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ON SOME PROBLEMS CONCERNING SUBORDINATION
AND MAJORIZATION OF FUNCTIONS

1. Introduction and notations

In this note we deal with some extensions and generaliza-
tions of the well - known problems in the theory of
subordination and majorization of functions.

First we shall give some notations.

Let 'S be the class of all functions of the form

(1) F(Z) = 2 + A222 + ooy
holomorphic and univalent in the disk Kq, where

Kr={z: |z]|<r, O<ré1b

By §,CS, 0<x<1, (8 = 5") we denote the class of
all « -gtarlike functions, i.e. the functions satisfying tihe
condition

(2) Re[%(‘ﬁl}oc, T

S(b), 0<«x<1, 0<b<1, (8i{b} = s{v}), stands for tre
class of all functions of tha form

holomorphic and univalent in K1 and satisfying there the
condition (2).
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By s'(‘,b)<b>, 0<p<1, 0<b&1, (8{4)<b> =5"{b}) we
denote the class of all holcmorphic functions in K,] of the
form

Pz) =z + 2b/5z2 4+ ceey

satigfying the condition

larg ZT]Q?_'z;ﬁI<ﬂ% ’ zeK,‘.

This cless has been considered in [3] and [10].

Let us observe that S = UJ s{{v} and 55 = |J s.<b>,
-1¢b¢1 ~1<b<1
Je can restrict ourselves no loss generality to the case

0<b <1, bécause if F(z)e S; (S;) has the form (1) and
& = arg Ay, then o10p(o~10 z) € S;(Sy) has nonnegative second
coefficient.

By G s M21 we denote the class so-called quagi-starli-
ke functions, introduced by Dziubihski [4]. Namely, we say
that a function g 1is guasi-starlike in K,], if it satisfies
tiie equation

(4) Fglz)) = Fz), ecH,,

whare F is an arbitrary starlike function in K,] and M is
a fixed number such that M=>1.

let Qp» n 21, denotes the class of all holomorphic
function®" in K1 suct}a that "

$iz) =o¢nzn"1 +otn+1zn + eeey a0,  |B(2)] <1,

and let .Qn{c} be the subclass of @, consisting of the
functions with fixed coefficient o, = ce [0s1)a

Hn’ n>1, stands for the class of all holomorphic
functions in K,; of the form

- n . n+1
£(z) = a2 + & 4%

n+ * eeey 8 20,
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Subordination and majorization of functions 3

and Hn{c} the subclass of H  consisting of the functions
with fixed a, = c> 0.

By Hg we denote such subclass of functions of Hn which
in addition satisfy the condition £(z)/,n # 0 in K, and
a > O.

We need also the claas P [Ol, b('l-oz)], nx1, Osa <1,
0<b<1, (P [0,b] = P {b}, P,,{b} = P{b}) of all holomorphic
functions :Ln K of the form

pleg) = 1 + 2b(1-a) 2 + pm_,lzm"l + eee

which satisfy the condition

Re p\z)>a, 1z eK,.

It can be obgerved that [a b(']-a)] .
1<b<
Lewandowski [6] and Mac Gregor [8] has considered (among

the others) the following problem: let tely,, Fes", and
suppose that |£(z)| < |®(z)| holds for every zeK o Find
“the best number" r e€(0,1) such that for every zeK,
|2 (2)| < | ¥ ()| holds. The term "the best number" means
that the lasat inequality does not take place in any larger
disgk.

In t3®¥s note we allow the majommnts with fixed second
coefficient (the classes §,{b} and S; <b>) as well as
the class of quasi-starlike functions @ .

Moreover, we solve gomewhat general problem as in [6] and
(8]. Namely, we determine the function

(5) ‘P(Hn{c}, Th;r) = sup“%&'}é feHn{c}, Fel ;

|£(2)| < |F(z)|, z<Kj |2 = r<’l},

where T, denote the clags of all holomorphic functions in
K, of the form (1) such that for any re[0,1)
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(6) |%—?)—l>h(r), |z|=r<1,

holds (exact bound) with h being continous, positive and
decreasing function for re[0,1), h(0) = 1. (Another prob-
lem of this kind in the theory of subordination has been
considered in [2]).

We also find the largest disk in which the relation
£(z) 3 Re), £eH), Fesi{b} or S;<b> taking place in K,
implies the relation |£(z)|< |F(z")| (the sign -3 denotes
that £ is subordinate to P in K,).

All obtained results are best possible and in special
cases reduces to the results of [6] and [7],[8]. Taking into
account that in the case b=0 the extremal functions are odd,
#e see that our results solve the problems stated above :for
subclasgses consisting of odd functions.

2. lemmas

Lemma 1. The region of variability of {plz)} for
fixed zeK, and p renging over Pn[d, b\’l-ol)J is (if
b # 1) the closed disk

(7) |pte) ~ w |<R,
where
v 2 (1=t |z|2>+(1 20) |2 2" (12 (% b2)+-b<4 IZI2)[k1—Zg)z -2%]
° (1-5%1212) = |2[P2(1 31267 )b (1= 2|2 (2" + 2

(8)
. 2(1-a)(1 b)lzln+1
07 (1282 |2 [2)- |2 [22( | = [2-b2 )-b(1-] 5 |2 )(22+2"

Boundary . functions in (7?) have the form

(9) (z) [‘I + (1=-2a) bz }+ ez[(1-2d)z + b]

[ef=1.
(1-b2") - £2(z%D)
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If b=1, then the domein of variability is tie c¢closed disic

, 14(1-2) 18 1% | . 2{12d |2]"
(7") piz) - M 1_1:),&1 !S—:ﬁ-}%—

and the boundary funections have the form

1+ (1=2a) e 8"
p.(z) = . lel= 1.
° 1-ez® ’

Pr oo £, Suppose thai pis) €P, [a, bH-a)] « Then tie
function

(10) Ql z) =L‘,z|%;—°‘ePn{b}

and we can write

(11) -%{-:%ﬁ-: bz% + ..y = sPw(E),

where w(o) = b and |w(g)|<1 for ek,
Let us obgserve that the function

(12) ®z) = PERMep, (2, =P ),

where

(13) glz) = zn'1w(l) and wiz) =%’§%)£—1(’—a-.

Substituting (13) into (12) and (10), we get

(14) Qlz) .{inﬂ("*bl") *’.Un*b)}G(!)+[Fn—1(1+bzn)-u°+b)] .
(22 (1b3?) - (22-b)| G(z) +[zn"1(1_bzn)_( zn_b)]

It can be observed that the formuls (14) give ue one-to-one
correspondence between the classes I’n and Pn{b}.

Using the fact that the boundary funetions for the
functional {G(z)}, where z I8 fixed point from K, and G
ranging over the class P, are given by
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(15) G(z) =_1_+_£_z_f._.

1 - ez lel=1

ne ottain (after substituting (15) into (14) and (14) into’
(10)) ,that the boundary functions respect to the functional
{p(z)}, z €K,y and p 1s ranging over Pn[a, b(’l-_a)], have
the form (9).

The formulas (8) follow from the fact that function (9)
maps the disk |z|<r <1 onto the disk (7).

Putting in the Lemma 1 n=1, and taking into account
fact that Fef;{b}, if and only if %3(%—)- ,l[a,b('l-a)],
obtain the following :

Corollary 1. The reglon of variability of
[Z_FF(Z_S_Z_L] for fixed z €K, and F ranglng over S“ {v} 1is
the closed disk (7) &f b #1 and (7') if b =

The geometric interpretation of (7) for n=1, after using
Corollary 1, implles

Lenma 2, Let FeS§, {b}. Then for fixed z ek,

(15) 1=2abRez = (1-2a)Jz I2 < Re 2 inzl <
1-2bRez + | 2 |

¢ _(1=121)[1-2abRez~(1-2a) |z |2]+ 4(1~a)(1-b?)|2 |?
h (1-| 2|“) (1-2bRez 4z %)

zF (z)
Flz

< 1+2(1-a)blz|+(1-2a) 1z |2

(17) 1+2ubl 2] ~( 1-2a)|z| <
1-1 zl

1+2bjz| + lzl2

. 2
R Rew  + Im wov lw < -

Re w VIW |2-Ro =R, Im w,

(18) larg ﬁ(igl

hold,

< arc tg
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Proof. The inequality (7) and Corollary 1 imply:

zF' (2
(19) Rewo - Ros Re —F(—z(-)—zéRe Wy + Ro’
zP' (z ,
(20) RAERSS —F(-é-)—)—slw°|+ :
‘ Inw R
zF (2 o] 0
(21) arg —ﬂé-)—lISarc tg Rew, + arc tg —————-—2 =
lwol -R,

where Wy and Ro are given by (8) for n=1.
The inequality (16) follows from (19) by substituting.
The right hand of the inequality (20) is as follows

1
(22) l 'o" lo _ﬂl—zuhlsl(hulz)cuv]z + #bz(1-az)lllz(‘l-lllz)zlhzqv}z + 211—«)6—&2)|:|z ,
(+=131%)(1+121% = )1 jcon ?)

where z=|z|e1¢ and A= (1—1212)[‘I-('\—2d)|z|2]+2(1-a)(1-b2)lz|2.

The function given by (22) (as function of ¢) attalns its
maximum for ¢=0 and this maximum is equal to the right hand
of (17). In the same way we find that minimum of |wo|-R0 is
attalned for ¢ = Jr and its value 1s equal to the left hand of
(17).

The inequality (21) is obvious. From Lemma 1 follows that
the lnequalities (16) - (18) are sharp.,

For the class S'{b} the estimate given by (18) takes a
simpler form if we observe that in this case the right hand
of (18) 1s increasing function of ¢ and attains its maximum
for ¢= % .

Thus we héve, the followling corollary.

Corollary 2.If FeS {b}, then for fixed zeK,
the followling sharp estimate
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(23)  |ave ZE2d

2blz|(1-lz|2)
(1-1212)2 + 2(1v2)[z|2 ©

<arc tg

2(1-p2)1z |2

1
{[1-1212242 016201 2 ] Beto? o 211 o |2>2} 2

+ arec sia

takes place.

In the case n=1, Lemma 1 gives 'syme result from [9] (see
also [11]), and the estimates given by (16) - (18) and (23)
for b=0 are true for odd functions rrom S".

Lemma 3, If § € Q2 {e}, then for every zek,

(24) I¢ (z)lélzln-’l_'lrzil_-g_,_:T
(25) | ¢ (2)]c L2222 (0=1) 2172 (1=1 1) 8(a)| =1 8 (2)[2

12 BT (1=12 %)

hold. The signs of the equality in (24) and (25) .take place
for the function

(2o ole) = o771 AL

Pr oo f. The inequality (24) 18 obvious and can be find
in [5] The inequality (25)' can be dedused in the following
was. Every function @eQ can be written in the form ¢ (a)
= z" ¢(z), where ¢e.01. Using the well-known Pick’s

2
inequality for 6601, 1.6 |¢(z)| —1§—|(—’-)|-!§—9 we get
-z
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I@’(z)l = |(zn-1é(z))’| = l (n-’\)zn'aé(z) + 27 é'(z)lé

A A 2 2
<(n~1)|z|n'2,¢(z)l+|z|n'1|¢'(z)| é(n-'\)'_%_zr)l_,.lzln-" -] 3 (&)l -

1-| z |

16 (2) , 121272 - |$(2)]2

= -] -
(=) T+ (1=1212) | 2| >

_1212%2 4 (n-1)(2- uz12>|z|°'2 |$(2)] = [8(z)]®
12 1% Y(1-]2|%)

Let v(t), t€[0,1], be real, don-decreasing lower semi-
continous and vanishing at t=0 function, Let us set

(27) r(v) =sup{x: O0<x<1, vix)+2 arc tgx<%}.
Let S, be the class of all functions F of the form (1),
holomorphis in K, and such that for any re [0,1)

¥’ (2

16 vir), |zj<r<i.

(28) l arg

hold, .

In [’7] it has been proved

Lemma 4, If Fe 8, and feHn s then the relation
[f(z) =3 F(z), zeh,]] implles |£(2)|< | F(z®)] in 12| <r(v),
where r(v) 1is given by (27).

3. The main results

First we are going to consider a particular case 27 the
function ¢.
Theorem 1

1 for re[O, ro]
(29) ¢ (8,,8,{b}ir) =

2
1 +(% z(r)-a-"l(r)) for re[ro,’l),
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vhere

1
(’l-r2) [1+2a.br - (1-2:1)1‘2] 2’

QO r) =
(20) (=) r(1+2br +r2) .

r = |z|<1,

and T, is the unique root of the equation
. » 4 3 2 -
(31) (1=2a)r =2(1+ab)r” =2 |(1=a)+2b|r" = 2(1=ab)r+1 = O.

Corollary 3. If: feH,, Fesy, and
|£(z)| < IF(Z)I for zeX,, then £ z)| < |F' (3)] for
zeX , where

To

1 -1
(32) Ty = [(2-@) + (@2 +3)2} .

Corollary 4 If: feH,, FeS"[b}, and
|F‘(z)|< [F(z)] for z€K,, then [£' (2)] <|F (2)| for
zeKr s Where

b

(33) r, = % [(a+1) = (a-1)(a+3)], a = (w043)°,

Corollary 5., If feH,] and P 1is odd starlike
function, and if [£(z)|< |[F(z)] for zeK,, then
I£' (z)] < |F' (z)] for ze Kr1' where

(34) r, =2 [(1+V§) + V2(1+\/§)T1.

Proof, The assumption |£(z)|< |F(z)] for z ek, and
fecH,, FesSy;{b] 1is equivalent to the equality

(35) £(z) = ¢(z)¥(z),

where ¢e¢ L2,
Differentiating (35) and taking the absolute value, we get

(36) |2 (2)| < |§'(2)] [F(z)|+ |§(2)] [F’ (2)
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Using the inequality (25) for n=1 and the left hand of (17),
we obtain

(37) It midrm) |2 oz Ngal? s (1=eDsaumee 12029 ) e rsznene?)

() [vesee - (r-2x°]

where r = |2] <1,
If we set |¢(z)] = xe [0,1], and

wix) = -1 (142b0+7° )x 24 (1=1°) [(1+2abr)-( ’!—2a)r2] 241 (142b241°)
then from (37)

(38)  @(H,y85 (b} i7) = ((1-2%) [1e2abe-(1-20)r%] ) max  w(x).

O<x<
But
(39) nax l}l(x) - W(Xo) if xo<1
O<x <1 1 i xo) .,
where
(40) e < 1-r%) [e2abr - (1-20)27]

° 21 (142br+1r°)

Since x <1, if and only if re[ro,’l), where r_  1s the
unique root of equation (31), we get

1 for T€ [O,ro)
(#1) mex y(x) =
O<x<t q;(xo) for re[r°,1).
The substituting (39) into (40) gives (29),
Now we shall show that obtained result is sharp.
Let c¢e€ (0,1) be so chosen that
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(42) T4+C _ (1-1'2) [.’l+2u.br- (1-2a)r2]
T+er 2r(1+2br+-£2)

holds, and let us put

-1
(43) tﬁo(z) = —’Zifc_% v Fo(z) = z(1+2bz+z2)a .

The mentioned choise of ¢ 1s motivated by the fact that for
¢, 1in (25) and F_ in the left of (17) are occured the signs
of equality, We have fo(z) = ¢o(z)F°(z), and after simple
calculations, we get

£, (z)

[
Fo\z

(1-¢2) 2 (142bz+2°) . 22C
(1+c2)° [1420bz=(1-20)2°]  1+CZ

(44)

Using (42) and putting in (44) z=r, we see that

£ (r)

2 2
_ 4r2(1+2br+r2) + (’I—re) [1+2abr-(1-2a)r2]
F (r)

T gy (1 -r° ) (1+2br+r2) [1+2ab1\- ( 'l-2a,)r2]

which is equal to cp(H,‘, Sy{bl; r), given by (29).

Corollary 3 follows from Theorem 1 by puvting ¢=21 and
b=1, Let us observe that putting a =0 in (32), we get the
result for starlike functions [6] and putting « = 1/2, we
got the result for 1/2-starlike functions which is also exact
for convex functions (8],

Corollary 4 1s obvious and the statment in Corollary 5
which is true for S; {o} is exact for odd starlike functions
as extremal function F_ given by (43) is odd if 1b=0.

Of course all radii (32) - (34) are exact, which is con-
sequence of sharpeness of Theorem 1,
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Theoren 2.

rXI""{z'('l-c2 J+(rec)(1+er) [(n-1 )+h(r )ﬂ
(1+cr)2 h(r)

for re[o,ro]

(45) ¢(u fe] T, 0 )=
" . rn-2{4r2+(‘1-r2 )? [(n=1)en(r )] 2}
4(1-2 Ja(r )

for re[ro,1).

where r is the unique root of the equation

o]
(46) (n=1) + n(r) = f_Ez(fjgg) .

Remar k. Theorem 2 is more useful and give the exact
results for several subclasses of starlike functions defined

by subordination
s au),

wheie H 1s fixed holomorphic and univalent functions with
positive real part in K1 and such that H(o) =1.

P r o o f. Suppose that |£(z)| < |F(z)|, ze K, where
feH {c] and FeT,. This fact implies that there exists such
function |$pe 2 {c}] that

(47) £(z) = ¢(z)F(z).

holds.,
From (47) we get

(48) I£' (2)] < |¢'(z)] |F(2)] +|¢(2)| ¥ (2)].

Using the 1lnequality (6) and (25), we get (x=|¢(z)|)

n
(49) [¢' (a)] < | ¥ { : g i)
[£ (z)] < |® (z)] m“ hlr X m
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14

Bu.t, it is obvious that

(=0) q;(Hn[c}, Th;r) =

= ]in—’l)+h§r2[ _ 1 2
0< ‘ti}-cq‘y_c{('l—r )h(r) ' Bz 22 (rPn() [
1+cr

vhere r={z]<,
The simole calculations show that maximum of the function

~iven by (50) is determined by (45).
The formula given by (45) 1s exact for re [O,ro] . Namely,

let h_(r) be the function corresponding to the function F

such that
F (r)
zF (z)I _ ™ _
elemeal T = TR = Ry

and let ¢, be given by (26). Further on, let us put
fo(z) = qbo(z)Fo(z). Then for z=r we have

(z)

|

[ FO(Z)
¢°(Z) FETET + ¢o(z)

r ran-'2+(n-’|)(’l-r2)rn-2l%(z)l"|¢o(z)|2
i i + |95(2)]

B

which ends the proof.
One can observe that the inequality

{r(’l-c )+ (r+c)(’l+cr) [(n—1)+h(r)l}
(’l+cr) h(r)

is equivalent to

(51) h(r) > 2 Le(1=e® )+(n-'1)[(11‘j~|0)(1+c_1
(1+cr) [(1+cr)-r {r+c )]
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and the right hand of (51) 1is increasing function of r. This

yields
Corollary 6. If feHyfc] and FeTy and

|£(z)|<|F(z)| for zeK,, then |£' (z)|<|F (z)] for ze Ry s
where 1s ‘the unique root of the equation

Pl [r(1-c2) + (n—1)(r+c)(1+cr)]

2 h
(52) (=) (1+cr) [(14ex)=r " (r+c)]

and this result is best possible.

Corollary 7 .If‘feHn[c]énd T, =8 or
s* (a(z) = :l‘—:—§> » then the relation |£(z)| < [F(z)|, zeK,
implies the relation |£'(z)|< |F'(z)] for ze Kp(n,c)? Where
r(n,¢) 1is the unique root of the equation ’

(53)  (n=2)er®*? 4 [(n-3)02 + nc + (n...q)]rn*"] +
¥ [(n—1)02+ (n=2)c + (°+")]I‘n+°ﬂrn'1+carB-c(c-z)rzi-

+ (1=2¢)r-1 = 0,

and this result is exact.
Putting =1 in (53), we obtain a result from [7].
As an application of Theorem 2, we have the following
Theorem 3,

( x-_@-c2 )('H-Zbr-rr2 )F + (r+c )(1+or )(1"'1'2 )ﬂ
(1+er )2 (142brer® )P

(54) q(H1[c},S;<b>;r)= for re[o.r(ﬂ)]

| 1+ (2(r) - %—x'1(r))2 for re[r(p),'l),
2(r) = [r§1+2br+r2 2]%
(1=-r=)F*
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and r(ﬂ) 1s the unigue root of the equation
(’l+or)(’l-r2)ﬂ+" = 2r(r+c)(1+2br+r2)p.

Proof, If T = Sp<b>, then from the relation that

]
Fe 8T )<b>, if and only if Zg zz = pP(z), where p(z)e P{b}
and from (17) we find that

2 \f
(55) n(r) = (——“'—r—é> |
14+2br+r
Theorem 2 implies that
(56) q)(H,l{c}, 'I.‘h;r) =

r(1-02)+(r+c Y{(1+cr)h(r)
('1+cr)2 h(r)

: ‘/ 5 \ |
+<V ) -3 Vgl ) for re[ze,1),

where T, is the unique root of the equation

for re[o,ro]

21 I+C
h(r) = _— 1+cr>

The formulas (55) and (56) imply (54),
Theorem 4, If feH, and GEe€ 6M and

i£(z)|<|1G(z)| - for zeK,, then [f'(2)|< |G(z)] for zeKr ’
where Iy is the unique root of the equation

(57) axf(e2e) -~ sCm) [(1r) - Veun? - 5 ]} -
- (1-r)2{(1-2r)+h1£1+r)I:(’I+r)-V(1‘+r)2 - ‘.fir.]},
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A M
and © denotes the normalized family of quasi-starlike
functlons in K, 1.e. such family of functions G, that
G(z) = Mg(z), and g(z) 1is defined by (4).

Proof, Let us observe that from (56) follows that

q:(H,l{c] ' Th;r) <1

if and only if

(58) a(r) > GrEftieky -

The right hand of (58) is an increasing function of ce€ [0,1),
which implles that the root of the equation

__r{1+c
h(r) = =) (1+cr

is decreasing function of ¢ & [0,1).
This fact in turn gives that the relation (¢ —1)
lez) < |F(2)], z€k,, feH,, FeT,] implies

ﬂf'(z)| |F (2)|, zek ] where P is the unique root of
the equation

(59) a(r) = 22

A M
For the class 6 , we have [1]

ﬁlﬁl
o

(1—2r)-+M(1+r)[(1+r) - (1+r)'
1+r (1+2r)-M(1+r)[(1+r) - Vkﬂrr)

(60) hi{r) =

4]

’

which implies (57).

Finally we can observe that from Theorem 3, by putting
B=1 and b=1, follows Corollary 7, and from Theorem 4 {n
the limit case M—-=coo, we get oace again the result of
starlike majorants.
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Now, we use Lemnma 4 to obtaln a theorem concerning
ma,jorization-subérdination theory. Namely, using the relation
between classes 8§ <b> and P{b} as well as (23), we get
that for every .Fe SE <b> the exact estimate

2br(’l-r2) >
® (1=r2)2 4 2(1-b2)ep2

2.2
+ arc sin 2(1-b )r2 T »
{[(’I-r2)2+ 2(1-b2)r2] + 4b2r2(1—r2)2}2

2

(51)

N
B
o
)
=
:{E
N
N
PN
:
a
c3

where &r=]|z|<1, takes place.
Lemna 4 and (61) imply the following result
Theoren 5, Let feH: and Fe 8§ <b>, then the
rellation [f(z) %F(z)], ze K, implies |£(z)] < |F(z)] for
z€ K, wvhere r 1s the unique root of the equation

2br('\-r2) >
62 t
(62)  plaxe te (1-r2)° + 2(1-b°)° ¥

2('1-b2)r .
{[(’I-r2)2+ 2(']-b2)r2]2+ 4b2r2(1-'-r2)2} %

+ arc sin

+ 2arec tgr:%

and this result is exact,

Putting n=1, f=1 and b=1, we obtain the well-known
result [7].

Corollary 8, If f(z)-a,lz+ eesy 34>0 18 holo-
morphic in K, and £(z)#0 for zeKN[o] and FeS", then
£(z) 3 F(z), ze¢ K,y implies |£(z)] < IF(z)l for |z|l<V2 - 1.

Putting n=1, =1 and b=o we get

Corollary 9., If f(z):a,|-z+..., a ;>0 1is
holomorphic in K, and £(z) £#0 for zeK,\{o] and F 1is
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arbitrary odd starlike tunction, then =£(z) <3 F(z), z €K,
:mplies |f(z)] < |F(z)| for |z]< %, where £ is the unique
root of the equation

(63) PP+ +r-1=0.
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