

Julian Musielak

AN APPLICATION OF MODULAR SPACES
TO A NON-LINEAR INTEGRAL EQUATION

1. Let $p(t)$ and $r(t)$ be two positive measurable functions defined in the interval $[t_0, \infty)$, where t_0 is an arbitrary real number, and let

$$P = \sup_{t \geq t_0} p(t) < \infty, \quad Q = \int_{t_0}^{\infty} r(t) dt < \infty.$$

Moreover, let $\varphi(u)$ be an even, nonnegative, convex function on $(-\infty, \infty)$, $\varphi(u) = 0$ iff $u = 0$. We suppose that φ satisfies the condition (Δ_2) for small u , i.e. there exist numbers $\beta, u_0 > 0$ such that $\varphi(2u) < \beta\varphi(u)$ for $0 < u < u_0$. We shall investigate the following integral equation

$$(1) \quad x(t) = a \int_{t_0}^t p(s)r(s)\varphi(x(s))ds + x_0(t),$$

where $x_0(t)$ is a given measurable function. It is easily seen that supposing $p(t)$ to be differentiable a.e. and $y_0(s)/p(s)$ to be locally integrable in $[t_0, \infty)$, the equation (1) is equivalent to the differential equation

$$(2) \quad x'(t) = \frac{p'(t)}{p(t)} x(t) + a p(t)r(t)\varphi(x(t)) + y_0(t) \text{ a.e. in } [t_0, \infty),$$

where

$$x_0(t) = p(t) \int_{t_0}^t \frac{y_0(s)}{p(s)} ds,$$

subject to the initial condition $y(t_0) = 0$.

We shall seek bounded solutions of the equation (1) belonging to a space X_{φ_0} which will be defined by means of the equation (1) itself, applying the general theory of modular spaces depending on a parameter (see [3]).

2. First, we shall give the necessary notions and results from the theory of modular spaces. Let (Ω, Σ, μ) be a measure space, where Σ is a σ -algebra of subsets of a nonempty set Ω and μ is a finite measure in Σ . Let X be the space of all extended real-valued functions in Ω , Σ -measurable and finite μ -a.e.; equality in X will mean equality μ -a.e. We assume that φ is a map of $\Omega \times X$ into $[0, \infty]$ satisfying the following conditions:

- 1° $\varphi(t, 0) = 0$, $\varphi(t, x) = 0$ in Ω implies $x = 0$,
 $\varphi(t, -x) = \varphi(t, x)$ for $t \in \Omega$, $x \in X$,
 $\varphi(t, \alpha x + \beta y) < \alpha \varphi(t, x) + \beta \varphi(t, y)$ in Ω for $x, y \in X$,
 $\alpha, \beta \geq 0$, $\alpha + \beta = 1$,
if $x, y \in X$ and $|x(t)| \leq |y(t)|$ a.e. in Ω , then
 $\varphi(t, x) \leq \varphi(t, y) < \infty$ in Ω ;
- 2° $\varphi(t, x)$ is a Σ -measurable function of $t \in \Omega$ for all $x \in X$.

Then φ is called a family of convex modulars depending on the parameter t . By means of φ , one may define various modulars in X , as e.g.

$$\varphi_s(x) = \int_{\Omega} \varphi(t, x) d\mu \quad \text{and} \quad \varphi_0(x) = \sup_{t \in \Omega} \varphi(t, x) \text{ (see [3])}.$$

In [1], the modular ϱ_s was applied to solve the general modular equation. Here, we shall apply ϱ_0 which seems to be more suitable to our case. ϱ_0 is a convex modular in X , i.e. $\varrho_0(x) \geq 0$, $\varrho_0(x) = 0$ iff $x = 0$, $\varrho_0(\alpha x + \beta y) \leq \alpha \varrho_0(x) + \beta \varrho_0(y)$ for $x, y \in X$, $\alpha, \beta \geq 0$, $\alpha + \beta = 1$. The linear space

$$X_{\varrho_0} = \{x : \varrho_0(\lambda x) \rightarrow 0 \text{ as } \lambda \rightarrow 0, x \in X\}$$

is called a modular space, and

$$\|x\| = \inf \{u > 0 : \varrho_0(x/u) < 1\}$$

is a norm in X_{ϱ_0} . An element $x \in X$ belongs to X_{ϱ_0} iff $\varrho(t, \lambda x) \rightarrow 0$ as $\lambda \rightarrow 0$ uniformly with respect to $t \in \Omega$. A sequence of $x_n \in X_{\varrho_0}$ tends to zero in X_{ϱ_0} iff for any $\lambda > 0$, $\varrho(t, \lambda x_n) \rightarrow 0$ as $n \rightarrow \infty$ uniformly in Ω ; the sequence (x_n) is a Cauchy sequence in X_{ϱ_0} iff for any $\lambda > 0$, $\varrho(t, \lambda(x_n - x_m)) \rightarrow 0$ as $m, n \rightarrow \infty$ uniformly in Ω .

Let for any $M > 0$, $X_{\varrho_0}^M$ denote the set of functions $x \in X_{\varrho_0}$ such that $|x(t)| < M$ a.e. in Ω . We consider the operator

$$(3) \quad [T(x)](t) = a \varrho(t, x) + x_0(t)$$

for $x \in X_{\varrho_0}^M$, where $x_0 \in X_{\varrho_0}^M$. The following result holds.

Theorem 1. Let us suppose that

$$|a| \varrho(t, M) + |x_0(t)| < M \text{ a.e. in } \Omega,$$

and let for every $x \in X_{\varrho_0}^M$ the following condition be satisfied: for every $\lambda_1 > 0$ there exist positive numbers C and λ_2 such that

$$(4) \quad \varphi[t, \lambda_2 \varphi(\cdot, x)] \leq C \sup_{s \in \Omega} \varphi(s, \lambda_1 x) \quad \text{for } t \in \Omega.$$

Moreover, let us suppose that there exists a number $\alpha > 0$ such that for any $\eta > 0$ and for all $x, y \in X_{\varphi_0}^M$, there holds the inequality

$$(5) \quad \varphi[t, \frac{\varphi(\cdot, x) - \varphi(\cdot, y)}{\eta}] \leq \sup_{s \in \Omega} \varphi(s, \frac{\alpha}{\alpha \eta} (x - y)) \quad \text{for } t \in \Omega.$$

Then the operator T maps $X_{\varphi_0}^M$ into itself and

$$|T(x) - T(y)| \leq \alpha \|x - y\| \quad \text{for all } x, y \in X_{\varphi_0}^M.$$

This theorem follows from the definition of the norm in X_{φ_0} , immediately where it is sufficient to take X_{φ_0} instead of X_{φ_s} in [1].

3. Now, let φ be defined by means of a nonlinear integral operator

$$(6) \quad \varphi(t, x) = \int_{\Omega} k(t, s, x(s)) d\mu(s),$$

where $k : \Omega \times \Omega \times (-\infty, \infty) \rightarrow [0, \infty)$ is a measurable function, $k(t, s, 0) = 0$ and $k(t, s, u) > 0$ for $u > 0$ in $\Omega \times \Omega$, $k(t, s, u)$ is an even, continuous, convex function of u for all $(t, s) \in \Omega \times \Omega$ (see [1], formula (7)). Let

$$(7) \quad \begin{aligned} k_1(t, u, v) &= \int_{\Omega} k[t, s, k(s, u, v)] d\mu(s), \\ \varphi_1(t, x) &= \int_{\Omega} k_1(t, s, x(s)) d\mu(s). \end{aligned}$$

Then the following result holds.

Theorem 2. Let

$$(8) \quad |a| \int_{\Omega} k(t, s, M) d\mu(s) + |x_0(t)| < M \text{ a.e. in } \Omega,$$

where $M > 0$. Let us suppose that the following assumptions are satisfied:

(a) for every $x \in X_{\varphi_0}^M$ and an arbitrary $\lambda_1 > 0$ there exists a number $C > 0$ such that

$$\varphi_1(t, x) < C \sup_{s \in \Omega} \varphi(s, \lambda_1 x) \quad \text{in } \Omega,$$

(b) for every $x, y \in X_{\varphi_0}^M$ and each $\eta > 0$ there holds the inequality

$$\begin{aligned} \int_{\Omega} \left\{ \frac{1}{\mu(\Omega)} \int_{\Omega} k \left[t, u, \frac{\mu(\Omega)}{\eta} (k(u, v, x(v)) - k(u, v, y(v))) \right] d\mu(v) \right\} d\mu(u) &\leq \\ &< \sup_{s \in \Omega} \int_{\Omega} k \left[s, v, \frac{\alpha}{a\eta} (x(v) - y(v)) \right] d\mu(v) \end{aligned}$$

for all $t \in \Omega$.

Then T defined by (3) maps $X_{\varphi_0}^M$ into itself and $|T(x) - T(y)| < \alpha \|x - y\|$ for $x, y \in X_{\varphi_0}^M$.

This result is obtained applying Jensen's inequality for convex functions and thus showing that (a) and (b) imply the assumptions (4) and (5) of Theorem 1 to be satisfied.

4. Let us remark that taking $0 < \alpha < 1$ in Theorem 2, T becomes a contraction operator in $X_{\varphi_0}^M$. Now, since convergence in X_{φ_0} implies convergence in measure, so $X_{\varphi_0}^M$ is a closed subset of X_{φ_0} . Hence, if we prove $X_{\varphi_0}^M$ to be complete, we may apply the Banach fix-point principle to the equation (1).

Theorem 3. If φ is given by (6), then the space X_{φ_0} is complete.

Proof. Let (x_n) be a Cauchy sequence in X_{φ_0} , i.e. $\varphi(t, \lambda(x_n - x_m)) \rightarrow 0$ as $m, n \rightarrow \infty$ uniformly in Ω , for any $\lambda > 0$. Let us fix $t \in \Omega$ and let us write $M(s, u) = k(t, s, u)$, then x_n belong to the generalized Orlicz space L_M^* over Ω and (x_n) is a Cauchy sequence in L_M^* . Since L_M^* is complete (see [2], 2.31), so $x_n(\cdot) \rightarrow x(t, \cdot)$ as $n \rightarrow \infty$ in L_M^* , $x(t, \cdot) \in L_M^*$. Consequently, $x_n(\cdot) \rightarrow x(t, \cdot)$ as $n \rightarrow \infty$ in μ -measure; but this shows that $x(t, \cdot)$ is independent of t , and we may write $x(t, s) = x(s)$ for $t, s \in \Omega$. Now, we extract a subsequence $x_{n_i}(s) \rightarrow x(s)$ μ -a.e. in Ω . Applying Fatou lemma to the sequence of functions $k[t, s, \lambda(x_{n_i}(s) - x_m(s))]$, $m = 1, 2, \dots$, we obtain

$$\varphi[t, \lambda(x_{n_i} - x)] \leq \lim_{m \rightarrow \infty} \varphi_0 [\lambda(x_{n_i} - x_m)].$$

But the right-hand side of the last inequality is so small as we like for sufficiently large i . Hence $x_{n_i} \rightarrow x$ in X_{φ_0} . Since (x_n) is a Cauchy sequence, we conclude that $x_n \rightarrow x$ in X_{φ_0} . It is evident that $x \in X_{\varphi_0}$. Thus, X_{φ_0} is complete.

Let us remark that in Theorem 3 it is sufficient to assume that $k(t, s, u) \rightarrow \infty$ as $u \rightarrow \infty$ for $(t, s) \in \Omega \times \Omega$ in place of convexity of $k(t, s, u)$ in the variable u .

From Theorems 2 and 3 and from Banach's fix-point principle it follows immediately that

Theorem 4. If all the assumptions of Theorem 2 are satisfied with $0 < \alpha < 1$ and φ is given by (6), then the equation (1) has exactly one solution in $X_{\varphi_0}^M$.

5. We turn now back to the special case considered in § 1. Let us write $r(t) = q(t) w(t)$, where $0 < q(t) < Q$ and $\int_{t_0}^{\infty} w(t) dt = 1$, and let Σ be the σ -algebra of Lebesgue

measurable subsets of $\Omega = [t_0, \infty)$. We define $\mu(A) = \int_A w(s)ds$ for any $A \in \Sigma$, then $\mu(\Omega) = 1$. Finally, let us take

$$k(t, s, u) = \begin{cases} p(t)q(s)\varphi(u) & \text{if } t_0 < s < t \\ 0 & \text{if } t_0 < t < s. \end{cases}$$

Then formula (6) takes the form

$$(9) \quad \varphi(t, x) = \int_{t_0}^t p(t)r(s)\varphi(x(s))ds.$$

We check that φ_1 defined by (7) satisfies then the condition (a) of Theorem 2. Namely, we have

$$\varphi_1(t, x) = \int_{t_0}^t \left\{ \int_u^t p(t)q(s)w(s)\varphi[p(s)q(u)\varphi(x(u))]ds \right\} w(u)du$$

and applying the inequalities $p(t) < P$, $q(t) < Q$ twice and then the inequality $\int_u^t w(s)ds < 1$, we obtain

$$\varphi_1(t, x) \leq \int_{t_0}^t p(t)r(u)\varphi[PQ\varphi(x(u))]du.$$

Applying the condition (Δ_2) for small u , we get

$$\varphi(x(u)) < b\varphi(\lambda_1 x(u)) \quad \text{for } u \geq t_0,$$

where b is a positive constant depending on λ_1 and M . Hence

$$\varphi[PQ\varphi(x(u))] \leq \frac{\varphi[PQ\varphi(M)]}{PQ\varphi(M)} PQ\varphi(x(u)) \leq c\varphi(\lambda_1 x(u)),$$

where

$$C = \frac{b\varphi[PQ, \varphi(M)]}{\varphi(M)}.$$

This proves (a).

Now, we are able to prove the following

Theorem 5. Let us suppose that the functions $p(t)$, $r(t)$ and $\varphi(u)$ satisfy the assumptions given in § 1 and that

$$(10) \quad S = \sup_{t \in \Omega} |x_0(t)| < M.$$

Let a satisfy the inequality

$$(11) \quad |a| < \frac{1}{PQ} \min \left(\frac{M - S}{\varphi(M)}, \frac{1}{K} \right),$$

where $K > 0$ is the Lipschitz constant of the function φ in the interval $[0, M]$. Then the integral equation (1) has exactly one solution in $X_{\varphi_0}^M$ and this solution is given by the formula $x = \lim_{n \rightarrow \infty} x_n$ in X_{φ_0} , where $x_n(t) = a\varphi(t, x_{n-1}) + x_0(t)$ for $n = 1, 2, \dots$

Proof. It is sufficient to apply Theorem 4, i.e. to show that the assumptions of Theorem 2 with $0 < \alpha < 1$ are satisfied. Applying (10) and (11) we see that the condition (8) is satisfied. Since (a) was proved above, it is sufficient to prove (b). Since φ is convex, it satisfies Lipschitz condition in the interval $[0, M]$ with a constant $K > 0$. Hence the left-hand side of the inequality in (b) is

$$\begin{aligned} & \int_{t_0}^{\infty} \left\{ \int_{t_0}^{\infty} k \left[t, u, \frac{1}{\eta} (k(u, v, x(v)) - k(u, v, y(v))) \right] d\mu(v) \right\} d\mu(u) < \\ & < p(t) \int_{t_0}^t q(u) w(u) \left\{ \int_{t_0}^u \left[\frac{K}{\eta} p(u) q(v) (x(v) - y(v)) \right] w(v) dv \right\} du < \end{aligned}$$

$$\begin{aligned}
 & < \frac{p(t)}{P} \int_{t_0}^t \frac{q(u)}{Q} w(u) \left[\sup_{s > t_0} \int_{t_0}^s p(s)q(v)q \left[\frac{KPQ}{\eta} (x(v)-y(v)) \right] w(v) dv \right] du < \\
 & < \sup_{s > t_0} \int_{t_0}^{\infty} k \left[s, v, \frac{\alpha}{a\eta} (x(v)-y(v)) \right] d\mu(v) ,
 \end{aligned}$$

where $\alpha = |a|KPQ < 1$, because of (11). This proves the theorem.

REFERENCES

- [1] T.M. Jędrzyka, J. Musielak: On a modular equation (I), *Funct. Approximatio Comment. Math.* 3 (1976) 101-111.
- [2] J. Musielak, W. Orlicz: On modular spaces, *Studia Math.* 18 (1959) 49-65.
- [3] J. Musielak, A. Waszak: A contribution to the theory of modular spaces, *Proceed. of the Third Prague Topological Symposium 1971*, Prague (1972) 315-319.

INSTITUTE OF MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY, POZNAN

Received January 24, 1977.

