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SUR LES FONCTIONS UNIVALENTES, BORNEES,
SATISFAISANT DEUX AU MOINS 9, -EQUATIONS

1, Soit S,] la classe des fonctions holomorphes, univa-
lentes dans le disque unité U = [z:]z] < 1}, de la forme

vl o

1) f(z):b,]z+b2z2+... =b1(z+a2z2+...), a_ =

n
2y
B 1

avec b,>0 et remplissant 1'inégalité

(2) I£(z)] < 1 pour zeU,
Les points XqyXp,¥psesssXysTps ol x. = re{b,},
yj = im{bj} s qul correspondent aux fonctions de la classe

S1, forme un ensemble Uh dans l’espace de 2n-1 dimensious.
La classe 54 devient compacte par l*addition de la fonction
£ = 0, alors l'ensemble UnLJ{O} est fermé., On peut démon-
trer que UhLJ{O} est un domaine fermé, topologiquement Equi-
valent & la sphdre de 2n-1 dimensiomns, [5]. Soit

F = F(x1,x2,y2,...,xn,yn) une fonction réelle remplissant les
conditions:

(A) F est.définie dans l'ensemble ouvert (' contenant
lfnu{O}, |
(B) F et Fj = —;— g—% - i gg—a sont continues dans O ,

n 1
(C) |grad P| =<Z|Fjl2>2> O dans (.
3= .
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2 J. Sladkowska

Ie trois résultats suivants ont été donnés par Schaeffer
et Spencer [5] et également par Royden [4].

I. Toute fonction fe 8, liée avec le point X 1Z o0y Tps
auquel la fonction F atteint sa valeur la.plus grande dans
l’ensemble #,, doit satisfaire & 1l'équation différentielle

N 2
(3) ED)" ) = ala),
n=1 A ==n+1 B
o P(w) =: _Sl v Q(z) = Z —g-,
j=-n+1 W j=n=1 2
n
Aa :E - F b(a+1) A_ Kj’ j = 1’010 ,0—1 ]
k=j+1
n
1
Ao '?F'l b,] + reZbk F‘k ’
k=2
n—J
BJ. =:k=1 kbk Fk+j’ B_j =’ Bj’ J‘ = 1'000,n—1,

n
1 2
Bo =5 F,I b1 + re{k=2 k bk Fk}'

(£(z))d = ; bf{j)zk.

Les dérivees F, sont prises au point X, 9X59e+043 . De plus,
les fonctions P(w) et Q(z) sont:

(1) non-négatives dans 23U = {z: izl = 1},

(ii) chacune d'elles y admet une racine double au moins.

Remargqgue. Une équation de la forme (3), ou les
functions P(w) et Q(z) remplissent les conditions {i) et
(ii), sera appelée JD -équation et toute fonction, qui est
holomorphe dans U, posséde au point O 1le développement de
la forme (1) avec b,>0 et satisfait dans U a une .'Dn-é-
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Sur les fonctions univalentes 3

quation, sera dite J -fonction (4], [5]. Il est évident que
la condition nécessaire pour qu’une .ﬁn-équation ait une
solution analytique au point O est la condition suivante:
si k est le plus grand nombre naturel tel que Bk-1 £ 0,
alors Ay 4 = b§_1 B4 et A5 =0 pour J>k. Le nombre
k sera dit degré de la ‘ﬂn-équation.

II. Si w = £(2) est une 9n-fonction, alors elle est
univalente dans U, remplit la condition (2) et, en outre,
il existe un arc de la circonférence 9§U par lequel £(z)
se prolonge comme fonction continue, en le transformant sur
un arc de la circonférence {w: |w| = 1}.

III. Toute Jn-fonction correspond & un certain point de
la frontiére du domaine Un et inversement & tout point de
la frontiére de Dps & 1l’exception de O, il correspond
exactement une 2 -foumction.

Dans cette note il s'agit des fonctions qui satisfassent
4 plusieures |$n—équations. On pourrait donc supposer que
ces fonctions correspondent aux points de la frontiére du
domaine ﬂh, auxquels se traversent, tout au moins, deux
surfaces de la frontiére, pendant que les fonctions qui ne
satisfassent qu’d une seule ﬂn—équation correspondent aux
points se trouvant sur la partie plate de la frontiére.

Schaeffer et Spencer [5] et dernidrement Kubota [2]
s'occupent des fonctions de la classe S (de toutes fonctions
univalentes dans U) et satisfaisant & plusieures .Dn-équa-
tions.

2. Démontrons tout d’sbord quelques lemmes utiles pour ce
qui sult.

Lemme 1. Si f est une J ~fonction satisfaisant,
tout au moins, & deux .$n—équations de degrés distincts,
alors

(a) elle se prolonge sur tout le plan comme fonction
algébrique JF;

(b) elle ne peut prendre aux points O et oo gque les
valeurs O et oo respectivement;

- 353 -



4 J. $1adkowska

(c) tous les éléments de la fonction F aun certre O ou
oo gont non-ramifiés et ont les éléments inverses;
(d) s1 p désigne le nombre des éléments de la fonction
au centre O, alors F satisfait & 1’équation algébrique
de la forme

(4)'. P(z,w):bo(z)wp + 'b,l(z)wp-ll + oere + bp(z) =0, bo(z)EO,

otk bo(z),...,bp(z) sont des polynomes en 2z dont les de-~
grés ne depassent pas le nombre p, 1l'un d’eux ayant exac-
tement le degré p; ces polynbmes n’ont pas de facteur com—
mun du degré positif; P(z,w) est, par contre, comme le po-
lyndme de la variable w, irreductible, c¢.-8-d. il ne se
décompose pas en polyndmes, des degrés positifs, aux coeffi-
cients étant des polyndmes de la variable z.

(e) Solent deux J -équations de degrés k et 1 res-
pectivement, k<1, et soient ¢q fonctions holomorphes
w =w(z), w(0) =0, distinctes dans chaque voisinage du
point O, satisfaisant & ces équations, alors le nombre g
remplit 1’inégalité

(5) q< min(k-1, 1-1).

Cette méme inégalité est remplite au cas, lorsque gq désigne
le nombre des fonctions méromorphes w = w(z), w(0) = oo,
distinctes dans chaque voisinage du point O et satisfaisant
& deux .ﬂn-équations. Les fonctions w = w(z), w(0) =0,
sont déterminées d’une fagon univoque par w'(0) est les
fonctions w = w(z), w(0) =co, par lig{z w' (z)}.

VA

Démons tratilon. Supposoné que la fonction f
satisfait aux .‘Dn-équations de la forme

5 w2 }il A k1. g
(€) (T) J=—k+1 :i N ?:-—T:'j—’

ol A_J=IJ, B_d=§J, J = 19000,k=1, A,y B, - réels, et
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Sur les fonctions univalentes 5

z w 21-1 C 21-1 E-i
(7) (T> j=-141 ;3 - j=—-141 ZJ ’

D_ - réels, et

ou C_y = 63, D_y = ﬁﬁ’ J = 1yeeey1-1, Gy Dy

soit k<1l.
(a) En divisant (6) et (7) membre par membre, nous obte-
nons que W = f£(z) remplit l’équation

k-2
21-2 °

2Kk=2 o
w zl—k Bk—1+"'+ Bk—’lz

Dyq+eeet+ Dy 42

A _q+ .ot A
(8) gtk k=1 Ek_1 T =
CiqteeetCy g%

donc elle se prolonge comme une fonction algébrique F et
elle fait correspondre & toute valeur de 2z au plus 1-2
valeurs de W,

(b) Supposons, au coqtraire, que le nombre w, # 0, oo
est une des valeurs de la fonction F au point O. Il
existerait alors un élément au centre O de la forme

o0 4
(9) w=uw(z)=w +§ c, z%, c. £0,
o - d q
J=q9
ol 321, m>1 sont entiers. Il est facile a voir que
z w'(z

<Tz)- —= O, lorsque z =0, donc 1’élément (9) ne rempli-
rait aucune des équations (6), (7). En effet, mettant w(z)
dans (6) ou (7) et faisant tendre z vers O, nous obtien~
drons chaque fols O au premier membre et oo au second.

De méme, nous arrivons & la contradiction dans le cas d'un
élément au centre oo.

(c) Supposons que w = w{(z) est un élément de la fonc-
tion algébrique ¥ tel que w(0) = O. BF¥n substituant w(z)
dans (8), extrayant la (l-k) -éme racine de ses deux membres
ot tenant compte que

_ k-1
(10) Ay q =037 B4
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» -1
(1) Crq =37 Dy,
nous obtenons dans un certain voisinage du point O 1la rela-
tion
(12)  w(z)(1 + A, w(z) + )=01 i’ z2(1 + U,z + )
1 e - 1 ,u1 see/jy

od T=3 2%, §=0,..,0-k-1. De (12) il résulte que

w(z) est un élément non-ramifié de la forme
(13) w =D, eir(z + cy 22 + o)

De méme fagon, pour un élément w = w(z) de la fonction
F tel que w(0) = co, nous avons dans un voisinage suffi-
samment petit du point O 1la relation

ir eiﬂ

(14) 5{';)-(1 P +...)=b1e 2(1 4+ g2+ o0.),

Be

€11’

ol 7 a le méme sens que dans (12) et 6 = Igi 2 arg

. Be1
ol arg

CI l- 1 I d ’
déterminée. Il résulte de (14) que w(z) est égalemert un
élément non-ramifié de la forme

est une valeur de 1l’argument, gquelcongue mais

(15) W= %ﬁ o e_is(%-+ d, + dg z + R

Nous constatons de méme que tous les éléments w(z) de
la fonction ¥ au centre oo, donc tels qu'ils prennent a ce
point les valeurs oo ou O, remplissenrt respectivement les
relations

(16) ;i%,—(ﬁ + 21 w1z + ...) = b, et %—( + g z + ...),

it

(17) w(z)(1 + Aq w(z) + o00) = b, e =y %—(1 + Iy %ur..),
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Sur les fonctions univalentes 7

ol T et 6 ont le méme sens que précédemment. D’ol nous dé-
duisons facilement gue ces éléments sont non-ramifiés et ont
des formes

(18) W = é% e (74 e, + €4 %,+ oo,
it -i6 /4
(19) W = Db, il ¢-10 <2—+ 5 é% + ..;),

respectivement. Il est évident que les éléments (13), (15),
(18) et (19) possédent des fonctions inverses.

(d) F posséde au point O exactement p éléments non-
-ramifiés, donc elle doit remplir 1l'équation

P(z,w) = b (z) W+ b, (z) WPl bp(z) = 0, b, (z) # 0,

ol bo(z),...,bp(z) sont des fonctions rationnelles, et
P(z,w) est irreductible, c.-a-d. ne se décompose pas en le
produit Q (z,w) R(z,w), ou Q(z,w) et R(z,w) sont des
polyndmes en w, des degrés positifs, aux coefficients étant
des fonctions rationnelles en z. On peut admettre ensuite
que b,(z), ..., bp(z) sont des polynbmes n’ayant pas de
facteur commun. Pour démontrer que bo(z), ey bp(z) sont
des polynomes du degré p tout au plus et 1’un d’eux est du
dégré p exactement, examinons les éléments au centre O ou
oo de la fonction inverse .?'4. Nous remarquons tout d'abord
gue la fonction ¥ a exactement p éléments non-ramifiés au
centre oo et que ces éléments possédent des fonctions inver-
ses. Puis nous constatons gue chaque fonction inverse &
1'élément au centre O ou oo de la fonction ¥ est un é1lé-
ment au centre 0O ou oo de la fonction inverse 3“4, car
les éléments au centre O ou oo de F possédent les fonc-
tions inverses et prennent au O et oo les valeurs 0O ou
<o, Le nombre de ces éléments est égal & 2p. Remarquons
ensuite gqulaux points O et oo 1la fonction ?‘4 devient O
ou co. En effet, supposons contrairement qu’il existe un
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8 J. Sladkowska

£

élément 2z = z(w) de la Ffonction 71 te1 que z{0) = z,

5.,
# 0,00, donc z(w) a la forme =z =z(w) =1z + ¢ W,

. J=q
q>21, m>1 - entiers. Mais, en vertu de (6), z = z(w)
remplit l’équation

w z 2 Zk-1 B = fi
(20) &2) e z‘}= ;p.; w

Posent z(w) dans (20) et faisant tendre w vers O, nous
obtiendrions O au premier membre et oo au second, ce qui
donne la coutradiction. En outre, les éléments au centre O
et oo de la fonction .?-1 doivent remplir la relation (8),
d'ou on déduit que tous ces éléments sont non-ramifiés et
possédent les fonctions inverses. Donc la fonction 1?"1
posséde exactement p éléments au centre O et l'équation
(4), satisfaite évidemment par chaque élément 2z = z(w) de
?’1, doit &tre du degré p en z. Donc les degrés des
coefficients de (4) ne dépassent pas le nombre p, 1l'un
d’eux étant égal exactement & p.

(e) Supposons que

(21) w=w(z) = Bq 2+ Bo 22 + seey B4 £0,

satisfait aux équations (6), (7). De la relation (8) nous
obtenons que f, = b, eir, (7 a le méme sens que dans (12))
et que g, détermine les fonctions (21) d'une fagon univo-
que, c.-3-d. le nombre gq des fonctions distinctes de la
forme_(21) ne dépasse pas 1l-k qui est le nombre des Bq-
Supposons maintenent que

(22) w;1_1%+go+g1z+...

satisfait aux équationi (6)16(7)' De la relation (8) nous ob-
T -
e

tenons que 1_1 =5 © s/t et 6 ont le méme sense que
1
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Sur les fonctions univalentes 9

dans (12)/et que T4 détermine 1les fonctions (22) d'une
fagon univogque, c.-a-d. le nombre q, des fonctions
distinctes ae la forme (22) ne dépasse pas l-k qui est le
nombre de 7_4. Nous avons ainsi démontrer que

(23) g4, < 1k, gy < l-k.

D'autre part, les fonctiomns (21), (22) remplissent
1’équation (6), d’ol il vient, vu (8), que

(24) p,] = b,‘ e ’
_ iw ig
(25) 6_1 ot b_ e e 1

of w=J gL, §=0,..,k2 et =i arg B,_,, od

arg B,_, est arbitraire mais fixé. Il résulte de (24), (25)
et des considérations précedentes que le nombre a4 des
fonctions (21) ainsi que le nombre a des fonctions (22) ne
peut pas dépasser k-1, donc, vu (23), 1l'inégaliteée (5) est
justifiée.

Lemme 2, Si la fonction f de la forme (1) sa-
tisfait & deux $n-équations des degrés distincts et se pro-
longe sur tout le plan comme fonction algébrique univoque ¥,
alors elle est de la forme

(26) £(z) = z.

Démonstration. ILafonction ¥ est alors une
fonction rationnells, désignons-la par f'. Ayant £(0) = O
et P (0) = by, nDous obterons

N, (
(27) £ (2) = b, zﬁg—(;;--

ol N1(z) et N,(z) sont des polynbmes et N,(0) = N,(0)=1.
Mais, vu II, f(z) se prolonge par l'arc de la circonférence
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dU et le représentes dans un arc de la circonférence
{we lwl = 1}, dounc, conformément au principe de la symétrie
de Schwarz, il doit étre

£f(z) pour zeU,
£ (z) =

I

J_ pour zeU' = {z2 12 > 1},
1
Z

~

d'od, vu (27), on a

(28) N, (2) N1("E> = 1;' N,(z) N2<—Z_—|).
1

On en déduit facilement que Nz(z) = b, Nq(z), donc (26)
a lieu.

Lemme 3 Si la fonction f de la forme (1) sa~
tisfait & deux «ﬁn-équations des degrés distincts et se pro-
longe sur tout le plan comme une fonction algébrique F bivo-
que, alors elle est donnée par la relation

£(z) z

) — =D " .
(29 (1-e £(2) (1-eX9 £(z) 1 (1~e¥P 2)(1 - 619 2)

Démonstration. Supposons que f satisfait
aux équations (6), (7). En vertu du lemme 1, nous déduisons
que F ne peut prendre aux points O et oo que les valeurs
0 oueo, qu’il existe deux éléments de la fonction F aun
centre O et deux éléments au centre oo, ils sont tous
non-ramifiés et possédent les fonctions inverses. En outre,
tout élément de F remplit l'équation de la forme

(30) P(z,w) = (ao +aq %+ ap z2) W & (ﬂo-+ﬁ1 z+f5 22) w o+
+ (76 + 72+ 7> z2) =0,
ot F(z,w) a les mémes propriétés que dans le Lemme 1 (d).
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Sur les fonctions univalentes 11

Examinons & préseut les éléments de la fonction F au
centre O et oo, Un des éléments au centre O est évidem-
ment la fonction

(31) W = w1(z) = f(z) = b1(z + 8, 2° + cee)

Un des éléments au centre oo doit donc étre la fonction

“@

En effet, wvu II, la fonction (31), holomorphe dans U, se
prolonge sur son extérieur par des arcs de 44U et l'image
d'un au moins de ces arcs est un arc de la circonférence

{w: |w| =1}, Du principe de la symétrie de Schwarz, il ré-
sulte ensuite que ce prolongement doit €tre la fonction (32).
De la démonstration du lemme 1 (¢) nous déduisons que le se—
cond élément wz(z) de la fonction ¥ au centre O est de
la forme (13) ou (15). Supposons tout d’abord que le premier
cas a lieu, donc

zelU'.

(32) W= Wq(Z) =

(33) w = w2(z) = b, el 4 & ¢y 22 & ... .

D'autre part, compte tenu que l'élément (31) satisfait a
1’équation (30), nous concluons gque o, = O et, puisque
1'élément (33) satisfait & (30), on a oy = O, Donc l'égqua-
tion (27) prend la forme

(34) a, 2 W + (Bt pq 2+ P> 22)w+ (Jo * 77 2+ 72 %) = o,

Mais, de (31) et (33) nous obtenons W W, = b% oll 52 + aeny
donc, vu g # O, mnous aurions dans un voisinage du point O

la relation

2
To+ T4 2+Ta2
a1 z = 1 e Z + eee 9
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ce qui, évidemment, est impossible. Supposons maintenent que
le second cas a lieu, donc que le second élément au centre O
est de la forme

ei'C' 6-16 (1_2_

w = w2(z) = éa +dy + dg oz o+ ees)e

Ainsi, comme dans le cas des éléments au centre O, 1l ré-
sulte de la démonstration du Lemme 1 gue le second élément

au centre oo, désignons~le par ﬁé(z), est de la forme
(18) ou (19). Il est évident que le second cas aura lieu,
car dans le cas contraire la fonction inverse 3“4 aurait
trois éléments distincts au centre oo . Mais, en vertu de la
démonstration du Lemme 1 (d), la fonction gr‘% est également
algébrique et prend a chague point tout au plus aeux valeurs.
Donc

(35) w = Wé(z) = by it 9-16 (%—+ £ é%~+ ...).

Remarquons encore que la fonction (35) se prolonge comme une
fonction holomorphe et univoque sur tout le domaine U'.
Supposons le contraire. Soit sur la circonférence

{z: (2] = r}, r>1, un tel point 2z, que la fonction (35)
ne sSe prolonge pas par ce point. Mais la fonction F est al-
gébrique, donc z, dévrait étre son point critique, c.-3-d.
un p6le ou un point de ramification. Le premier cas est im-
possible,car 2z, # 0, =, le second est également impossible,
car 1'élément (32) est non-ramifié dans U', donc F pren-
drait au moins trois valeurs pour tout 2z suffisamment proche
de . z, contﬁairement & 1'hypothése qu’elle est bivoque,
Mettant 2z = 7o (e U, dans (35) on a la fonction

ir

(36)  w=d(£) = y(P) =y ot W02, 0% 4 L)

- 362 -



Sur les fonctioms univalentes 13

remplissant dans U 1’équation

k-1 B

@' 45 %

J==k¢! w J=k+1
De méme la fonction

(37) w=wi() = e MR = b (L £62 4 L)

satisfait dans U & 1l’équation

2 k-1 g k-1 F ) ,
iw b ZJ“ « . gmdir 316,
(W)E ,;3’2 S ey IR
J==k+l J=-k+!

(37) est donc une .@n—fonction et, par conséquent, elle se
prolonge par des arcs de dU et il existe un arc de 3U
représenté par (37) sur un arc de la circonférence

{w: w| = 1}. Cela concerne de méme la fonction (36), donmec
Wé(z) se prolonge du domaine U' sur le cercle U comme
fonction méromorphe et, en vertu du principe de la symétrie
de Schwarz, il doit étre

e ~1

wj(z) = [ﬁ;(}} pour zeU et pour J =1 ou J = 2.
\z

Des conditions de normalisation il résulte d’autre part

— 1
que Jj = 2, donc w2(z) = [ﬁé(%)} pour zeU, ou, ce
z

qui revient au méme, que

. -1 ,
(38) W,(z) = [w2<%>] pour zeU',

La fonction 7 satisfait & l’équation (30) et, étant
donné que les éléments Wy W1, Wy et Wé lui apartiennent,
nous avons o, =0, = J, = Jp = O, donc, en vertu de (34),

.

la fonction ¥ satisfait & 1’équation
- 363 -



14 J. Sladkowska

(39) a, z Wl (Bo + pq 2+ pé z2) w o+ J4 2 =0.
En outre, suivant (32) et (38), les couples (z,w), (}3 -}
z W

satisfont tous deux a l’équation (39), donc celle-ci et
1’équation Tp 2 W+ (ﬁe + pﬁ z + ﬁo 22) w o+ E1 z =0 ont
les racines comwunes. Nous en déduisons que les relations
suivantes ont lieu

_ 2 . . = 2
g R Bo * 31 2+ fs2 ~ Bo + p1 zZ + ﬁo 7 .
- = = o - — ?
“1 T 1 7,

de la premiére il résulte laﬂl =’g&l et de la seconde, en

posant '

(40) - aq =R il % =R el¥,

nous avons

I A A ALULOR

d'ol

(42) g+ y =2 arg g,.

De (39) - (41), nous avons

1 1
1 1lpew) (\ﬁ:2 EELTT I

1,
1 921 (g+4) 2

(43) R e 2w’ e +

-1y
021(({'“}1) 22> w+Reiwz=0.

+ PZ

%i (o+y) n
Divisant (43) par R e Zw, nous obtenons 1l’équation
du type
(44) eid'w+e_ia'1—=Ajz—+B+Kz,
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Sur les fonctions univalentes 15

od, vu (42), B est une constante positive et, en outre,

[y

paisque f satisfait & 1’équation (44), il doit &tre
a

A= 51— e-ia, B=- b—2 e~1%, 11 srensuit que (44) prend la
1 1
forme
- ~-ia i -ia
(45) eidw+em%=g—1<ei%+el¢z—eia2>.

Choisissons le nombre B de telle fagon que

~ia
e a,

(46) cos f = m’

ce qui est possible grice i l’estimation de Pick [3], & sa-
voir |ay] < 2(14 - b,]). L'équation (45) devient donc

(47) l% g 4 o1 %— 2 cosff = % Gia z + e-ia%— 2 cosﬁ)

) %i (p+q)
et multipliee par e
admet la forme

el(Pra) ¢ %— (eip + eiq> = 1;‘—1@1(1’”) z + —;— - (eip + eiq)>,

y O Pp=a+f et g=a-8,

d’ol nous obtenons (29), ce qui termine la démonstration.
Lemme 4. Si f est une J -fonction, satisfaisant
4 deux .Dn-équations des degrés distincts, alors elle ne peut
pas se prolonger comme fonction algébrique F trivoque.
Démonstratiomn., Supposons que F est trivo-
que. Elle posséde donc exactement trois éléments non-ramifiés
W,y Wy et w; au centre O: soit trois éléments de la
forme (13), soit deux éléments de la forme (13) et un élément
de la forme (15), soit enfin un élément de la forme (13) et
deux éléments de la forme (15). De la propriété II des
J,-fonctions i1 résulte qu'a F appartient toujour 1'élément
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Nk ;
{i)} , donc 1l’éguation (4) pour

P
a

W1 de la forme Wq(z) = [

p = 3 vérifide, en vertu du lemme 1 (d), par tout élément
de la fonction F, devient

(48) (aq z +ap %) W o+ (Bg + eo0 + B3 22) v + (Fg *+ oov +
+ 73 22) w + (Op + +es + 63 z2) = 0.

¥xaminons tout d'abord le premier cas (tous les trois
éléments sont de la forme (13)). On a alors

(49) Wy Wy Wy = b? eil 22

+ LN ] L[]
Mais, d'aprés (48),

3
db + oo + 63 Z

W, Wy W, = = < ’
123 0L1z+a,2z£

ce qui méne, d'une fagon évident, & la contradiction avec
(49). Dans le deuxiéme cas les éléments au centre <= sont
deux éléments de la forme (18) et un élément de la forme (19),
dans le troisiéme cas un élément de la forme (18) et deux
éléments de la forme (19). Cela résulte du fait que la fonc-
tion 3“4 est également trivoque, elle ne prend aux points
O et oo que le valeurs O ou oo et tous ces éléments au
centre O ou oo sont non-ramifiés. Soit @, W, et Ws

les éléments au centre oo, Dans les deux cas les éléments
de la forme (13), (15), (18), (19) appartiennent & la fonc-
tion F, donc dans 1'équation (48) doit &tre ay = a5 =

= 6y = 63 = O, Dans un voisinage de O nous avons

6& + 62 z

(50) Wo W Woy = = —— 5
172 g +a, 2
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et dans un voisinage de oo

1

o 6, + da z
a2 + 0:1 _z_‘

Remarquons ensuite gue dans le deuxiéme cas nous avons dans
un voisinage de - O

i
(52) Wy Wy Wy o b, e Fzs ...
et dans un voisinage de oo

~ o~ oA v

De (50) et (52) 1l résulte ¢, = O, de (51) et (53) o, = O,
62

i 62 1 v X

de (52) =5==1b, e et de (53) === e dlod b,=1
oy 1 ol E] ’ 1= "
donc f(z) = z, ce qui est impossible, en vertu de 1l’hypo-
thése du lemme, De méme nous obtenons la contradiction dams

le troisiéme cas.

3. Nous démontrerons maintenant un théoréme qui est un
correlatif du théoréme 1 de [2].

Théoréme 1. Si f de la forme (1) est une
d,-fonction satisfaisant & deux J -équations, une Gu degré 3
et l'autre du degré 1>3, alors f admet soit la forme (29)
soit (26).

Démonstration., Il résulte de l*hypothése que
£ satisfait dans U a deux équations

2 /A A
z W 2 1 — 2\ _
(54) ("W_) (;2-+ w th vt A W AW > =
B B
2 = = 2
=;2-+~Z:‘-+BO+B1Z+BZZ,
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2/,C
2 W 1-1 A 1-1
(55) ( w—> <wj_1 + s o + co + e + 01_1 w ) -

D
1-1 R 1-1
_1_T+"'+Do+"'+D1_1Z ’

od A, #0, Ci_q # O; en outre

(56) Ay =Y B, et C;_,=b11D ..
Nous constatons, en vertu du lemme 1, que f se prolonge
comme fonction algébrique sur tout le plan et gue ses éléments
au centre O sont de la forme (13) ou (15) et ses éléments au
centre oo sont de la forme (18) ou (19).
les éléments de la fonction F au centre O et oo satis-
font & l'équation (54), donc il en résulte, vu les relations

(56), que les seuls éléments au centre O sont de la forme

(57) w=wy(z) = b(z + ¢, 22 4 ..0),
(58) w=w2(z)=-b (z-a-c2 22+...),
(59) w=w5(z)=:5;eiw(%+ dy + &, z+...>,
(60) w=w(z) =- .51; eiw(%+ g + d‘,'l z + ...)

et les seuls éléments au centre oo

(61) WZW’I(Z)'_‘bi,](Z*'gB*'g"] %—-i- ...>,
- _ o - 1 " "1
(op) w-wa(z)_-52<z+go+g1z+...>,
(6 W=~ = lw o hl _ sse

3) ‘73(3) ( + 2Z + )1
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(64) w=@,(z) = -b, el® (%—+ Hé iz + ...),

ol = arg B,. En vertu du Lemme 1 (e), la fonction algé-
brique ¥ posséde au plus 4 éléments au centre O: supposons
tout d'abord qu’il en y a exactement quatre, & savoir

Wiy Wy, Wy et w,. Dans ce cas ¥ posséde également 4 é1lé-
ments au centre oo et ce sont les fonctions ﬁﬁ, ﬁé, ﬁ; et
#,. I1 résulte du Lemme 1 (d) que chacun de ces élements sa-
tistait 4 1'équation de la forme

P(z,w) = bo(z) wt o+ b1(z) w o+ b2(z) W + b;(z) W o+ b4(z) = 0,

b, (2z) # 0,
od P(z,w) est un polyndme irreductible de la variable w,
et bo(z), ooy b4(z) sont des polyndémes en 2z du degré non
supérieur de 4, 1l'un d’eux étant exactement du degré 4,
et ils n'ont pas de facteur cummun de degré positif, Alors,
tout élément de la fonction F satisfait a 1'équation

4 3

(65) (ag+ eestay z*) Wt + (Bo* oot fy z%) w4 (Fg + oo +

+’J’4 Z4)W2+ (d-o+"'+d'4 24) w o+ (&JO + R x) +(A)4 zq.) =O.

Nous constatons tout de suite que
(66) Qg =@y = w, =w, =0,

car il existe des éléments de la fonction F qui prennent les
valeurs O et oo pour 2z = O et de méme il existe des é1é-
ments de la fonction ¥ qui prennent les valeurs O et oo
pour 2z =oo. Nous constatons ensulte, en vertu des rela-
tions (57) - (60) et (61) - (64), que dans un voisinage du
point O nous avons

(67) Wy ok Wy o+ Wy + W, = o(1),
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et dans un voisinage de o, on s
Cependant, dans un voisinage de O nous avons

Bo * eee + By z*
3

(69) Wy Wy kW b Wy o= -
@y Z+ ootz

et dans un voisinage de oo

Bz B, B
By + 75 + —%-+;ﬁ%
(70) ﬁa + Wé + WB + Wu = -3 o 57;1 .,
d.3+—z—+;2-

I1 résulte de (67), (69) que

(71) By =0,
et -de (68), (70) que
(72) By = 0.

Nous vérifions pareillement que dams un voisinage de
on a

(73) W oW + oWy + W WaW, + WoWpwW, = o(1)
et dans un voisinage de oo

(74) waﬁéﬁj + W1ﬁéﬁg + W1ﬁ3ﬁ4 + ﬁaﬁBWA 0(1).

Cependant, dans un voisinage de O omn a

n
66 + eee + 64 z

(75) WAWoWz + eoe + WoWzW, = - 3

o
1z+...-f-a3z
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et dans un voisinage de oo

b0
641- cee +T
o oo o z
(76) MWy + 00 4 W2W3ﬁ4 ==z g
+ oeee #
03 ;2"

Les relations (73), (75) entrainet

(77) 6, =0,

et (74), (76) nous donnent

(78) 6, = 0.

Alors, en vertu de (66), (71), (72), (77), (78), 1’équation
(65) peut s'ascrire

(79)  (oyz+ ...+a523)v_v4 + (Bgz+ oous ﬂ5z3)w3 + (Fg + oo +
+ qu')w2 + (daz + ees + 6323)w + (“Hz + ...-+w3z5) = 0,
Divisant & présent (79) par 2z, posant w,(z) & la
place de w et faisant tendre 2z vers O, nous obtenons
(80) w, = 0;

divisant (79) par =z wt et posant w3(z) 4 la place de w,

nous avons, pour z—0,

(81) @y = 0;

de méme, (79) divisé par 22 W et ﬁa(z) subsyitué, on a,
pour z —e oo

(82) o, = 0.

Compte tenu de (80) - (83), nous pouvons écrire 1'équation
(79) sous la forme
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2

(84) ayz wt o+ (g2 + ooe + ,8323)w3 + (gg + een + 7424)w2 +

+ (d',]z + oeee + d'3z3)w +w222 =0,

Profitons 4 présent encore une fois des relations (67),
(€8), (73) et (74). Il en résulte, vu (84), que f, = Bz =
=&, = 63 = 0, donc (84) prend la forme

2

(85) sz A ﬁ222w3 + (15 + ...+-g4z4)w2-+dé22w + w2z2 = 0,

ol évidemment @, # 0, wy, #0, To £ 0, Tu £ O.
Dans ce gui suit, nous profitons des relations

-1

(86) WJ(Z) = [;J—(%}] ' pour J = 1,2,3,4,

pour z d'un voisinage de oo . Y%n effet, posant ﬁj(z) =

— a1
[WJQ;)J s J = 14243,4, nous constatons gque les fonctions
z

#i;(z) satisfont dans un voisinage de oo aus équations (54),
(55). si pour certain Jj, la fonction wj (z) était diffé-
o) .

rente de ﬁj(z), j=1,2,5,4, alors dans un voisinage de O
il existerait tout au moins 5 fonctions distinctes, satisfai-
sant aux équations (54), (55), & savoir 1les fonctions

—a< -1 —1 -1
kﬁj C}j ’ Wﬁ(;) s J=1,2,3,4. Cependant, en vertu du
o\z z/| -

Lemme 1 (e), c’est impossible. D’autre part, il résulte des
conditions de la normélisation que #.(z) = #;(z) pour tout
j. ZEnsuite, si le couple (z,w) satisfait & 1'équation (85)
pour 2z suffisamment proche de O, alors, vu (86), aussi
le couple C%, g: satisfait & (85). Cela méne & la conclu-
sion gue pour : suffisamment proche de O 1l’équation (85)

et 1'éguation
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2 2

(87) Gaz w4 + Eéz2w5 + (fh+ cest 35z4) w2 + ﬁézaw +-i2z =0

ont les racines communes, donc les coefficients de ces équa-
tions satisfassent aux relations suivantes
P2 )

2
(88) fa._2 2,
% 532' 2

8,5
{]
NE'In?'

FI
N

4 = - 4
To ¥ ooe + T2 Tyt e + 52
o, =

nE

Il résulte de trois premiéres égalités (88) que

(89) a, = 0e*?, Wp = ?eiwv Bo=T e, 6o =T el?;
en outre,

(90) ol(8+0) _ Jilg+y)

En vertu de la derniére identité (88), on parvient aux rela-
tions

(9 7o =T oY, g = (7] ), g o gy oY),

— i

Ty = %o ® G,

De (85), (89), (91), nous obtenons

(92) <;e:1'(P 22wt + r olf 2280 . (T4 ollo+y) Ts ello+ry) ,

2 iy ,2

+ 7o ol (9+y),2, 53z3+-5424)w2 + 1 el 2%g 4 oe = 0.

1.
. i (@+y)
Divisant ensuite (92) par e° Y 22 w2, ol g¢g+y =

= 2 arg f, + 2 kT et tenant compte de (90), mous avons
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1 1 1
A1 (9= (s -y (-
02 (4=v) W +r e” - wWirae? €=

(93) ¥ T

1 1
-51 (g-vy) _ i (g+y)
2 2

+ Qe 32 = -~<f4 ) 32- +
1 1

_ mil(g+y) ~51 (g+y)
+3-362 %1112|+ 3 zZ +

1
-51i
[ A 7‘2>°

Désignons le premier membre de (93) par M(w), le second -
par N(z). Nous constatons que les fonctions M(w) et N(z)
sont rationnelles spéciales [1] et, par conséquent, notre
.‘Dn-fonction f est une fonction algébrique spéciale du degré
2 et elle satisfait a 1l'éguation de la forme

(94) M(w) = N(z).

By, By = 2
Posons, va (93), M(w) = 5+ 5 * B W+ Ey w0 et
w

G & . s 2 .
et N(z) =—5+—5 +G,+G; z+Gy,z", o E, #0 et G,#0.
Cependant, tz:haque élément de F satisfait, non seulement &
(94), mais aussi & (54). Si donc w(z) est un élément arbi-
traire de ¥, alors M(w(z)) = N(z), et, en dérivant cette
relation par rapport & 2z, nous obtenons

(95) W (w(z) w (2) = W' (s).

Ies relations (54), (95) nous donnent

(96) M)a (;%+ e+ L -2>=§2,+ e + By 22

w M (w)
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-2 E2 E1 _ _ >
en outre, w M (w) = —»= - -+ E,w+2E v. Uncalcul
w

simple montre que

E2
(97) (w M'(w))2 = 4 M?(w) - 4 B, %-M(w) -4 EA w M(w) + ;%—+
E, B
2 2 1 72 o= - R
+ E1 w -~ 8 e 8 Lanw - 12 E, E; - 6 E, E,.

Mais, 11 résulte de (94)

B2 E° E

1 1 1 = = 2
F:-Ea— N(Z)-T-E,‘W—EZW),

ce qui raméne (97) & la forme

B2
(w ' (w))‘2 = G N2(z) + E;—N(z) - 12 E, B, - 6 E E,]) +
E% = 1 =
- (4 E, N(z) +-E5 + 8 E, Eé) v (4 E, N(z) +

P E E, E
+ 24— 48 E, Eé) v+ <%§’— —1——g> w.

E,

Pareillement, posant 3%-: %s (%(z) - g}-- E% w - E, w?),
ndus déduisons que le premier membre de (96) est un quotient
de deux polyndmes en w, du degré 3 au plus. Il en résulte
immédiatement que la fonction algébrique ¥, dont tout é1lé-
ment satisfait évidemment 3 l'équation (96), ne peut pas
avoir 4 éléments distincts au centre O. De cette fagon
nous arrivons & la contradiction, donc le cas, ol la fonction

F a 4 éléments au centre O, est impossible,
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Supposons & présent gue la fonction ¥ a& 3 éléments au
centre O, En vertu du Lemme 1 (d), elle serait alors tri-
voque ce gqul est impossible, vu le Lemme 4. Supposons ensuite
que la fonction ¥ a 2 éléments au centre O. En vertu du
lemme 1 (d), elle est bivoque et, vu le lemme 2, elle est
donnée par (29). Supposons enfin gque le seul élément de F
au centre O est £(z). En vertu du lemme 1 (d|), la fonc-
tion F est univoque et, vu le lemme 2, elle est de la forme
(26). Ainsi la démonstration du théoréme est achevée.

4, Nous démontrerons enfin deux théorémes qui peuvent
étre utiles pour examiner les fonctions de la classe S1,
satisfaisant & plusieures ﬂn—équations.

Theéeo r.é me 2, 81 feS§, sabisfalt a deux .Dn]-équ-
ations des degrés k et 1, k #1, et

(98) e ERE

ol q est naturel et (u,v) désigne le plus grand diviseur

commun des nombres u, v, alors f se prolonge sur tout le

plan comme fonction algébrique F & 2q valeurs tout au plus.
Démonstration., Supposons que les .ﬂn—équa-

tions sus-mentionnées sont des formes (6) et (7). En vertu

du lemme 1, il suffit de démontrer que le nombre des 61é-

ments de la fonction F au centre O est égal & 2q tout au

plus. Il résulte de la démonstration du lemme 1 que ces élé~-

ments sont de la forme

(99) w=p,2+f5 22 4 aae
ol
(100) LEERY o % t fo e

et que les nombres g, déterminent d’une fagon unique les
éléments de la forme (99) et les nombres g_, - les éléments
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de la forme (100); il en résulte que le nombre des éléments
de la forme (99) et (100) ne dépasse pas le nombre des B4
distincts et des J‘__,] distincts, respectivement. Vu gque les
é1éments de (99) et de (100) satisfont aux équations (6) et
(7), nous en déduisons

k~1 gl

(101) Agq =P7 Beqs  Ciq =87 Dy
k-1 F 1-1

(102) B g 729 =Beqr G g7 =Dy

Mais, d’aprés (98), il existe deux entiers A et M, tels
que A(k-1) + u(1-1) = q. Il s’ensuit donc des relations
(101), (102) que

fi=a e A 1> <D1-1>
sda-v - (E (=)

alors le nombre des g, est égal & g et il est de méme
avec les j_,. Alnsi notre démonstration est terminée.

Théoréme 3, Si fe S, satisfait a deux
2,-équations des degrés k et 1, k £1, et (k-1, 1-1)=1,
alors soit £(z) = z soit £ est donnée par (29).

Démonstration. I1 résulte du théoréme 2
pour g =1 que f se prolonge sur tout le plan comme une
fonction algébrique bivoque tout au plus. Ensuite ncus dé-
duisons notre thése des lemmes 2 et 3.

Remargue, Pour k=3 et 1>2 pair, le théo-
réme 1 est une simple conclusion du théoréme 3.
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