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AN APPLICATION OF MODULAR SPACES 
TO A NON-LINEAR INTEGRAL EQUATION 

1. Let p ( t ) and r ( t ) be two pos i t ive measurable 
funct ions defined in the in t e rva l [ t Q , « ) , where t Q i s an 
a rb i t r a ry rea l number, and l e t 

oo 
Ρ = sup p ( t ) < oe, Q = Γ r ( t ) d t <«> . 

0 t o 

Moreover, l e t <p(u) be an even, nonnegative, convex funct ion 
on (—00,00), ^p(u) — O i f f u = 0. We suppose t ha t <p sa-
t i s f i e s the condition (Δ^) f o r small u, i . e . there ex is t 
numbers j 8 , u o > 0 s u c h t h a t <p(2u) <ß tp(u) f o i 0 < u < u Q . W· 
sha l l inves t igate the following in t eg ra l equation 

t 
(1) χ ( t ) = a f p(t)r(s)<p(x(s) )de + χ ( t ) , 

\ 
where z Q ( t ) i s a given measurable funct ion . I t i s eas i ly 
seen tha t supposing p ( t ) to be d i f f e r e n t i a b l e a . e . and 
y 0 ( e ) /p (e ) to be loca l ly integrable in [^o»00)» 
equation (1) i s equivalent to the d i f f e r e n t i a l equation 

(2) * ' ( * ) . | j j ] i ì ( t ) + a p ( t ) i ( t ) i f ( x ( t ) ) + j 0 ( t ) a.e.In [t0,00), 
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2 J. Musielak 

where 

γ y « ( s ) 
= J - ^ r i y d s · 

subject to the i n i t i a l condition y ( t Q ) = 0. 
We shall seek bounded solutions of the equation (1) 

belonging to a space X0 which w i l l be defined by means of 
"o 

the equation (1) i t s e l f , applying the general theory of 
modular spaces depending on a parameter (eee [ 3 ] ) . 

2j F irst , we shall give the necessary notions and results 
from the theory of modular spaces. Let (fi,ΣΖ, μ) be a measure 
space, where L i s a ^-algebra of subsets of a nonempty set Ω 
and μ is a f i n i t e measure in ΣΖ. Let X be the space of a l l 
extended real-valued functions in S3 , ΣΖ -measurable and f i n i t e 
μ-a. e. j equality in X w i l l mean equality /¿-a.e. We assume 
that ç i s a map of δ * X into [0,<*>] satisfying the fo l low-
ing conditions: 

1° ç ( t ,0 ) = O,' ç ( t , x ) = 0 in Ω implies χ = 0, 
<?(t,-x) = ç ( t , x ) f o r t e Ω, x e X , 
9(t^xx+j3y)<a<?(t,x)+ j8ç(t,y) in Ω f o r x,y e X, 
Oí, ß>0 t p6+ β = 1, 
i f x , y e X and |x(t)| « |y(t)| a.e. in Ω , then 
<?(t ,x)« <?(t,y) e i n Ω i 

2° ç ( t , x ) i s a Σ)-measurable function of t e Q f o r a l l 
χ e X. 

Then ç i s called a family of convex modulare depending on 
t'he parameter t . 3y means of ç , one may define various 
modulare in X, as e.g. 

ç s ( x ) =Jq ( t 1 x )âμ and Ç o ^ ~ ^Βββ ^ 
Ω e 
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An application of modular spaces 3 

In [1], the modular q a was applied to solve the general 
modular equation. Here, we shall apply which seems to 
be more suitable to our case. ç Q is a convex modular in X, 
i.e. ç o(x)>0, ç0(x) = 0 iff χ = 0, <p0(αχ + j3y) <aç Q(x) + 
+ /3ç0(y) for x,yeX, α,β>0, <χ+β = 1. The linear space 

Xç = { x s <?0ftx)-~0 as λ — 0 , x e X } 

is called a modular space, and 

|)x|| = inf [u > 0 s <?0(x/u)<l} 

is a norm in X p . An element x e X belongs to Χλ iff 
vo o 

ç(t,Ax)—0 as λ — 0 uniformly with respect to t t ß . 
A sequence of t e l tends to zero in Χρ iff for qny 

"o "o 
λ> 0, ç(t, λχ η)—0 as η—oo uniformly in Ω ; the sequence 
(x ) is a Cauchy sequence in X 0 iff for any λ> 0, 

"o 
ç(t,A(xn - xm))-**0 as m,n--oo uniformly in Ω . 

M Let for any M>0, X Q denote the set of functions 
10 

x e X such that |x(t)|<M a.e. in Q . We consider the 
operator 

(3) Cl(x)](t) = a 9(t,x) + x0(t) 

for χ e 
where χ e ï ! . The following result holds. vo vo T h e o r e m 1. Let us suppose that 

|a|q(t,M) + |x0(t)|<U a.e. in Ω , 

M and let for every χ e X™ the following condition be 
°o 

satisfied: for every 0 there exist positive numbers C 
and λ 0 such that 
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4 J. Musielak 

(4) 9pb, X29(«,x)l < C sup o(s, ;l,X) for t€Q . 
J sea 

Moreover, let us suppose that there exists a number a > 0 such 
that for any η>0 and for a l l x,ye ¿f , there holds the 
inequality ° 

(5) <?[t, - 9( ' »y?]<• « g ç ( s , iL. (χ - y)) for t eQ . 

Then the operator Τ maps into itsel f and 
vo 

|T(x) - T(y)| < a | x - y| f o r a l i χ,y e x j . 
"o 

This theorem follows from the definition of the norm in 
X0 , immediately where i t is sufficient to take X0 instead 

"o vo 
of X in [1] . 

"a 

Now, let ç be defined by means of a nonlinear integral 
operator 

(6) ? ( t , x ) = J k ( t , s , x ( s ) ) d / i ( s ) , 

where k : Ω* Ω » (-<*·, — [θ , 0 0 ) is a measurable function, 
k ( t , s ,0 ) = O and 1 

k ( t , s , u ) > 0 for u> 0 in Ω*Ω , k ( t . s .u ) 
is an even, continuous, convex function of u for a l l 
( t , s ) e Ω*Ω (see [1], formula (7 ) ) · let 

(7) 

k,,(t,u,v) k [ t , s ,k (s ,u ,v ) ] d/x(s), 

( t ,x ) = J k i ("t,s,x(s))d/i(s). 

Then the following result holds. 
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An appl ica t ion of modular spaces 5 

T h e o r e m 2. Let 

(8) l a l J k í t . s . M j d / i í s ) + | x 0 ( t ) | <M a . e . In Ω , 

where M>0. Let as suppose tha t the following assumptions 
are s a t i s f i e d : 

(a) f o r every x t X ? and an a rb i t r a ry λ.^>0 there 
"o 

e x i s t s a number C>0 such t h a t 

ο . ί ΐ , χ ) < C sup ç(s,;L,x) in Ω , 
sefl 

>o 
inequa l i ty 

(b) f o r every x ,y£ £ and each η > 0 there holds the >n ' 

J { ¿ j - J k [ t , u , Ä 2 · (k (u ,v ,x (v ) ) - k(u,v,y(v)))] d^(v)}d M (uk 

< sup J k [ s , v , (x(v) - y(v))]dM(v) 

f o r a l l t e Ω. 
Then Τ defined by (3) maps X« into i t s e l f and 

0 it | t ( x ) - T(y)J < α | χ - y | f o r x , y e X ™ . vo 
This r e s u l t i s obtained applying Jensen 's inequal i ty f o r 

convex func t ions and thus showing tha t (a) and (b) imply the 
assumptions (4) and (5) of Theorem 1 to be s a t i s f i e d . 

ff. Let us remark tha t taking 0 < a < 1 in Theorem 2, 
M Τ becomes a contract ion operator in X0 . Now, since con-

0 Ji vergence in X- implies convergence in measure, so Xr: 
"o V o 

i s a closed subset of Xp . Hence, i f we prove X0 to be 
"o "o 

complete, we may apply the Banach f i x - p o i n t p r inc ip le t o the 
equation (1). 
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6 J. Muelelak 

T h e o r e m 3· I f ç is given by (6) , then the space 
X0 is complete. 

o 
P r o o f . Let (x ) he a Cauchy sequence in XQ , i . e . 

vo 
ç(t f λίχ^ - x^) )—0 as m,n — ° ° uniformly in £> , for any 
λ>0. Let us f i x te Ω and let us nrite M(s,u) = k ( t , s ,u ) , 
then xQ belong to the generalized Orlicz space L^ over Ω 
and (xQ) is a Cauchy sequence in L^. Since lJJ is complete 
(see [2] , 2.31), so xQ ( · )-—x(t, ·) as n - * « in lJJ, 
x ( t , ' ) £ L ^ . Consequently, xQ ( · ) - - x ( t , · ) as η—- <χ> in 
μ-measure; but this shows that x ( t , < ) is independent of t, 
and we may write x ( t , s ) = x ( s ) for t , e c â . Now, we extract 
a subsequence xQ ( s ) - » x ( s ) /J--a.e. in Ω . Applying Patou 
lemma to the sequence of functions k [ t , s , λ(χη (s ) - xm (s ) )J, 

m = 1 ,2 , . . . , we obtain 

- x ) ] < Ä , < ? o [ W l Q i - xm>] ' 

But the right-hand side of the last Inequality is so small as 
we like for sufficiently large i . Hence xQ —»-x in X^ . 

Since (xQ ) is a Cauchy sequence, we conclude that *n—-* in 
Χ» . I t is evident that χ eXQ . Thus, XQ is complete, 

"ο "ο Ό 
Let us remark that in Theorem 3 i t i s sufficient to 

assume that k ( t , s , u ) a s u—oo for ( t , s ) e ö * i ? in 
place of convexity of k ( t , s ,u ) in the variable u. 

Prom Theorems 2 and 3 and from Banach's fix-point 
principle i t follows immediately that 

T h e o r e m 4. I f a l l the assumptions of Theorem 2 
are satisfied with 0<<x<1 and 0 is given by (6), then the 
equation (1) has exactly one solution in XÎ, · 

8 

I 
5. We turn now back to the special case considered in 

1. Let us write r ( t ) = q ( t ) w (t ) , where 0 < q ( t ) < Q and 

w(t)dt = 1, and let Σ^ be the tf-algebra of Lebesgue 
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An application of modular spaces 

measurable subsets of Ω= Γ^ηΐ00)· define μ(Α) = /w(s)ds 
A 

for any A e E , then μ(Ω) = 1. F inal ly , l e t us take 

' p(t)q(s)(f(u) i f t < s < t 
k ( t , s , u ) = 

0 i f tQ < t < s . 

Then formula (6) takes the form 
t 

(9) ? ( t , x ) = / p(t)r(e)<p(x(e))ds. 
*ο 

We check that defined by (7) s a t i s f i e s then the con-
dition (a) of Theorem 2. Namely, we have 

ç 1 ( t , x ) = J Jp(t)q(s)w(s)cp[p(s)q(u)<|>(x(u))]da 

V u 

w(u)du 

and applying the inequal i t ies p ( t ) < P , q ( t ) < Q twice and 

then the inequality J w(s)ds<1, ne obtain 
u 

t 
( ^ ( t . x X j p(t)r(u)cp[PQ q>(x(u))]du . 

Applying the condition (Δ2) for·small u, we get 

(f)(x(u ) ) ^ b (p(^,^x(u)) for u > t 0 , 

where b i s a positive constant depending on /Lj and M. 
Hence 

<p[PQ φ(χ(α))] < ¡ j g j l PQ φ(χ(u)) < C tf^xíu» , 
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8 J. Musielak 

where 
_ bqÇPQ «(lili 
" φ (M) 

This proves (a). 
Now, we are able to prove the following 
T h e o r e m 5· Let us suppose that the functions 

p(t), r(t) and <p(u) satisfy the assumptions given in § 1 
and that • 
(10) S = supess |x„(t)|<M. 

teß ' 0 ' 

Let a satisfy the inequality 

(11) 

where K > 0 is the Lipschitz constant of the füncbion cp in the 
interval [0,m]. Then the integral equation (1) has exactly 
one solution in 

£ and this solution is given by the for-
"o 

mula χ = lim χ in ïç , where xQ(t) = aç(t,x ,j) + x0(t) η—» 'o 
for η = 1,2,... P r o o f . It is sufficieçt to applv Theorem i.e. to s 
show that the assumptions of Theorem 2 with 0 < a < 1 are 
satisfied. Applying (10) and (11) we see that the condition 
(8) is satisfied. Since (a) was proved above, it is sufficient 
to prove (b). Since φ is convex, it satisfies Lipschitz con-
dition in the interval [0,M] with a constant K>0. Hence 
the left-hand side of the inequality in (b) is 

oo Γ σο Λ 

j I Jk[t,u, 1 (k(u,v,x(v)) - ^,ν,7(ν)))]ά,α(ν)|ά/ι(ιΟ < 

t r u < p ( t ) | q(u)w(u)J I p(u)q(v)(x(v) - y(v) )Jw(v)dv^du < 
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Αα application of modular spaces 9 

t s 
<ψ> j ^ w ( a ) , sup Jp(s)q(v)<f [^p(x(v)-y(v))]v»(v)dv du< 

< sup 
8>t, 

Jk[s,v, ^ (x(v)-y(v) )J d/i(v) , 

where a = |a|KPQ<1, because of (11). This proves the 
theorem. 
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