

Elżbieta Ambrosiewicz

ON THE PROPERTY W FOR MODULAR GROUPS

In agreement with [1] we assume that

- a) $K_w = \{g \in G : o(g) = w, w \in \Omega\}$,
- b) the group G has property W if for every $w \in \Omega$ we have $K_w K_w \leq G$.¹⁾

In this note we shall investigate the question whether the property W holds for modular groups.

Lemma 1. If G_1 is a proper subgroup of G , then the set $(G - G_1)^2$ is a subgroup of G .

Proof. If the thesis did not hold, then for some elements $g_1, g_2, g_3, g_4 \in G - G_1$ we would have $g_1 g_2 g_3 \in G_1$ and $g_1 g_2 \in G_1$ or $g_3 g_4 \in G_1$. Let $g_1 g_2 \in G_1$, then $(g_1 g_2)^{-1} g_1 g_2 g_3 \in G_1$, which contradicts the assumption $g_3 \notin G_1$.

We have to show still that the second condition for subgroup also holds, i.e. if $g_1, g_2 \in G - G_1$ then $g_1 g_2 \in (G - G_1)^2 \Rightarrow g_2^{-1} g_1^{-1} \in (G - G_1)^2$. If this were not true, then we would have

$$g_2^{-1} g_1^{-1} \notin (G - G_1)^2 \Rightarrow g_2^{-1} \notin G - G_1$$

or

$$g_1^{-1} \notin G - G_1 \Rightarrow g_2^{-1} \notin G_1 \quad \text{or} \quad g_1^{-1} \notin G_1.$$

Since G_1 is a group by assumption, we infer that $g_2 \in G_1$ or $g_1 \in G_1$. But this contradicts the assumption that $g_1, g_2 \in G - G_1$.

¹⁾ Here Ω denotes the set of natural numbers, $o(g)$ is the order of g , $A \leq G$ means that A is a subgroup of G .

Definition 1. A finite group G is called a P -group if one of the following conditions holds:

1. G is an elementary abelian p -group.

2. G is a group with generators a_1, a_2, \dots, a_n, b and with the defining relations $a_i^p = b^q = 1$, $a_i a_j = a_j a_i$, $b a_i b^{-1} = a_i^r$ where $r \neq 1$, $r^q = 1 \pmod{p}$ (see [2] p.28).

Definition 2. A finite group G is called P_o^* -group if it has a normal divisor N which is an abelian P -group such that the quotient group G/N is a cyclic p -group and interior automorphisms induced by the elements in G have for every $a \in N$ the following form $a \rightarrow a^r$, where r does not depend on a and satisfies the conditions $r \neq 1$, $r^q = 1 \pmod{p}$.

Lemma 2. A P_o^* -group has the property W .

Proof. Let G be a P_o^* -group. By definition, we have

$$G/N = \left\{ N, Nb, Nb^2, \dots, Nb^q, \dots, Nb^{q^k-1} \right\},$$

where N is an abelian P -group, and the cosets are generated by an element b such that $b^{q^k} = 1$. Hence an arbitrary element $g \in G$ has the form $g = a b^i$. Since

$$\forall g \in G \quad \forall a \in N \quad g a g^{-1} = a^r, \quad r \neq 1, \quad r^q = 1 \pmod{p}$$

we have

$$(ab^i)^n = a^{r^{(n-1)i}} b^{ni} = a^{\frac{r^{ni}-1}{r^i-1}} b^{ni}$$

Let us fix the order of the element $ab^i \in G$.

a) if $q \nmid i$, then $o(ab^i) = q^k$, because

$$(ab^i)^{q^k} = a^{\frac{r^{iq^k}-1}{r^i-1}} b^{iq^k} = (a^p)^{\frac{r^i-1}{r^i-1}} (b^{q^k})^i = 1.$$

b) If $i = mq^\alpha$, where $0 < m < q^{k-\alpha}$, $q \nmid m$,
then $\phi(ab^i) = pq^{k-\alpha}$, because

$$\begin{aligned} (a b^{mq^\alpha})^{q^{k-\alpha}} &= \frac{a^{mq^k-1}}{a^{mq^\alpha-1}} \cdot 1 = a^{\frac{(sp+1)^{mq^{k-1}}-1}{(sp+1)^{mq^{\alpha-1}}-1}} = \\ &= \frac{(sp)^{mq^{k-1}-1} + mq^{k-1} (sp)^{mq^{k-1}-2} + \dots + mq^{k-1}}{(sp)^{mq^{\alpha-1}-1} + \dots + mq^{\alpha-1}}, \end{aligned}$$

where the exponent of the power is not divisible by p even when $p \mid m$. Hence the group G has the following complexes

$$K_1, K_p = \{a \in N, a \neq 1\}, K_{q^{k-\alpha}} = \{b^{mq^\alpha}, 1 \leq m < q^{k-\alpha}, q \nmid m\},$$

$$K_{pq^{k-\alpha}} = \left\{ ab^{mq^\alpha}, a \neq 1, 1 \leq m < q^{k-\alpha}, q \nmid m, 0 < \alpha < k-1 \right\},$$

$$K_{q^k} = \left\{ ab^i, q \nmid i, a \neq 1 \vee a = 1 \right\}.$$

It is clear that $K_1 K_1 \leq G$. We also have $K_p K_p = N \leq G$. The complex $K_{q^{k-\alpha}}$ consists of the elements of a cyclic group, hence by [1] we have $K_{q^{k-\alpha}} K_{q^{k-\alpha}} \leq G$. Since

$G_1 = N \cup K_{q^{k-\alpha}} \cup K_{pq^{k-\alpha}}$ for $0 < \alpha < k-1$ is a subgroup of G , by Lemma 1 we have $K_{q^k} K_{q^k} = (G - G_1)^2 \leq G$.

It remains to investigate whether $K_{pq^{k-\alpha}} K_{pq^{k-\alpha}}$ is a subgroup of G . We have

$$\begin{aligned} a_1 b^{m_1 q^\alpha} a_2 b^{m_2 q^\alpha} a_3 b^{m_3 q^\alpha} a_4 b^{m_4 q^\alpha} &= \\ = a_1 a_2 a_3 a_4^{m_1 q^\alpha} b^{(m_1+m_2)q^\alpha} a_4^{(m_1+m_2+m_3)q^\alpha} b^{(m_1+m_2+m_3+m_4)q^\alpha} & \end{aligned}$$

Let us denote

$$a_5 = a_2^{m_1 q^\alpha} a_3^{(m_1+m_2)q^\alpha} a_4^{(m_2+m_2+m_3)q^\alpha}.$$

Since for i such that $q|i$ we have

$$a^{r^i} = (a^{r^q})^s = a^{1p+1} = a, \text{ it follows that}$$

$$(*) = a_1 a_5^b \stackrel{(m_1+m_2+m_3+m_4)q^\alpha}{=} \begin{cases} a_1^{m_5 q^\alpha} a_5^{m_6 q^\alpha} & \text{when } a_5 \neq 1, \\ \bar{a}_1^{m_5 q^\alpha} \bar{a}_2^{m_6 q^\alpha} & \text{where } \bar{a}_1 \bar{a}_2 = a_1, \bar{a}_1 \neq 1, \bar{a}_2 \neq 1 \text{ when } a_5 = 1 \end{cases}$$

Hence we see that the lemma holds for all complexes of the group G .

Lemma 3. Every modular p -group has the property W .

Let $G = G_1$ be a finite modular p -group. Let p^{α_0} denote the highest order of the elements of this group. Then by a corollary to Lemma 1.7 of [2] we have $G_1 - K_{\alpha_0} = p$
 $= G_2 < G_1$. By Lemma 1 this implies $K_{\alpha_0} K_{\alpha_0} < G_1$. Using an analogous argument for modular subgroups of G in the sequence $G_1 > G_2 > \dots > E$ we obtain that $K_{\alpha_1} K_{\alpha_1} < G$ for every K_{α_1} being the complex of the elements of highest order of the group G_{i+1} .

Theorem 1. Every finite modular group has the property W .

Proof. The validity of this theorem follows from [2] th. 13, Lemmas 2 and 3 and from the fact that the direct product of groups having the property W , whose orders are relatively prime, has the property W .

Theorem 2. Every modular group possessing elements of infinite order has the property W .

P r o o f. Let G_1 denote the set of elements of finite order in the group G . By [2] (theorems 1.10 and 1.11), G_1 is abelian. By [1], for all w expressing the orders of abelian elements of G_1 , we have $K_w K_w \leq G$. Moreover, $G - G_1 = K_\infty$, and from Lemma 1 we have $K_\infty K_\infty \leq G$.

T h e o r e m 3. Every locally finite modular group G has the property W .

P r o o f. Any four elements a_i of order w belonging to G generate a finite subgroup $H = (a_1, a_2, a_3, a_4)$. By Theorem 1 we infer that the group H has the property W . Hence $a_1 a_2 a_3 a_4 = a_5 a_6$, where $o(a_5) = o(a_6) = w$.

BIBLIOGRAPHY

- [1] E. Ambrosiewicz: On groups having the property W , *Demonstratio Math.* 10 (1977) 361-383.
- [2] M. Sudzik: *Строение группы и строение структуры её подгрупп*. Москва 1960.

DEPARTMENT OF MATHEMATICAL AND NATURAL SCIENCES, UNIVERSITY OF WARSAW, BIAŁYSTOK BRANCH

Received November 15, 1976.

