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SUR LES FONCTIONS UNIVALENTES, BORNÉES, 
SATISFAISANT DEUX AU MOINS ÉQUATIONS 

1j Soit S^ l a c lasse des fonct ions holomorphes, univa-
l en te s dans l e disque unité U = [z :|z| < l j , de l a forme 

2 2 ^n (1) f (z ) = b^z + b2z + . . . = b^ (z + a 2 z + . . . ) , aQ = -ç- » 

avec et remplissant l ' i n é g a l i t é 

(2) |f (z)| < 1 pour ζ e U. 

Les points x,, , x 2 , y 2 , . . . , x Q , y a , où x^ = r e j ^ j , 
y ĵ = ι correspondent aux fonct ions de l a c l a sse 
S,], forme un ensemble dans l ' e space de 2n-1 dimensions. 
La c l a s se S^ devient compacte par l ' a d d i t i o n de l a fonction 
f = 0, a l o r s l 'ensemble l7nu {θ} est fermé. On peut démon-
t r e r que {θ} es t un domaine fermé, topologiquement équ i -
va lent à l a sphère de 2n-1 dimensions, [5]. Soit 
F = , x 2 , y 2 , . . . « χ η ι ϊ η ) u n e fonction r é e l l e remplissant l e s 
condit ions: 

(A) Έ e s t . d é f i n i e dans l 'ensemble ouvert 0 contenant 

(B) F et ï\j = -g- ( j j ^ - i J j - ^ sont continues dans 0 , 

(C) I grad ï | 0 dans 0 . 
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2 J . áladkowska 

Le t r o i s résu l ta t s suivants ont été donnés par Schaeffer 
et Spencer [5] et également par Hoyden [4 ] . 

I . Toute fonction f e Ŝ  l i é e avec le point x^ ,x2 , . . . ,yQ , 
auquel l a fonction F a t te int sa valeur l a plus grande dans 
l'ensemble doit s a t i s f a i r e à l 'équation d i f f é r e n t i e l l e 

(3) ( V ) 2 *(»> = Q<">, 

n-1 A j=-n+1 B 

où P(w) = > ' - i , Q(z) = ) - j - » 
j=-n+1 d = n _ i z«3 

A ' F A - A 
0 ksj+1 J 0 

¿ = 1 , . . . , n - 1 , 

A0 = 2" P1 b^ + re L U b,. P. 
k=2 k *k 

n-0 
=ΣΖ k ^ k ^ » Β - . ι = ' Β . ι · á = 1 n - 1 ' "Ô k ' à 

Bo = 2 F1 b1 + r e { £ k bk »k 

( f (z 
k=d 

Les dérivées F j sont prises au point , * 2 » · · · » ϊ η · De plus, 
l e s fonctions P(w) et Q(z) sont: 

( i ) non-négatives dans 3U = [ z î Izl = 1}·, 
( i i ) chacune d ' e l l e s y admet une racine double au moins. 
R e m a r q u e . Une équation de l a forme (3 ) , où les 

functions P(w) et Q(z) remplissent les conditions i i ) et 
( i i ) , sera appelée JD^-équation et toute fonction, qui est 
holomorphe dans U, possède au point 0 le développement de 
la forme (1) avec b^> 0 et s a t i s f a i t dans U à une 5>n-é-
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Sur les fonctions univalentes 3 

quation, sera dite 3)Q-fonction [4], [5]. Il est évident que 
la condition nécessaire pour qu'une 5)Q-équation ait une 
solution analytique au point 0 est la coudition suivante: 
si k est le plus grand nombre naturel tel que R Λ ¿ 0, k—1 
alors = b^ B ^ et A^ = 0 pour Le nombre 
k sera dit degré de la ¿)Q-équation. 

II. Si w = f (z) est une S>n-fonction, alors elle est 
univalente dans U, remplit la condition (2) et, en outre, 
il existe un arc de la circonférence 9U par lequel f(z) 
se prolonge comme fonction continue, en le transformant sur 
un arc de la circonférence {w: |w| = 1}. 

III. Toute 2Q-fonction correspond à un certain point de 
la frontière du domaine et inversement à tout point de 
la frontière de 2)Q, à l'exception de 0, il correspond 
exactement une ¿^-fonction. 

Dans cette note il s'agit des fonctions qui satisfassent 
à plusieures 2>Q-équations. On pourrait donc supposer que 
ces fonctions correspondent aux points de la frontière du 
domaine auxquels se traversent, tout au moins, deux 
surfaces de la frontière, pendant que les fonctions qui ne 
satisfassent qu'à une seule ¿>a-équation correspondent aux 
points se trouvant sur la partie plate de la frontière. 

Schaeffer et Spencer [5] et dernièrement Kubota [2] 
s'occupent des fonctions de la classe S (de toutes fonctions 
univalentes dans U) et satisfaisant à plusieures ¿^-équa-
tions. 

2. Démontrons tout d'abord quelques lemmes utiles pour ce 
qui suit. 

L e m m e 1. S i f est une Äa-fonction satisfaisant, 
tout au moins, à deux ¿Inéquations de degrés distincts, 
alors 

(a) elle se prolonge sur tout le plan comme fonction 
algébrique 

(b) elle ne peut prendre aux points 0 et 0 0 que les 
valeurs 0 et « respectivement; 
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4 J. áladkowska 

(c) tous les éléments tie la fonction J au centre O ou 
0 0 sont non-ramifiés et ont les éléments Inverses; 

(à) si ρ désigne le nombre des éléments de la fonction 
au centre 0, alors Τ satisfait à l'équation algébrique 

de la forme 

(4)· P(z,w) = bQ(z) vP + ^(zJwP - 1 + ... + bp(z) =0, bQ(z) — 0, 

oû bQ(z),...,bp(z) sont des polynomes en ζ dont les de-
grés ne dépassent pas le nombre p, l'un d'eux ayant exac-
tement le degré p; ces polynômes n'ont pas de facteur com-
mun du degré positif; P(z,w) est, par contre, comme le po-
lynôme de la variable wt irreductible, c.-à-d. il ne se 
décompose pas en polynômes, des degrés positifs, aux coeffi-
cients étant des polynômes de la variable z. 

(e) Soient deux ^-équations de degrés k et 1 res-
pectivement, k<l, et soient q fonctions holomorphes 
w = w(z), n(0) = 0, distinctes dans chaque voisinage du 
point 0, satisfaisant à ces équations, alors le nombre q 
remplit l'inégalité 

(5) q< min(k-1, 1-1). 

Cette même inégalité est rempllte au cas, lorsque q désigne 
le nombre des fonctions méromorphes w = w(z), w(0)=oo, 
distinctes dans chaque voisinage d|u point 0 et satisfaisant 
à deux ¿>a-équations. Les fonctions w = w(z), w(0) = 0, 
sont déterminées d'une façon univoque par w'(0) est les 
fonctions w = w(z), w(0) = oo , par limfz w'(z)]. 

z»0 J 

D é m o n s t r a t i o n . Supposons que la fonction f 
satisfait aux 5>Q-équations de la forme 

où A_J = , B_J=BJ, J = 1,...,k-1, A Q, Bq - réels, et 
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Sur l e s f o n c t i o n s u n i v a l e n t e s 5 

? r 1-1. η 
( 7 ) 

V W 7 j=-l+1 WJ j=-l+1 Z J 

où C_j = CTj, D_J = D j , j = 1 , . . . , 1 - 1 , CQ, D0 - r é e l s , e t 
s o i t k < 1 . 

( a ) En d i v i s a n t ( 6 ) e t ( 7 ) membre par membre, nous o b t e -
nons que w = f ( z ) rempl i t l ' é q u a t i o n 

. T 2k-2 „ s _2k-2 
1 - k k-1 + · · · + A k-1 w _ l - k ^k-1 + » · • + " k - 1 z 

( 8 ; w 2\-P = p i - 2 ' 
C l _ 1 + . . . + C j ^ w ^1-1 + . . . + ζ 

donc e l l e se prolonge comme une f o n c t i o n a lgébr ique J e t 
e l l e f a i t correspondre à t o u t e va leur de ζ au plus 1 -2 
v a l e u r s de w. 

(b) Supposons, au c o n t r a i r e , que l e nombre wQ t 0 , » 
e s t une des v a l e u r s de l a f o n c t i o n 7 au point 0 . I l 
e x i s t e r a i t a l o r s un élément au c e n t r e 0 de l a forme 

oo d 
( 9 ) w = w(z) = w + Σ Ζ c . zm , c ¿ 0 , 

0 d=q 0 q 

où q > 1 , m>1 sont e n t i e r s . I l e s t f a c i l e à v o i r que 
' . i f f — - 0 , lorsque ζ — 0 , donc l ' é l é m e n t (9 ) ne rempl i -
r a i t aucune des équat ions ( 6 ) , ( 7 ) . En e f f e t , mettant w(z) 
dans ( 6 ) ou (7 ) e t f a i s a n t tendre ζ v e r s 0 , nous o b t i e n -
drons chaque f o i s 0 au premier membre e t oo au second. 
De même, nous a r r i v o n s à l a c o n t r a d i c t i o n dans l e cas d'un 
élément au c e n t r e o o . 

( c ) Supposons que w = w(z) e s t un élément de l a f o n c -
t i o n a lgébr ique 3~ t e l que w(0) = 0 . En s u b s t i t u a n t w(z) 
dans ( 8 ) , ex t rayant l a ( l - k ) -ème r a c i n e de s e s deux membres 
e t tenant compte que 

( 1 0 ) Ak_1 = B ^ , 
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6 J . Sladkowska 

(11) c i - i = b í - 1 D l - 1 » 

dous obtenons dans un certain voisinage du point 0 l a r e l a -
t ion 

i f (12) w(z)(l + λ^ w(z) + . . . ) = ΐ^ e z(1 + μ^ζ + . . . ) » 

Onr 
où T= G IZ2 » á = 0»· · · 1l-k-1 · De (12) i l resulte que 
w(z) est un élément non-ramifié de la forme 

(13) w = b^ e i r ( z + o 2 z2 + . . . ) · 

De même façon, pour un élément w = w(z) de la fonction 
7 t e l que w(0) = oo, nous avons dans un voisinage s u f f i -
samment pet i t du point 0 l a re lat ion 

( 1 4 ) ñlzj ( 1 + h FCn + · · · ) = b 1 ® i r ®i£r z ( 1 + Λ ΐ ζ + · · · > · 

où r a le même sens que dans (12) et 6 = =An. 2 arg , l-K 
B. . 

où arg ñ est une valeur de l'argument, quelconque mais 
n - 1 

déterminée. I l résulte de ,(14) que w(z) est également un 
élément non-ramifié de la forme 

(15) · = ¿ j e i T e - i 6 " ( l + d0 + ^ ζ + . . . ) . 

Nous constatons de même que tous les éléments w(z) de 
la fonction 7 au centre oo, donc t e l s q u ' i l s prennent à ce 
point l e s valeurs oo ou 0 , remplissent respectivement les 
re la t ions 

<1 6> ä t W ( 1 + ΈΤΈΤ + '") = b i e i r r ( 1  +HÌ + — ) · 

(17) w(a)(l + λΛ w(z) + . . . ) = e i T + /L, . . . ) , 
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Sur l e s fonct ions univalentes 7 

où r et 6" ont le même sens que précédemment. D'où nous dé-
duisons faci lement que ces éléments sont non-ramifiés e t ont 
des formes 

(18) w = ç - e " i r (z + e 0 + e 1 \ + . . . ) , 

(19) w = b1 e i r + f 2 J + . . . ) , 

respectivement. I l est évident gue l e s éléments (13 ) , ( 15 ) , 
(18) et (19) possèdent des fonct ions inverses . 

(d) Τ possède au point 0 exactement ρ éléments non-
- r a m i f i é s , donc e l l e doit remplir l ' équat ion 

P(z,w) = b Q (z ) wp + b 1 ( z ) wp_1 + . . . b p ( z ) = 0 , b Q (z ) ψ 0 , 

où b Q ( z ) f . . . , b (z) sont des fonct ions r a t i o n n e l l e s , et 
P(z,w) est i r r e d u c t i b l e , c . - à - d . ne se décompose pas en le 
produit Q ( z , w ) R(z,w), où Q(z,w) e t R(z,w) sont des 
polynômes en w, des degrés p o s i t i f s , aux c o e f f i c i e n t s étant 
des fonct ions r a t i o n n e l l e s en z. On peut admettre ensuite 
que b Q ( z ) , . . . , b^(z) sont des polynômes n'ayant pas de 
fac teur commua. Pour démontrer que b Q ( z ) , . . . , b p (z ) sont 
des polynomes du degré ρ tout au plus et l 'un d'eux est du 
dégré ρ exactement, examinons l e s éléments au centre 0 ou 
oo de l a fonct ion inverse J . Nous remarquons tout d'abord 
que l a fonct ion 7 a exactement ρ éléments non-ramifiés au 
centre <=>o et que ces éléments possèdent des fonct ions inver-
ses . Puis nous constatons que chaque fonct ion inverse à 
l 'é lément au centre 0 ou oo de l a fonct ion 7 e s t un é l é -
ment au centre 0 ou oo de l a fonct ion inverse 7 , car 
l e s éléments au centre 0 ou oo de 7 possèdent l e s fonc -
t i o n s inverses et prennent au 0 et oo l e s valeurs 0 ou 

Le nombre de ces éléments es t égal à 2p. Remarquons 
ensuite qu'aux points 0 et oo la fonct ion 7 devient 0 
ou oo . En e f f e t , supposons contrairement q u ' i l e x i s t e un 
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8 J. áladkowska 

élément ζ = z(w) de la fonction 7 tel que z(O) = zQ Φ 

C-i 
c. w™ , 

q>1, m >1 - entiers. Mais, en vertu de (6), ζ = z(w) 
remplit l'équation 

(20) ( V ) 2 ¿ í * i = i z Í J . 
X a j=-k+1 Z j=-k+1 w 

Posant z(w) dans (20) et faisant tendre m vers 0, nous 
obtiendrions 0 au premier membre et ©o au second, ce qui 
donne la contradiction. En outre, les éléments au centre 0 
et » de la fonction doivent remplir la relation (8), 
d'où on déduit que tous ces éléments sont non-ramifiés et 
possèdent les fonctions inverses. Donc la fonction 
possède exactement ρ éléments au centre 0 et l'équation 
(4), satisfaite évidemment par chaqué élément ζ = 

z(w) de 
doit être du degré ρ en z. Donc les degrés des 

coefficients de (4) ne dépassent pas le nombre p, l'un 
d'eux étant égal exactement à p. 

(e) Supposons que 
(21 ) w = w(z) = βΛ z + /?2 z2 + ... , βΛ i 0 , 

satisfait aux équations (6), (7). De la relation (8) nous 
iT 

obtenons que β^ = b^ e , (z a le même sens que dans (12)) 
et que β^ détermine les fonctions (21) d'une façon univo-
que, c.-à-d. le nombre q^ des fonctions distinctes de la 
forme (21) ne dépasse pas 1-k qui est le nombre des β^. 
Supposons maintenent que 

(22) η = ì + j0 + %Λ ζ + ... 

satisfait aux équations (6), (?). De la relation (8) nous ob-
tenons que = e ^ e~ 6 ,/r et 6 ont le même sense que 

- 358 -



Sur les fonctions univalentes 9 

dans (l2)/et que détermine les fonctions (22) d'une 
façon univoque, c.-à-d. le nombre q2 des fonctions 
distinctes ae la forme (22) ne dépasse pas 1-k qui est le 
nombre de J _ N o u s avons ainsi démontrer que 

(23) < 1-k, q2 < 1-k. 

D'autre part, les fonctions (21), (22) remplissent 
l'équation (6), d'où il vient, vu (8), que 

(2<0 ^ = eiiJ, 

(25) T., = ^ ei(J J * , 

où ω = d il = 0,... ,k-2. et ç= ^^f arg R ^ , où 
arg est arbitraire mais fixé. Il résulte de (24), (25) 
et des considérations précédentes que le nombre q^ des 
fonctions (21) ainsi que le nombre q2 des fonctions (22) ne 
peut pas dépasser k-1, donc, vu (23)» l'inégalité (5) est 
Justifiée. 

L e m m e 2. Si la fonction f de la forme (1) sa-
tisfait à deux 5>Q-équations des degrés distincts et se pro-
longe sur tout le plan comme fonction algébrique univoque F , 
alors elle est de la forme 

(26) f(z) = z. 

D é m o n s t r a t i o n . La fonction 7 est alors une 
fonction rationnelle, désignons-la par f *. Ayant f(0) = 0 
et f'(0) = b^, nous obtenons 

NY. (z) 
(27) !-(.)-

où N̂J (Z) et N2(Z) sont des polynômes et 1^(0) = N2(0) = 1. 
Mais, vu II, f(z) se prolonge par l'arc de la circonférence 
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dU et le représentes dans un arc de la circonférence 
{w: Iwj =1], donc, conformément au principe de la symétrie 
de Schwarz, il doit être 

f*(z) = 
f (z) pour ζ e U , 

f(r) 
pour zeU' = [ζ: | ζ | > 1 J, 

d'où, vu (27), on a 

(23) = 

On en déduit facilement que N2(z) = b^ Ν^(ζ), donc (26) 
a lieu. 

L e m m e 3· Si la fonction f de la forme (1) sa-
tisfait à deux <2n-équations des degrés distincts et se pro-
longe sur tout le plan comme une fonction algébrique J bivo-
que, alors elle est donnée par la relation 

(pql f(z) _ b ζ 
' (l-e1? f(z)) (1-e1^ f(z))~ 1 (1 - e1* z)(l - e1^ z)' 

D é m o n s t r a t i o n . Supposons que f satisfait 
aux équations (6), (7). En vertu du lemme 1, nous déduisons 
que 7 ne peut prendre aux points 0 et œ> que les valeurs 
0 ou , qu'il existe deux éléments de la fonction 7 au 
centre 0 et deux éléments au centre oo , ils sont tous 
non-ramixiés et possèdent les fonctions inverses. En outre, 
tout élément de 1 remplit l'équation de la forme 

(30) Ρ ( ζ, w ) = (cXQ + <X/| z + et2 z2) w2 + (β0+βΛ ζ +β2 z2) w + 

+ (fo + h z + Τ2 = 

où F(z,w) a les mêmes propriétés que dans le Lemme 1 (d). 

- 3 6 0 -



Sur l e s f o n c t i o n s u n i v a l e n t e s 11 

Examinons à p r é s e n t l e s é léments de l a f o n c t i o n 7 au 
c e n t r e 0 e t . Un des é léments au c e n t r e 0 e s t évidem-
ment l a f o n c t i o n 

(31) w = m 1(z) = f ( z ) = ^ ( z + e^ z 2 + . . . ) . 

Un des é léments au c e n t r e « d o i t donc ê t r e l a f o n c t i o n 

( (32) 
/I 

w = SCi ( ζ ) = I ζ e U1 , 

- Θ 

En e f f e t , vu I I , l a f o n c t i o n (31) , holomorphe dans U, se 
prolonge sur son e x t é r i e u r par des a r c s de ÔU e t l ' image 
d ' u n au moins de ces a r c s e s t un a r c de l a c i r c o n f é r e n c e 
[w: I wI = 1}. Du p r i n c i p e de l a symét r ie de Schwarz, i l r é -
s u l t e e n s u i t e que ce prolongement d o i t ê t r e l a f o n c t i o n (32) . 
De l a démons t ra t ion du lemme 1 (c) nous déduisons que l e s e -
cond élément w 2 (z ) de l a f o n c t i o n Τ au c e n t r e 0 e s t de 
l a forme (13) ou (15) . Supposons t o u t d ' abord que l e p remier 
cas a l i e u , donc 

i r o 
(33) w = w 2 (z ) = b 1 β ζ + c 2 ζ + . . . . 

D ' a u t r e p a r t , compte tenu que l ' é l é m e n t (31) s a t i s f a i t à 
l ' é q u a t i o n (30) , nous concluons que a-Q = 0 e t , puisque 
l ' é l é m e n t (33) s a t i s f a i t à (30) , on a ot2 = ° · l ' é q u a -
t i o n (27) prend l a forme 

(34) tt1 ζ w2 + (β0 +βΛ * + ß2 22)w+ (zr0 + z + Í2 = °· 

Ρ ίΤ Ρ 
Mais, de (31) e t (33) nous obtenons w^wg = e z + . . . , 
donc, vu οίη 4 0 , nous a u r i o n s dans un v o i s i n a g e du p o i n t 0 
l a r e l a t i o n 

2 
T0 + ΐη * + Î2 2 2 i r 2 

οζ,-ζ S V z + . . . , 
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ce gui, évidemment, est impossible. Supposons maintenent que 
le second cas a lieu, donc que le second élément au centre 0 
est de la forme 

Λ 1 r Λ 
w = w2(z)='g-e e~ (— + dQ + d̂  ζ + ... ) . 

Ainsi, comme dans le cas des éléments au centre 0, il ré-
sulte de la démonstration du Lemme 1 que le second élément 
au centre désignons-le par w2(z), de f°rme 

(18) ou (19)· Il est évident que le second cas aura lieu, „ -i 
car dans le cas contraire la fonction inverse 3 aurait 
trois éléments distincts au centre oo . Mais, en vertu de la 
démonstration du Lemme 1 (d), la fonction 3r~ est également 
algébrique et prend à chaque point tout au plus aeux valeurs. 
Donc 
(35) w = ff2(z) = b,, eir e~i6 (1 + f2 \ + . . . 

Remarquons encore que la fonction (35) se prolonge comme une 
fonction holomorphe et univoque sur tout le domaine U' . 
Supposons le contraire. Soit sur la circonférence 
[z: |z| = rj., r>1, un tel point zQ que la fonction (35) 
ne se prolonge pas par ce point. liais la fonction ΐ est al-
gébrique, donc zQ dévrait être son point critique, c.-à-d. 
un pôle ou un point de ramification. Le premier cas est im-
possible, car zQ ^ 0, oo , le second est également impossible, 
car l'élément (32) est non-ramifié dans U', donc 7 pren-
drait au moins trois valeurs pour tout ζ suffisamment proche 
de . ζ., contrairement à l'hypothèse qu'elle est bivoque. 
Mettant ζ = j , ξ £ U, dans (35) on a la fonction 

(36) w = Ä(£) = w2(£) = eiT e~i6(í + f 2 ¿ 2 + ...) 
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remplissant dans U l'équation 

( - W Σ Ζ ^ - Σ Ζ ^ · w t 

De même la fonction 

(37) w = w*(£) = e"ir eiff ft(£) = b1(£ + f 2 £ 2 + ...) 

satisfait dans U à l'équation 

2 *-/ A* Β 
C ^ • Σ Ζ é - «"ilr 

j=-k*l 

(37) est donc une .0 Q-f onction et, par conséquent, elle se 
prolonge par des arcs de 3U et il existe un arc de 3U 
représenté par (37) sur un arc de la circonférence 
{w: |w| = 1). Cela concerne de même la fonction (36), donc 
{^(z) se prolonge du domaine U1 sur le cercle U comme 
fonction méromorphe et, en vertu du principe de la symétrie 
de Schwarz, il doit être 

-1 
pour zeU et pour á = 1 ou á = 2. 

Des conditions de normalisation il résulte d'autre part 

pour ζ e U, ou, ce que J = 2, donc w2(z) = "2^-) 
qui revient au même, que 

(38) w2(z) - [ W 2 Q 
- 1 

pour ζ £ U . 

La fonction 3 satisfait à l'équation (30) et, étant 
donné que les éléments , w^ , v»2 et v»2 lui apartiennent, 
nous avons a Q = <x2 = = -J2 = 0, donc, en vertu de (34), 
la fonction 7 satisfait à l'équation 
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(59) ζ w2 + (β0 + β^ Ζ + β 2 ζ2) w + ^ ζ = 0 . 

En outre, suivant (32) et (38), les couples (z,w), f^·, -̂ Λ 
\z w/ 

satisfont tous deux à l'équation (39), donc celle-ci et 
/ _ ρ - - - 2 — 

l'équation ^ z w + (^ + z + β 0 z )w + a^ z = 0 ont 
les racines communes. Nous en déduisons que les relations suivantes ont lieu 

l l _ = ßo + h z + h 7 ? ß-i z + ßo g2 
α1 = % ' a 1 = Τη 5 

de la première il résulte |cĉ j =|if/|j et de la seconde, en 
po sant 

(40) . ou, = Β ei(ff Π = Ε β1^, 

nous avons 

OD β 0 = β 2 * ί ( < * + ψ ) , h =/h fli((P + V ) ' 

d'où 

(42) φ + ψ = 2 arg ß^ . 

De (39) - (41), nous avons 

ito 2 5-*(<Ρ+ψ)ί- ? 1·((Ρ+Ψ) - (<ρ+ψ) (43) E e ^ z w + e T \β 2 e2 Ύ + ^ e2 Τ ζ + 

4 i (φ+V) 2) + β 9 β Z / W + /32 β c ' z'/i + E e ^ ï s O . 
Λ 
4 i (φ+ιμ) 

Divisant (43) par R e zw, nous obtenons l'équation 
du type 

(44) ei£t w + e"ia I = A 1 + Β + Â ζ , 
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Sur les fonctions univalentes 15 

où, vu (42), Β est une constante positive et , en outre, 
puisque f sa t i s fa i t à l'équation (44), i l doit être 

A = J - e" i a , Β = - J^ e" l a . I l s'ensuit que (44) prend la 
1 D1 

forme 

t, id —id 1 1 Λ-ict 1 , i a „ -ία 0\ (45) e w + e w = ζ + θ z ~ e a 2 ) ' 

Choisissons le nombre β de t e l l e façon que 

e - i c t a 2 
(46) coSyS = 2 ( 1 - bn) ' 

ce qui est possible grâce à l 'est imation de Pick [3] , à sa-
voir J 1 < 2(1 - b^). L'équation (45) devient donc 

(47) e i a w + e " i a l - 2 cos/3 = ( e i a ζ + e " i a 1 - 2 coe/i) 

% i (p+q) 
et multipliee par e , ou ρ = α + β et q = a - β , 
admet l a forme 

• i ( p + q ) w + 1 - ( e ^ + .*<•) = ¿L (·*<™> ζ + I - + 

d'où nous obtenons (29), ce qui termine l a démonstration. 
L e m m e 4. Si f est une ¿^-fonction, satisfaisant 

à deux á)Q-équations des degrés distincts, alors e l le ne peut 
pas se prolonger comme fonction algébrique 5 trivoque. 

D é m o n s t r a t i o n . Supposons que 3" est t r ivo-
que. Elle possède donc exactement t ro i s éléments non-ramifiés 
w1* w2 e Î w3 a u ο ε η Ϊ Γ Θ 0 : soit t ro i s éléments de l a 
forme (13), soit deux éléments de l a forme (13) et un élément 
de la forme (15), soit enfin un élément de l a forme (13) et 
deux éléments de l a forme (15). De l a propriété II des 
i>Q-fonctions i l résulte qu'à 7 appartient toujour l'élément 
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16 J . Sladkowska 

de l a forme w,j(z) 
- 1 

, donc l ' é q u a t i o n (4) pour 'Si 
ρ = 3 v é r i f i é e , en ve r tu du lemme 1 (d ) , par t ou t élément 
de l a f o n c t i o n J~t devient 
(4-8) (αΛ ζ + α 2 ζ 2 ) w5 + (ßQ + . . . + β^ ζ 3 ) w2 + ( j 0 + . · 

,3 \ ,„ ^ t χ ^ j- „3-+ jr3 8 3 ) W + (<f0 + . . . + ¿3 Z^) = 0, 

Examinons t o u t d 'abord l e premier cas ( tous l e s t r o i s 
éléments sont de l a forme (13) ) . On a a l o r s 

(49) W/| w2 w^ = l·^ β1λ τ? + . . . . 

Mais, d ' a p r è s (48), 

60 + . . . + tf* z 3 

w1 w2 w = 2 g — , 
α^ ζ + a 2 ζ 

ce qui mène, d 'une façon é v i d e n t , à l a c o n t r a d i c t i o n avec 
(49) . Dans l e deuxième cas l e s éléments au cen t re <» sont 
deux éléments de l a forme (18) e t un élément de l a forme (19)» 
dans l e t ro i s i ème cas un élément de l a forme (18) e t deux 
éléments de l a forme (19). Cela r é s u l t e du f a i t que l a f o n c -

Λ 
t i o n Jr e s t également t r i v o q u e , e l l e ne prend aux p o i n t s 
0 e t 00 que l e v a l e u r s 0 ou 00 e t tous ces éléments au 
cen t re 0 ou oe sont non- rami f i é s . So i t w^, w2 e t "ŵ  
l e s éléments au cen t re . Dans l e s deux cas l e s éléments 
de l a forme (13) , (15) , (18), (19) appar t iennent à l a f o n c -
t i o n T \ donc dans l ' é q u a t i o n (48) do i t ê t r e a.Q = a^ = 
= <5"0 = tfj = 0. Dans un vo is inage de 0 nous avons 

5λ + i - ζ 
(50) w. w- w, = - ¿ 

"1 2 3 ~ ~ αΛ + a 0 ζ 
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Sur les fonctions univalentes 17 

et dans un voisinage de oo 

tf2 + A Ì (51 ) w1 Wp w, ψ -α 2 + αη τ 

Remarquons ensuite que dans le deuxième cas nous avons dans 
un voisinage de 0 

(52) v?2 w^ ± b^ elAL ζ + ... 

et dans un voisinage de 00 

(53) wói w2 Wj = ̂  eiv) ζ + ... . 

De (50) et (52) il résulte d^ = 0, de (51) et (53) <x2 = 
<5* 

de (52) *ifL et de (53) = ¿¡ «"· d' o ù = 
donc f (z) = z, ce qui est impossible, en vertu de l'hypo-
thèse du lemme. De même nous obtenons la contradiction dans 
le troisième cas. 

3_· Nous démontrerons maintenant un théorème qui est un 
corrélatif du théorème 1 de \_2\· 

T h é o r è m e 1. Si f de la forme (1) est une 
<8n-fonction satisfaisant à deux ¿>n-óquations, une du degré 3 
et l'autre du degré l>3 f alors f admet soit la forme (29) 
soit (26). 

D é m o n s t r a t i o n . Il résulte de l'hypothèse que 
f satisfait dans U à deux équations 

B 2 B 1 - 2 = - f + ^ + B 0 + B 1 z + B 2 z ¿ , 
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18 J. Sladkowska 

^55) ( V - ) 2 ( % r + - + c o + - w ^ \w 

^1-1 - 1-1 = + . . . + DQ + . . . + ζ , 
z 

od A2 4 0 , ¿ 0} en outre 

(56) A2 = b1 B2 e t C l - 1 = b 1~ 1 D l - 1 ' 

Nous constatons , en vertu du lemme 1 , que f se prolonge 
comme f o n c t i o n algébrique sur tout l e plan e t que se s éléments 
au centre 0 sont de l a forme (13) ou (15) e t s e s éléments au 
centre oo sont de l a forme (18) ou (19)· 

Les éléments de l a f o n c t i o n 7 au centre 0 e t oo s a t i s -
font à l ' é q u a t i o n (54) , donc i l en r é s u l t e , vu l e s r e l a t i o n s 
(56) , que l e s s e u l s éléments au centre 0 sont de l a forme 

ρ 

(57) w = w,j(z) = b^jiz + c'2 ζ +...), 

(58) w = w 2 (z ) = —byj (z + c£ z 2 + . . . ) , 

(59) w = w 3 (z ) = ^ e i t J ( l + d^ + ζ + 

(60) vv = w 4 (z ) = - ¿ j e i ü ( l + d; + d'j, ζ + . . . ) 

e t .les s e u l s éléments au centre oo 

(61) w = ^ ( z ) = ^ (z + g¿> + J-+ · · · ) , 

(SE) w = w 2 (z ) = - (z + g» + g!} \ + . . . ) , 

(63) w = w 3 (z ) = ^ . . . ) , 

- 3 6 8 -



Sur les fonctions univalentes 19 

(64) w = w4(z) = -b,, β1ω ( 1 + ¿2 ^ + · · · ) . 

où ω = arg En vertu du Lemme 1 (e ) , la fonction algé-
brique ΐ possède au plus 4 éléments au centre 0: supposons 
tout d'abord qu' i l en y a exactement quatre, à savoir 
w ,̂ m3 w v Dans· ce cas Τ possède également 4 élé-
ments au centre o° et ce sont les fonctions w ,̂ Wg, et 
w .̂ I l résulte du Lemme 1 (d) que chacun de ces éléments sa-
t i s f a i t à l'équation de la forme 

P(z,w) = bQ (z ) w4 + b 1 ( z ) w5 + b 2 ( z ) w2 + b j ( z ) w + b 4 ( z ) = 0, 

t>0(z) * 0. 

où P(z,w) est un polynôme irreductible de la variable w, 
et bQ ( z ) , b^(z) sont des polynômes en ζ du degré non 
supérieur de 4, l'un d'eux étant exactement du degré 4, 
et i l s n'ont·pas de facteur cummun de degré posit i f . Alors, 
tout élément de la fonction 7 satisfait à l'équation 

(65) (a0 + . . . + a 4 z 4 ) w4 + (ßQ + . . . + ¡3^ ζ 4 ) w5 + (jQ + . . . + 

+ Π z 4 ) + (<5"0+ . . . + d"4 ζ 4 ) w + (ω0 + . . . + ω4 ζ 4 ) = 0 . 

Nous constatons tout de suite que 

(66) α ο = α 4 = ω ο = ( 0 4 = 0 , 

car i l existe des éléments de la fonction 7 qui prennent les 
valeurs 0 et oo pour ζ = 0 et de même i l existe des élé-
ments de la fonction Τ qui prennent les valeurs 0 et oo 
pour ζ = oo. Nous constatons ensuite, en vertu des rela-
tions (57) - (60) et (61) - (64), que dans un voisinage du 
point 0 nous avons 

(67) m1 + w2 + ŵ  + ŵ  = 0(1) , 
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et dans un voisinage de m , on a 

(68) + w2 + + w 4 = 0(1). 

Cependant, dans un voisinage de 0 nous avons 

+ ' · · + ^ (69) w1 + w2 + Wj + 
^ ¡ + ... ζ' 

et dans un voisinage de » 

h h 
(70) a^ + W2 + + ^ = - 8 — o¿ · 

+ Τ + 

Il résulte de (67), (69) que 

(71 ) fl0 = 0 , 

et de (68), (70) que 

(72) = 

Nous vérifions pareillement que dans un voisinage de 0 
on a 

(73) w1w2wj + w^jwgw^ + w1v»5w4 + w 2» 5w 4 = 0(1) 

et dans un voisinage de <=o 

(74) ff^Wj + w^Wgâr^ + + = 0(1). 

Cependant, dans un voisinage de 0 on a 

, , <f0 + ··· + z 4 

(75) w.WpW, + ... + wPw,w,.
 2 5-

' 5 ^ ... + z J 
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et dans un voisinage de 

Λ *0 6H. + · . . + -TjT 
(76) ŵW2™3 + ··· + = - z 1—· 

<Xj + . . . + —g-

Les relat ions (73), (75) entraînet 

(77) ί 0 = 0 , 

(74), (76) nous donnent 

(78) ff4 = 0 . 

Alors, en vertu de (66), (71), (72), (77), (78), l 'équation 
(65) peut s ' éc r i re 

(79) (a,,z+ + + . . . + + (j"0 + . . . + 

+ J^z4)"2 + (d^z + . . . + + (ω1ζ + = 0. 

Divisant à présent (79) par z, posant w^(z) à la 
place de w et fa isant tendre z vers 0, nous obtenons 

(80) ω̂  = 0 ; 

divisant (79) par z ŵ  et posant w^(z) à l a place de w, 
nous avons, pour z—»-0, 

(81 ) *Λ = 0 ; 

de même, (79) divisé par z^ w'1' et w,,(z) substitué, on a, 
pour z —·- oo 

(82) ot3 = 0 . 

Compte tenu de (80) - (83), nous pouvons écrire l 'équation 
(79) sous la forme 
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(84) a 2 z 2 w 4 + (βΛζ + . . . + ß-zT?)?? + (y0 + . . . + γ^ζ % v 2 + 

•5 2 + (tf^z + . . . + + ω 2 ζ = O. 

P r o f i t o n s à p résen t encore une f o i s des r e l a t i o n s (67) , 
(63) , (73) et (74). I l en r é s u l t e , vu (84) , que ^ = β^ = 
= <$̂  = ¿"2 = 0, donc (84) prend l a forme 

Q (ι ρ 7 il ρ O p 
(85) α 2 ζ w + β 2 ζ vr + ( j 0 + . . . + fl-^z )w + (T2z w + ω 2 ζ = 0 , 

où évidemment α 2 ¿ 0 , ω 2 ¿ 0 , ¿ 0 , ^ 0. 

Dans ce qui s u i t , nous p r o f i t o n s des r e l a t i o n s 

( 8 6 ) Wj(z) = 
-1 

pour J = 1 , 2 , 3 , 4 , 

En e f f e t , posant w. (z) = υ pour ζ d 'un vois inage de « 
-1 

, j = 1 , 2 , 3 , 4 , nous cons ta tons que l e s f o n c t i o n s Wi ï). 
Wj(z) s a t i s f o n t dans un vois inage de « aus équa t ions (54) , 
(55). ü i pour c e r t a i n j l a f o n c t i o n w. (z) é t a i t d i f f é -

0 
r e n t e de w. ( z ) , j = 1 , 2 , 3 , 4 , a l o r s dans un vo is inage de 0 υ 
i l e x i s t e r a i t t ou t au moins 5 f o n c t i o n s d i s t i n c t e s , s a t i s f a i -
sant aux équa t ions (54) , (55) , à s avo i r l e s f o n c t i o n s 

" j . â f - bOï)] .1 - 1 
j = 1 , 2 , 3 , 4 . Cependant, en v e r t u du 

Lemme 1 ( e ) , c ' e s t imposs ible . D ' au t re p a r t , i l r é s u l t e des 
cond i t ions de l a normal i sa t ion que w.(z) = vL(z) pour t o u t 

J J 
j . Ensu i t e , s i l e couple (z,w) s a t i s f a i t à l ' é q u a t i o n (85) 
pour z suffisamment proche de 0 , a l o r s , vu (86) , aus s i 
l e couple / " Ì , — ) s a t i s f a i t à (85). Cela mène à l a conclu-

es m/ 
s ion que pour z suffisamment proche de 0 l ' é q u a t i o n (85) 
e t l ' é q u a t i o n 
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(87) <32Z2wZ|' + ó ^ z V + + . . . + fjjZ^) w2 + ß2^2v + Λ2Ζ2 = O 

ont l e s racines communes, donc l e s c o e f f i c i e n t s de ces équa-
t ions sa t i s fassent aux re la t ions suivantes 

ß 2 <f2 6Z ω 2 _ ä 2 

I } ^ = α 2 = ω 2 ' * 2 = ώ 2 · 

ί0 + "· + _ Tu + + 

α 2 = ζ 

I I résulte de t r o i s premières é g a l i t é s (88) que 

(89) ol2 = ç e i ( f t ω2 = ç e ^ , β 2 = r e ^ , <r2 = r e 1 ? ; 

en outre, 

(90) φ = 

En vertu de l a dernière ident i té (88) , on parvient aux r e l a -
t ions 

(91) f 0 - U h = h *ί(ΐ,*ψ)· î 2 = Ï2 

n - L · ' 1 ^ · 

De (85) , (89)t (91) , nous obtenons 

(92) çe1(? z2w4 + r e1* z V + ( f a e 1 W + ^ β 1 - ( t P " - z + 

+ J 2 e ^ + t f z 2 * Í 3 z K ^ ) w 2 + r e i (? z2w + ç e ^ z2 = 0. 
Λ 5-i (φ + ψ) ρ g 

Divisant ensuite (92) par e z w , où = 
= 2 arg f 2 + 2 k i r et tenant compte de (90) , nous avons 
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Ji(«p-V) g (Ç-Q) η 
(93) β W + Γ β W + t β + 

-Ji (<P-f) -ι Λ Ji (<?+ψ) Λ + çe -¡2 = -br4 e + V s ζ 
Λ Λ 

Ρ 1 fo+ψ)· 1 , "21 
+ θ ζ ± |Τ2| + Í3 ® Ζ + 

4 i (<P+«f) 2 Ì + TzL β */· Τ4 

Désignons le premier membre de (93) par M(w)f le second -
par N(z). NOUS constatons que les fonctions M(w) et N(z) 
sont rationnelles spéciales [1] et, par conséquent, notre 
¿^-fonction f est une fonction algébrique spéciale du degré 
2 et elle satisfait à l'équation de la forme 

(94) M(w) = N(z). 

— — 3 Posons, vu (93), M(w) = + — + E1 w + w et 
w 

G ? G 1 - - 2 et ïî(z) = -f- + -γ- + GQ + G1 ζ + G2 ζ , où Eg ^ O et G2¿0. ζ 
Cependant, chaque élément de ¥ satisfait, non seulement à 
(94), mais aussi à (54·)· Si donc w(z) est un élément arbi-
traire de 7 , alors M(w(z)) = N(z), et, en dérivant cette 
relation peu: rapport à z, nous obtenons 
(95) M'(w(z)) W (ζ) = N' (.). 

Les relations (54), (95) noue donnent 

I , 
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-2 î j ^ . _ ρ 
en outre, w M' (w) = - ~ + Ê  w + 2 E2 w . Un calcul 

w 
simple montre que 

ξ2 
(97) (w M' (w))2 = 4 M^w) - Ψ ̂  J M(w) - 4 ^ w M(w) + - J + 

+ E2 w2 - 8 E<i ^ - 8 E1E2w - 12 ïï2 Eg - 6 E1 E1. 

l ia is , i l résul te de (94) 

g2 / Ε ν 

ce qui ramène (97) à l a forme 

E2 (' ΈΓ 

4 N 2 ^) + ̂  N(z) - 12 

- E^ N(ï) J-- (4 I, jj(z) + 

jj2 g . E E \ 
+ + 8 E1 * + - ^ l *2· 

E2 E2 - 6 E,, Ì + 

h . L i s E1 îc _ 5 _2 Pareillement, posant -g- = g - (̂ N(z) - - Ê  w - E2 w y , 

nous déduisons que le premier membre de (96) est un quotient 
de deux polynômes en w, du degré 3 au plus. I l en résulte 
immédiatement que l a fonction algébrique 7 , dont tout é lé -
ment s a t i s f a i t évidemment à l 'équation (96), ne peut pas 
avoir 4 éléments dist incts au centre 0. De cette façon 
nous arrivons à l a contradiction, donc le cas, où l a fonction 
Τ a 4 éléments au centre 0, est impossible. 
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Supposons à présent que l a fonction 7 & 3 éléments au 
centre 0 . En vertu du Lemme 1 (d), e l l e sera i t alors t r i -
voque ce qui es t impossible, vu le Lemme 4. Supposons ensuite 
que la fonction 7 & 2 éléments au centre 0. En vertu du 
lemme 1 (d), e l l e est bivoque e t , vu le lemme 2 , e l l e est 
donnée par (29). Supposons enfin que le seul élément de 7 
au centre 0 est f ( z ) . En vertu du lemme 1 (d\), l a fonc-
t ion 7 est univoque e t , vu le lemme 2 , e l l e est de l a forme 
(26) . Ainsi la démonstration du théorème est achevée. 

±. Nous démontrerons enfin deux théorèmes qui peuvent 
être u t i l e s pour examiner les fonctions de la classé S^, 
sa t i s fa i sant à plusieures á)Q-équations. 

T h é o r è m e 2 . S i f e S ^ s a t i s f a i t a deux i n é q u -
ations des degrés k et 1, k φ. 1 , et 

(98) ψ ) = 1 , 

où q est naturel et (u,v) désigne le plus grand diviseur 
commun des nombres u, v, alors f se prolonge sur tout le 
plan comme fonction algébrique 7 à 2q valeurs tout au plus. 

D é m o n s t r a t i o n . Supposons que l es ^ - é q u a -
t ions sus-mentionnées sont des formes (6) et (7) . En vertu 
du lemme 1 , i l s u f f i t de démontrer que le nombre des é l é -
ments de l a fonction 7 au centre 0 est égal à 2q tout au 
plus. I l résul te de la démonstration du lemme 1 que ces é l é -
ments sont de l a forme 

(99) w = βΛ ζ + β 2 ζ 2 + . . . , 

où 

(100) w = γ_Λ \ + γ0 + . . . 

et que les nombres β^ déterminent d'une façon unique les 
éléments de la forme (99) et les nombres ff* - l e s éléments 
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de la forme (100); il en résulte que le nombre des éléments 
de la forme (99) et (100) ne dépasse pas le nombre des ß^ 
distincts et des distincts, respectivement. Vu que les 
éléments de (99) et de (100) satisfont aux équations (6) et 
(7), nous en déduisons 

(101 ) A ^ = /3*-1 Bk_1 , Gl_1 = β\~Λ Dl_1 , 

(102) K^ ffî = B ^ , Cl_1 y « = Dl_1 . 

Mais, d'après (98), il existe deux entiers λ et μ, tels 
que À(k-1 ) + μ(ΐ-1) = q. Il s'ensuit donc des relations 
(101), (102) que 

alors le nombre des β^ est égal à q et il est de même 
avec les . Ainsi notre démonstration est terminée. 

T h é o r è m e 3. Si f 6 S1 satisfait à deux 
2>n-équations des degrés k et 1, k *f 1, et (k-1, 1-1) =1, 
alors soit f(z) = ζ soit f est donnée par (29). 

D é m o n s t r a t i o n . Il résulte du théorème 2 
pour q = 1 que f se prolonge sur tout le plan comme une 
fonction algébrique bivoque tout au plus. Ensuite nous dé-
duisons notre thèse des lemmes 2 et 3. 

R e m a r q u e . Pour k = 3 et 1 > 2 pair, le théo-
rème 1 est une simple conclusion du théorème 3. 
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