)h(y,z,&j)dz 
a3 

1s uniformly convergent in the set 

(4.8) xt<a1 ,b/ )> , (y,cj) e AQ, 

A 0c<a 2 ,b 2> χ Ω^ being such a set that f o r every f ixed 
(y,u)€ AQ the function h(y,z,w) is measurable with respect 
to ζ e (a^jbj ) ^K Then the function g(x,ytco) possesses the 
following properties: 

1° i t is defined fo r χ e <a1,b1> , (y,co) e A0 j 

2® measurability in the set <a1tb^> χ < a^^gy χ fy 5 

3° uniform Lp-continuity f o r xe<a/j',h/l> , y e B 0 c <a2,"b2>, 
where Bq is some set with Lebesgue measure )B0| = *>2-&25 

4° continuity in χ e uniform with respect to 
(y,ω) e AQ. 

L e m m a 4.4. Let assumptions of Lemma 4.3 be f u l f i l l e d . 
Suppose that 

( i ) there exists a derivative f x ( x , y , z , u ) uniform with 
respect to ω e Q^, 

( i i ) the derivative £χ is continuous in x,y,z uniformly 
with respect to ω eΩ^ and bounded in every set (4.6) , 

( i i i ) the integral 

(4.9) J fv (x,y,z,co)h(y,z,cj)dz 
a3 

is uniformly convergent in the set (4.8) . 
Under these assumptions the function (4.7) possesses a 

derivative g „ ( x , y t " ) uniform with respect to ωεΩ c Q. (yeB , χ y I U 
P(Qy) =1) which is equal to the integral (4.9) . Moreover, for 
this derivative properties 1°-4° of Lemma 4.3 hold true. 

^ Obviously |Aq| = ( lxP ) (A 0 ) = b g · ^ , where 1 is the 
Lebesgue measure in R. 
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Proofs of Lemmas 4.1 - 4.4 are similar to those of 
appropriate theorems for nonrandom functions. 

L e m m a 4.5. If a random function f(x,cj), xe<a,b> , 
ueÄhas Lp-derivative f'(x,co) Lp-bounded in <a,b> , then 

(4.10) |f(*<·) - f(y»0| <A|x-y|, x,y € <a,b> , 
"p 

where A = sup If' (x,·)f . 
xe<a,b> " "P 

P r o o f . Take an arbitrary ¿> 0. Since for any xe.<a,b> 
we have 

« , ν |f(j,')-f(x,')L 
A > | f ( * , . ) l p % l t o " ^ 'Ρ, 

therefore exists 6= d(x,e)> 0 such that 

(4.11) |f(y,.)-f(x,.)| <(A+t)|y-x| if ye(x-<$,x+tf)n<a,b> = K(x,i). 
Ρ 

For any x,y e <a,b> (x<y) there exist intervals K^ = 
= K(xit <5"̂), 1=1,...,η (x=x^< ... <xQ=y) such that 

η 

<x,y> c Ü K i . Choosing arbitrary y ¿ e (χ^,χ^) η K^n Ki+/), 

1=1,...,n-1 it follows from (4.11) that 

|f(x,«)-f(y,*)|p< |f(x1,«)-f(y/,»*)|p+ |fCy 1 tO-f(x2,-)| p + 

+ |f(x2,·) - f(7 2,0|p + ... + - f ( x n ' , ) I p < 

<U+t) [|x1-y1|" + |71-
χ2|+ ··· + bn-1 ""xnl] = CA+fc)|x-y| . 

This yields (4.10). 
Row we state definitions and lemmas concerning integrals 

of random functions in the Lp-sense. These Lp-integrals in-
volve as a particular case the Lebesgue integrals of random 
functions occurring in Lemmas 4.1-4.4. 
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Let f (x ,£ j ) , i c X c <a,b> (|X| =b-a), g e ß be a random 
function uniformly Lp-continuous In X. Then the Integral 

(4.12) Jf(x,(j)dx = Jf(x,6j)dx 
a χ 

Is taken in the Lp-sense, i . e . as a strong Riemann integral 
(see [ 5 ] , p.192 and [6] p.17, c f . [ 3 ] , pp.267-269). 

Now left f ( x ,u ) , ï t X c < a , t ) (b e (a, 00) or b=oo, 
|<a,b)\x|=0), ωεΩ be a measurable random function uniformly 
L -continuous in every set Xn<a,j8>, /2e(a,b). In th is c as e 
we understand the integral (4.12) as an improper strong Rie-
mann integral, i . e . 

b β 
jf (χ, ( j )dx = lim Jf(x,cj)dx (L ) . 
a ß-~b a p 

I f this L -limit exists, then we say that the integral (4.12) 
tr 

i s L -convergent. I t is easy to see that the convergence of 
p b 

the integral J |f(x,*)| dx is a sufficient condition for 

the Lp-cònvergence of the integral (4.12). 
We introduce the following assumption.· 
(H^) A random function f ( x ,y , z , c j ) , χ e. <a^,b/l>, 

y e Y c <a2 tb2> (lYl = b 2 - a 2 ) , z e Z c < a 3 , b j ) (|<a5,bj)\£| = δ ) , 

c j e ß i s measurable f o r every f ixed x,y and uniformly L -Ρ 
-continuous in every set 

(4.13) xe<a1 ,b1> , y e Υ, ζ e Ζ η <a^, β> t β e (a^»b^). 

D e f i n i t i o n . Let assumption (H^) be sat is f ied and 
l e t the integral 

(4.14) g(x,y,<j) = jp f (x,y,z,<d)dz 
a3 
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be Lp-convergent for every fixed (xfy.) e <a/)fb/j> χ Y. We say 
that the integral (4.14) is uniformly L -convergent in 
<ax),b/)> χ Y if for any ε> 0 there is ηεζ&^,ίί^) such that 

the inequality 
» b3 

|s(x.y.e ) - / f ( x ,y , z , « )dz [ p = ¡ J f ( x ,y t z , ' ) dz < ε 
Ρ 

is fu l f i l l ed for a l l (χ,y)e <a/],b1> χ Y. 
One can easily obtjain the following lemma. 
L e m m a 4.6. If assumption (H^) is satisfied and the 

integral 
S 
f ||f(x,y,z,.)|| dz 
a3 

is uniformly convergent irr <a^,b/j> χ Y, then the integral 
(4.14) is uniformly Lp-convergent in <a/),b/l> χ Y. 

L e m m a 4.7. If assumption (H^) is fu l f i l l ed and the 
integral (4.14) is uniformly Lp-convergent in <a/) lb/l> χ Y, 
then the function (4.14) is uniformly Lp-continuous' in 
<a1,b>1> χ Y. 

L e m m a 4,8. Let the assumption of Lemma 4»7 be 
satisfied. Suppose that there exists Lp-derivative fx(x,y,z,co), 
uniformly Lp-continuous in every set (4.13) and that the 
integral 

(4.15) J^fx (x,y,z,u)dz 
a3 

is uniformly Lp-convergent in <a<1,b/|> χ Y. Then the function 
(4.14) possesses Lp-derivative g^-teiy,««)), uniformly L -conti-
nuous in <a1fb^> χ Y and equal to the integral (4.15). 

The above two lemmas can be proved in the standard manner 
like the appropriate theorems for nonrandom functions. Namely, 
at f i r s t we prove that they hold true for proper integrals in 
the Lp-sense. Hence, by Theorem on uniform Lp-continuity and 
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Bandom l i nea r parabolic équation 33 

Lp -d i f f e r en t i ab i l i t y of Lp - l im i t of random funct ional se-
quence, Lemmas 4.7 and 4.8 fo l low. 

R e m a r k 4.9« Let us introduce the fo l lowing de f i n i -
t ions of uniform Ln-convergence fo r integrals 

y 
(4.16) ε(χ.7»ω) = f f(x,y,z,(J)dz, 

y »3 
(4.17) g ( x , y , u ) = J J f (x,y,z ,s ,cJ 

a2 a3 

D e f i n i t i o n . Assume that f(x,y,z,co), xe<a / l,b / )> , 
y e (a2,b2> ( - o o < a 2 < b 2 ) , ζ e Ẑ  = <a2,y ) η Ζ ( Z c < a 2 , b 2 > , 

|Z| = b2-a2), u e ß i s a random funct ion measurable fo r every 
f i xed (x,y) and uniformly Lp-continuous in every set 

xe<a1 ,b / l> , ye<a 2 ,b 2>, zeZy_j3(a2 < â  <b2, Ο <β < a'2-a2). 

We say that the in tegra l (4.16) i s uniformly Lp-convergent i n 
the set 

E = <a1,b/)> χ <a^,b2> (a£, e (a2 ,b2)) 

i f f o r any t> O there i s <f>0 such that 

7 â  
V ι 

g (x ,y , · ) - J f ( x , y , z , · )dz I <£, η e (Ο, ί ) , (x,y ) e E. 
a2 lp 

D e f i n i t i o n . Let! a random funct ion f (x ,y ,z ,s ,u) , 
X€<a / ] t b 1 >, € (a2,b2> , ζ e Zy,* s c S c <aj,bj) 

( |<a j , b j ) \ S | = Ο), ω ε Ώ be measurable fo r every f ixed 
(x,y) and uniformly Lp-continuous in every set 

χ e <a/),b/)> , y ε <a^,b2> , ze Z ^ , se S n <a 
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where a^ e (agfbg), /3 € (0,a'2-a2), γε ( a j t b j ) . The integral (4.17) 
is called uniformly Lp-convergent in the set E i f f o r any 
ε > O there exist ^ > 0 , dp e ( a , ,b , ) such that 

f o r a l i e (Ο, δ^), ι?2 e ( ( ^ » b j ) , ( x , y ) e E . 
Using these definitions one can find that Lemmas 4.5-4.8 

hold true (with obvious modifications) also for integrals 
(4.16) and (4.17). 
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