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AN APPLICATION OF MODULAR SPACES
TO A NON-LINEAR INTEGRAL EQUATION

1. Let p(t) and r(t) be two positive measurable
functions defined in the interval [t , ), where t, 1is an
arbitrary real number, and let

P=osup plt)<ee, Q =fr(t)dt <oo ,
2t 4
0

Moreover, let ¢(u) be an even, nonnegative, convex functiom
on (-o,e), ¢(u) =0 4iff u = O. We suppose that ¢ sa-
tisfies the comdition (Aa) for small u, i.e. there exist
numbers B ,u,>0 such that ¢(2u)<pg(u) for O<u<u,. We
shall investlgate the following integral egquation

t
(1) x(t) = afp(t)r(s)cr(x(s))d- + x,(¢),

t

0

where (t) 48 a given measurable function. It is easily
seen that supposing p(t) +to be differentiable a.e. and
¥o(8)/p(s) to be locally integrable in [t50°°), the
equation (1) is equivalent to the differential equatiom

(2) x (3) = B¥l x(t) + 2 p(6)2(2)g(x(4)) + 7, (8) me.tn [t =9,
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2 J. Musielsk

where
%
¥, (8)
xo(t) = p(t)f -%TS_) ds ,
t
)
subject to the initisl condition y(to) = 0,

We shall seek bounded solutions of the equation (1)
belonging to a space X? which will be defined by means of
(o}

the eguation (1) itself, applying the general theory of
modular spaces depending on a parameter (see [3]).

2, First, we shall give the necessary notions and results
from the theory of modular spaces. Let (Q,%L, ,u) be s measure
space, where }_ is a §-algebra of subsets of a nonempty set Q
and u4 1is a finite measure in Y., Iet X be the space of all
extended real-valued functions in &2, L_ -measura¥le and finite
H~8.8ej equality in X will mean equality p-~a.e. We assume
that ¢ 1is a map of Qx X into [0,o°] satisfying the follow-
ing conditlions:

1° o(t,0) = 0, o(t,x) =0 in R implies x = O,
o(ty,=x) = ¢(t,x) for teQ, xek,
o(t,ax+py)<ag(t,x)+ Bo(t,y) in Q for x,yeX,
oy, 420, o+p =1,
if x,yeX and |x(t)]<|y(t)| a.e. in Q, then
o(t,x)< 9(t,y)<in Q3

2° o(t,x) is a 3 -measurable function of te¢ Q for all
xe X,

Then ¢ is called a family of convex modulars depending on
t'hg parameter t. By means of ¢ , one may define various
modulars in X, as e.g.

05(x) -.-bfq(t,x)dp and g, (x) = sup o(t,x) (see [3]).
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An application of modular spaces 3

In [1], the modular ¢, was applied to solve the general
modular equation., Here, we shall apply %o which seems to
be more suitable to our case. @, 1is a convex modular in X,
fe6. 0 (x)>0, o (x) =0 iff x =0, @ @x+py) < ag,(x) +
+ Bo,(y) for x,yeX, a,f>0, a+p = 1. The linear space

qu = {x H Qo(lx)——o as A—0, x¢ X}

is called a modular space, and
Jx| = 1ot {u>0 : o (x/u) <1}

is a norm in X? . An element xe¢ X belongs to XQ iff
0 o

Q(t,Ax)=0 as A—=O0 uniformly with respect to teq.
A sequence of X, € X tends to zero in X iff for any
?o QO

A>0, o(t, ix,)~0 as n—oco uniformly in Q; the sequence

(xn) is a Cauchy sequence in X€> iff for any A> 0,
o
o(tya(x, - x))~0 as myn—=co uniformly in Q.

M
%

xexq such that |x(t)|<M a.e. in Q. We consider the
o

let for any M>0, X denote the set of functions

operator

(3) [Tx)] (+) = a o(t,x) + x,(t)

for xexlg s+ Where xoexg . The following result holds.
o . o}

Theorem 1. Let us suppose that

|aje(t,M) + |xo(t)|<M a.e, in Q ,

and let for every ,:ze}[]:;I the following condition be
o

satisfied: for every 7L,]> O there exist positive numbers ¢
and A, such that
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4 J. Muslelak

s A < B, t t .
() o[ty 2590 4x)] < css:g o(8y A4x) for teQ

Moreover, let us suppose that there exists a number a>0 such
that for any q>0 and for all =x,y¢ X‘g s there holds the
inequality °

Q0 yx) = ol y)] . ( a4 (x - )
(5) Q{t, 7 ]< Bseus (S an (x -y)) for teQ.
Then the operator T maps Xlg into itself and

o

I?(x) - T(¥)] < a)x - yﬂ for all x,yexg .
)

This theorem follows from the definition of the norm in
Xq s 1immediately where 1t is sufficlient to take XQ instead
o] o

of X in [1].
s

3. Now, let ¢ be defined by means of a nonlinear integral
operator

(6) o (%) =!k(t.s.x<s>) du(s),

where k t QxQ»(-=o°,00)—=[0,=0) i8 a measurable function,
k(t,5,0) = O and! k(t,8,u)>0 for u>0 in QxQ, k(t.s.u)
is an even, continuous, convex function of u for all
(t,8) e QxQ (see [1], formula (7)). ILet

k, (tyu,v) =Jk[t,s,k(s,u,v)] du(s),

04 (t,x) =[k,I (t,s,x(s8))du(s).

Then the following result holds.
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An application of modular spaces 5

Theoren 2. Ilet

(8) IaIJk(t,s,u)dF(s) + |3, (8)] <M ase. 10 Q,

where M>0., Let us suppose that the following assumptions
are satisfied:

(a) for every xe¢ Xg and an arbitrary 11>0 there
o

exists a number C>0 such that

eq(tyx) < C sup o(s,,x) 1n Q,

(b) for every x,y€ x‘g and each 7>0 there holds the
o

inequalilty

J‘{F}ﬁ)—!k[t.u’ E(TQ)- (k(u.v.x(v)) - k(u,v.y(v)))] d#(v)}dp(u)g

< sup!k[s,v, —gy)- (x(v) - y(v))]dp(v)

seQ

for all teQ.
Then T defined by (3) maps th into itself and
M
Co
This result is obtained applying Jensen’s inequality for
convex functions and thus showing that (a) and (b) imply the

assumptions (4) and (5) of Theorem 1 to be savisfied.

o
I7(x) - P(F)l < afx - y] for x,yeX

4, Let us remark that taking O<a<1 in Theorem 2,

T becomes a contraction operator in X’g o« Now, since con-
o

vergence in X implies convergence in measure, so XMQ
o

%o

is a closed subset of X‘e « Hence, if we prove XQ to be
o] o

complete, we may apply the Banach fix-point principle to the

equation (1).
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6 _ . J. Musielak

Theorem 3. If ¢ is given by (6), theun the space

X, 1is complete.

e
° Proo f. ILet (x,) be a Cauchy sequence in XQO, i.e.
o(ty Alx, - x;))~0 as myn--co uniformly in @, for any
A>0, ILet us fix teQ and let us write M(s,u) = k(t,s,u),
then X, belong to the generalized Orlicz space L';u over Q
and (xn) is a Cauchy seguence in L’id. Since L& is complete
(see [2], 2.31), s0 x,(-)=x(t,:) as n--oo in L;ﬁ,
x(t,')eL;d. Consequently, xn(')——x(t,-) as n-—=oo in
lU-measurej but this shows that x(t,.) is independent of t,
and we may write x(t,s) = x(8) for t,eec¢f. Now, we extract
a subseguence xni(s)-—x(s) M-a.e. in Q. Applying Fatou
lemma to the sequence of functions k[t,s, a(xni(s) - xm(s))} ,

m=1,2,0.., We obtain
‘ 1im .
?[t’l(xni - x)] < 5% [Mxni - xm):] y

But the right-hand side of the last 1nequé11ty is 80 small as
we like for sufficiently large 1i. Hence X, —~X in XQ .
b ()

Since (xn) is a Cauchy sequence, we conclude that x —-x in

n
XQ . It is evident that xer o Thus, x? is complete.
°

o (o]
Let us remark that in Theorem 3 1t is sufficient to

assume that k(t,s,u)—=ecc as u-—=oco for (t,8)e D+« in
place of convexity of k(t,s,u) in the variable u.

From Theorems 2 and 3 and from Banach'!s fix-point
principle it follows immediately that

Theorem 4., If all the assumptions of Theorem 2
are satisfied with O<o <41 and @ is given by (6), then the
equation (1) has exactly one solution in Xg .

0

5. We turn now back to the special case considered in

§ 1. Let us write r(t) = q(t) w(t), where 0<g(t)<Q and

Iw(t )at = 1, and let 3. be the 6-algebra of Lebesgue
o
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An application of modular spaces 7

measurable subsets of Q= [t,,e0). We define u(A) = {w(s)ds
for any Ac¢ ¥, then u(Q) = 1. Finally, let us take

p(t)g(s)gu) 1f ¢ <s<t

k(t,s,u) =
0 1if to<t<s.

Then formula (6) takes the form
%
(9) o(t,x) { p(t)r(s)g(x(s))ds.
o
We check that 99 defined by (7) satisfies then the con~
dition (a) of Theorem 2. Namely, we have

trt
9q(t,x) = f{fp(t)q(S)W(S)cp[p(S)Q(u)q(x(u))]da w(u)du
to u

and applying the inqualities p(t)<P, q(t)<Q twice and
then the inequality fw(s)ds <1, we obtain
u

t

91 (t,0) < [ p(t)r(0)g[PQ glx(a))]au.
t
0

Applying the condition (4,) for: small u, we get
p(x(u)) < b g(A4x(u)) for uxt

o,

where b is a positive constant depending on 11 and M,
Hence

o[PQ ¢(x(u))] < %—%}1 PQ ¢(x(u)) < C g(A4x(u)),
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8 J. Musielak

where

¢ = 24P oM
) M
This proves (a).
Now, we are able to prove the following
Theorem 5, Let us suppose that the functions
p(t), r(t) and ¢(u) satisfy the assumptions given in § 1
and that

(.‘IO) S = supess |xo(t)|< M.
te 2

Let a satisfy the inequality

1 M-5 1
(11) |a|<—ﬁmin<mo—f

where K>0 1s the Lipschitz cbnstant of the function ¢ in the

interval [O,M]. Then the integral equation (1) has exactly

one solution in Xg and this solution is given by the for-
o

mula x = lim x, in XQO, where xn(t) = aq(t,'xn_1)+xo(t)

n—.@
for o =1,2,...

Proof, It is sufficient to applv Theorem 4, i.e. to
show that the assumptions of Theorem 2 with O<a <1 are *
satisfied. Applying (10) and (11) we see that the condition
(8) is satisfied. Since (a) was proved above, it is sufficient
to prove (b). Since ¢ 1is convex, it satisfies Lipschitz con-
dition in the interval [O,M] with a comstant EK>0. Hence
the left-hand side of the inequality in (b) is

![fk[t,u, % (k(u,v,x(v)) - k(u,v,y(v)))] dp(v)}dp(u) <

t

o' %o

% ‘a
< p(t) IQ(u)w(u)[ I [% pu)g(v)(x(v) - y(v))]w(v‘)dv}du <
0 o
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An application of modular spaces 9

.t s
<21gl)fg‘%ﬁ w(u) 86:20 {p(s)q(v)q [K%Q (x(v)-y(v))]w(v)dv du<
(o]

%

<Bs:£° !k S,V, gr_; (x(v)-y(v))] dulv),
0

where o = |a]KPQ<1, because of (11). This proves the
theorem.
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