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INFLUENCE OF 'ΛΓ (0) ON THE a-CONVEXITY OF NORMALISED 
STARLIKE UNIVALENT ANALYTIC FUNCTIONS OF ORDER β 

O, Let a be a rea l number and Sg (<?,/}) denote the c lass 
of normalised α-convex univalent functions f of order β 

(Ο < β < 1 ) in the open unit disc D = { ζ | | ζ | < 1} i . e . , f 
i s in Sa(9 ,J8) if and only i f f ( z ) i s regular in D, f (0) = 
= f ' (0) - 1 = 0, l f " ( 0 ) = 9 , f ( z ) f (z)/z ¿ 0 for zeD 
and 

(0.1) Re{(1-a )z f (z)/f(z) + a [1 + z f (z)/? (ζ)]}>β] 

for ζ e D and 0 < β < 1. 
If α = 1 then f in Sa(p,^8) i s convex of order β in D 
while i f α = 0 then f in i s s tar l ike of order β 
in D. Star l ike and convex univalent funotions of order β in D 
are introduced by M.S. Robertson [6]. But α-convex functions 
of order zero are of comparatively recent origin and are 
introduced by Professor Petru T. Mocanu [3] of Rumania. Mocanu, 
introduced th i s c lass of functions for -1 « α « 1 only and 
proved each function in th is c lass i s univalent and s ta r l i ke 
[3 ] . Thereafter, Mil ler , Mocanu and Reade [4] extended the 
definit ion ana proved that f in Sa(?, jS) i s s ta r l ike and 
univalent for a l l a , i . e . , - œ < a < <x>. 

In [2] David E. Tepper obtained the convexity region 
influenced by ç for the functions f in S Q ( q , 0 ) . In [1] we 
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obtained α -convexity region for starlike functions of order 
zero and independent of ç in D. In the present paper we shall 
obtain what is the α-convexity region for f in SQ(qtß) 
influenced by 9. Because of similarity of the proof wc shall 
also obtain the α-convexity for f in SQ(çtfl) independent 
of 9. This generalizes Tepper's result. Our method of proof 
is similar to that in p] and has a relevance to the techni-
ques of V. ZmoroviÒ [ 7 ] . Note that Tepper's method is not 
workable for the present generalization. We need the following 
result in proving of our theorem which I am stating as a-lemma 
in the next section. I shall provide thfe proof of this, since 
it is of interest in its ownright. 

1. L e m m a . Let f be in SQ(çtfi)t i.e., f is 
starlike of order fif O < J8 < 1, in D with 9 = g f"(0) > 0. 
Further, if we write 

(1.1) q(z) = ζf (z)/f(z) 

then we have 
2 2 

(1.2) |zq' (z)-{q(z) -1} {q(z) + (l-2/5)}/2(l-j8)| < ffi ~_Ββ j , 

where 

(1.3) 

(1.4) Β = |q(z) - a|< A 

and 

(1.5) a = {1+ (l-2l)r
2) T η - « 

0 - r ¿ ) 
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Also i f 

( 1 . 6 ) a , = h t 0 - g « o 2 r 2 } 
{l - o r ] 

^ f r ^ y 
and 

<1·β> C = j f / b r i » b » 

then we have 

( 1 . 9 ) |q(z) - a 1 | < d 1 . 

Fur the r , i f 

1 0 ) a = {l + 2 ( l - l ) t 2 r 2 - 2 t r - 2 t ( l -2/ i ) r^ + ( 1 - 2 l ) r 4 } 
2 { ( 1 - r 2 ) ( l - 2 t r + r ^ ) ] 

( 1 . 11 ) d { 2 ( 1 - l ) ( t - r ) ( l - t r ) r } 
2 { (1-r ) ( 1 - 2 t r + r )} 

( 1 . 12 ) d , = { 2 ( l - ^ ) ( t + r ) ( l ^ t r ) r } 
5 |1+ 2 t r - 2 t r^ - r ^ j 

Μ « - + 2 t r + 2 ( l - / ? ) t 2 r 2 + 2( l-2/3)tr^ + (1 - 2ß)r*} 
( 1 , 3 ) 3 " { ( l - r * ) ( l + 2 t r + r * ) } 

and 

(1 .14 ) t = I = * <? > O 
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then we have 

(1.15) |q(a) - ag) > a 2 

and 

(1.16) |q(z) - a ? j < d ? . 

P r o o f . Since f Is In S 0 ( < f , ß ) , Re{zf (z) / f (z)}>j3 
0 < ß < 1 f o r ζ e D. There ex i s t s a func t ion w(z) with 
v/(0) = Ο, Iw(ζ)I < | z | < 1 regu la r in D such t h a t 
( 1 . 1 7 , » , 

With our nota t ions of lemma we have 

Now we show tha t the inequal i ty (1.2) i s equivalent to 
2 

(1.19) |w ' (« i ) - w ( z ) | < ( r 2 ; l w ( g ) l ) 

( 1 - r ) 

f o r ζ e Dl and | z | = r . Since the a s se r t ion (1.19) i s we l l -
-known, we need only to show the equivalence of (1.2) and 
(1 .19) . D i f f e r e n t i a t i n g q(z) we get 

(1.20) q· ( , ) = 2 ( 1 ^ ) W (z) , 
\1 - w(z)j 

V/e have a l so 

(1.21) q(z) + (1 - 2β) = 2(1 - ß ) / { l - w(z)} 

and 
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Using equations ( 1 . 2 0 ) , ( 1 . 2 1 ) and ( 1 . 2 2 ) we get 

(1 .23 ) aq' (a) - [ { q ( z ) - l ) [ q ( z ) + (1 - 2jB)}] / 2 ( l - j S ) = 

= 2(1 - / 3 ) { z w ' ( z ) - w ( z ) } / { l - ( z ) } 2 . 

Further we have 

( 1 . 2 4 ) q(z) - a = - 2 ( 1 - ß){v2- w ( z ) } / { ( l - r 2 ) [l-w(z)]} 

( 1 . 2 5 ) B 2 = 4 ( l - ^ ) 2 { | r 2 - w ( z ) | } 2 / [ ( l - r 2 ) 2 { | l - w ( z ) | 2 } . 

By using ( 1 . 3 ) , ( 1 . 2 4 ) and (1 .25 ) we get 

( 1 2 6 ) (A2 - B 2 ) ( 1 - r 2 ) 2 = ( l - r 2 ) ( r 2 - | w ( z ) | 2 ) 
4 ( 1 - h - w í z ) ^ 

Equations ( 1 . 2 3 ) and (1 .26 ) then subst i tuted in ( 1 . 2 ) y ie ld 
( 1 . 1 9 ) . This completes the proof of ( 1 . 2 ) . 

Now, we ver i fy ( 1 . 9 ) . We have 

(1 .27 ) q(z) - a , = { - 2 ( l - ^ c 2 r 2 + 2 ( l - ^ ) w ( z ) } # 

1 {(1 - c r i [l - w(z)J 

Using ( 1 . 2 7 ) in ( 1 . 9 ) we get the inequality 

(1 .27a) | q ( z ) - a J = b d - ^ ) l ( c 2 r 2 - w ( z ) ) l < 2 (1 - | ) c r 
' 1 1 | ( 1 - c r ) ( 1 - W ( Z ) )| ( 1 - o r ) 

which i s equivalent to 

( 1 . 2 8 ) I c 2 r 2 - w(z)I < c r | l - w ( z ) | . 

But inequali ty ( 1 . 2 8 ) in turn i s equivalent to 

(1 .29 ) (1-c 2 r 2 ) ( c 2 r 2 -1w(ζ) I 2 ) > 0 . 
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6 Shy&m Kishore Bajpai 

Also, we observe that 

(1.30) 1 -c 2 r 2 >(1-c 2 ) = (2-b) ( l -r ) ( l+r ) (2, ,b) > Q 
(2+br) 

since 0<b = j ^ f l < 2 for starlike functions of order β . 
Thus (1.28) to hold, we must have 

But the last assertion is well-known for the bounded functions 
satisfying the conditions of Schwarzas lemma. This completes 
the proof of (1.9). 

Now the proofs of (1.15) and (1.16) are exactly similar. 
Thus, for completeness we prove (1.16) and leave (1.15) for 
the reader to ver i fy . By substituting the value of a^ we 
have 

Therefore the inequality |q(z)-aj|<dj is equivalent to 

(1.52) r 2 ( t + r ) 2 - ( l+tr)2w(z) < ( t + r ) ( l + t r ) r . 1 - w(z) 

The inequality (1.32) holds i f and only i f 

0 < [ ( l + t r ) 2 - r 2 ( t + r ) 2 ] [ r 2 ( t + r ) 2 - ( 1+tr)21w(z )| ^ . 

But (1+tr)2 - r 2 ( t+r ) 2 = (1-r2 ) (l+2tr+r2) 0 for r < 1 and 

0 < t = 2(1-jB) * ^^refore (1.32) holds true i f and only i f 

r 2 ( t+ r ) 2 - (1+tr)2 | w(z)l 2 > 0 or i f 

c r ( t+r ) [2(1»%-»·?] r 
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Starlike univalent analytic functions 7 

The last assertion Is the generalised Schwarz's lemma for 
bounded functions and is well known (see [5], P.107). Thus 
the proof is finished. 

R e m a r k . The inequality (1.16) gives us 

(1.53) a, - d, = 1 + < p 1 + 2tr + r 

. H e zf' (.ζ] < < K e f (z) f u ) I 

= + (l-2flr2 
3 3 (1-r ) 

The inequality (1.33) gives us the basic distortion theorem 
of ̂David B. Tepper [2] . 

2. T h e o r e m . Having proved our lemma, now, v/e are 
set to prove our desired theorem. The theorem which we are 
going to prove generalizes a result of David E. Tepper for 
ot-starlike functions of order β to the range Ο < β <ßQ (a,ß)mßQ. 
The positive number ßQ is the smallest root of the equation 

(2.1) otw2 - 2ß(2+a-2ß)w + oLß2 =0 , 
where 

w 

and 
N(¿) = 8jB2(l-ß)(1+a-2j8)l3-tf2(l-j8)2l3+ -

- 2ßlf(2+a-2ß) - 21am2a , 

D(j8) = m|a - < ϊ φ 2 + ̂ 3(ΐ-^)1 3 + *2{Λ-β)2α} 
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8 Shyam Kishore Bajpai 

and 
13 = 212β(2+α-2β) + Z l ^ a , 

2 2 2 
m5 = α m1 - aß , 

12 = 1 - 32β2(Λ-β)(2+α-2β), 

c^ = m + 16o¡^(l-j3), 

where 

1,, = 2(1+a-0)(4t0-4J&) - a(4J-2jït) -a¿(-4+2t) + 

+ 2j8(-4+2t)(2-w-2jJ), 

m^ = 2(Λ+α-β) (-^Qß-Wß2) -aß(4ß-2ßt) -

- (-4+2t)a/32, 

1 = 2(l-t)(4^2+2a¿2-4j83)(2+a-2¿-ci) -

_ 2(1-t){-αβ2+2αβ-α) + 2ß(2-2t)(2ß+2aß -

- 2fP-aß)(2+<x-2ß) +a2ß2(2-2t) + 

+ a(4-8ß+4-tß2)(2+2ct-2ß) - ot2j82(-4+4t ) -

- α 2 (2-4/8+4/}2+2t-4tyS ), 

o= (—αβ2+2α.β-α) (2-2t ) (2ß-2ß2+aß) -

- a.ß2(2-2t)(2ß+2aß-f-aiß) + 

+ 0L(-2ß+W2+2tß-1tß2)(2+2ct-2ß) -

- aß (2-M-ß+*ß2+2t-4tß ), 

t = 0/2(1-/?). 
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For o u r conven i ence we a l s o d e n o t e β ß ^ ( a t ß ) t o be t h e 
s m a l l e s t p o s i t i v e r o o t of t h e e q u a t i o n 

( 2 . 2 ) ctV2 - 2ß(2+<x-2ß)V + aß2 = O, 

where 

N,j (/O 
7 

and 

ϋΙΛ(.β) = -4(2+a2)ß3 + 4 (5+4a+a 2 +a 3 ) j8 2 -

- 8(2+3a+a2) j8 + 4 (1+2a+f t 2 ) , 

D^C/3) = 8cty83 - 8 ( 2 a + a 2 ) ^ 2 + 8 ( α + α 2 ) β . 

I t i s c o m p a r a t i v e l y e a s i e r t o f i n d t h e s m a l l e s t p o s i t i v e 
r o o t f r o m t h e e q u a t i o n ( 2 , 2 ) t h a n f r o m ( 2 . 1 ) . B u t , i f a = 1 
and Ο <β<Λ t h e n i t i s easy t o s e e t h a t b o t h ßQ and β^ 
b e l o n g t o t h e i n t e r v a l [^- , 1 ) . T h i s t h e r e f o r e i m p l i e s t h a t 
T a p p e r ' s r e s u l t i s g e n e r a l i s e d t o t h e c a s e Q < ß < , ß o ( = ^ s a y ) . 
T h i s , however , w i l l become c l e a r f r o m t h e f o l l o w i n g theo rem, 
which I am i n t e n d i n g t o p rove i n t h i s p a p e r . 

T h e o r e m . Le t f ( z ) b e a f u n c t i o n i n SQ(9,ß) and 
0 < ç < 2(1—β) f o r z e D . Let r(a,ß) where a > O be t h e 
r a d i u s of t h e l a r g e s t d i s k i n which 

R e [ a ( 1 + z f " ( z ) / f ' ( z ) + ( l - a ) z f ( z ) / f ( z ) ] > 0 . 

I f s a t i s f y t h e f o l l o w i n g c o n d i t i o n s 

( 2 . 3 ) a s 2 - 2 ( l + 2 a - 2 ^ ) a j î + aß2 = O. 

( 2 . 4 ) ( l - ¿ ) 2 - 9 ( Λ - β ) ( * - α β - 2 β ) τ + (q2ß2 - 2(Λ-β)2 [(Λ-2β) + 

+ 2 a ( l - j 8 ) } ) r 2 - ç ( l - β ) (a+2jJ-4/ î 2-a/})r^ + (Λ-β)2(Λ-2β)2^=0 
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( 2 . 5 ) 1 - 2(l+cx-2.S-a;8)r + ( l - 2 , 3 ) 2 r 2 = 0 

and 

_ _ 1 + ( l - 2 l ) r 2 
d. ,. 5 » 

1 - r ¿ 

t h e n r ( a , ^ ) i s t h e s m a l l e s t p o s i t i v e r o o t of t h e a q u a t i o n 
( 2 . 3 ) f o r β ^ < β < Λ , t h e s m a l l e s t p o s i t i v e r o o t of t h e 
e q u a t i o n ( 2 . 4 ) f o r 0 < β < ß o ( a t ß ) , and t h e s m a l l e s t p o s i t i v e 
r o o t of t h e e q u a t i o n ( 2 . 5 ) f o r 0 < β (α,β), where ßQ(a,ß) 
and β ^ ( α , β ) a r e t he s m a l l e s t p o s i t i v e r o o t s of t h e e q u a t i o n s 
( 2 . 1 ) and ( 2 . 2 ) r e s p e c t i v e l y . 

Let a < 0 and 

(2 .1 ) ' ( - 1 - et) + (a-3+4j5)r + (a-2aß-ß2+Qß-3)r2 -

- (Λ-2β)(Λ+α.-2β)Γ3 = O. 

(2 .2) ' ( - 1 - α ) - 2 ç r + { a + a ( 1 - 2 j S ) - (2-4,8) - ç2]r2 -

- 2 9 ( l - 2 ^ ) r 3 + { - a ( l - 2 j 8 ) - ( 1 - 2 £ ) 2 } Γ 4 = 0 . 

(2 .3 ) ' Λ + 2{Λ+α.-αβ-2β)ν + (1 -2 j3 ) 2 r 2 = 0 

(2 .4 ) ' a d - α + α 2 ) + { 2 a 2 - 2 a ( l - a ) 2 ( l - / J ) } r 2 + 

+ { α 2 + a ( l - a ) 2 ( l - 2 j 8 ) } r ^ = 0 

( 2 . 5 ) ' 1 + ç ( a + j 8 ) r + { ç 2 + 2 a + 2 ( l + a ) ( l - 2 j 8 ) } r 2 + 

+{aç+ 2ç (1-2/3) J r ^ + ( l - 2 j 8 ) 2 r 4 = 0 . 

I f y' and tí a r e t h e s m a l l e s t p o s i t i v e r o o t s of t h e 
e q u a t i o n s (2 .1 ) ' and (2 .2 ) ' r e s p e c t i v e l y , t h e n r(a,ß) i s 
t h e s m a l l e s t p o s i t i v e r o o t of t h e e q u a t i o n ( 2 . 5 ? f o r 
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Sterilite univalent analytic functions 11 

r(ot,j3)<h' and the smallest positive root of the equation 
(2/5)' for τ(α,β) <y' . Otherwise r(a,ß) is t.ie smallest 
positive root of the equation (2.4)' , 

P r o o f . Since f is in SQ(9,β),0 < β < 1, ne have 
some w(z) for which 

(2.6) zf ' (z) _ 1 + (1-2I)\v(z) 
Tz7 1 -V/(zj ' Ζ € D 

and w(0) = 0, |w(b)| < 1 in D. 
Let us write q(z) for zf' (z)/f(z) and also 'vrite 

(2.7) J(f.) = He[( 1-a) ̂¡^ +a[l + 

Then from the inequality (1.2) we get 

*M(q) for α ̂  0 
(2.8) Re[j(f)] = J(f) 

H(q) for α < 0 , 
where 

(2.9) M(q) = He 

and 

q U ) + 2(1—j8)qvzJ 2(l-i) |qU)| 

r? ini Ηίπΐ - flJní-o « «fate).- j [q(z)+1-2^]], «{α 2-β 2] (2.10) H(q) - Hejq(z) + 2(1-fjq(z) 2(l-¿)|q(s)| ' 

The case a»0. Now let a > O. Writing q(z) = a+x+iy and 
M(x,y) for M(q) we have 

(2.11 ) M(x,y ) = a+x+a(2-2/3)~1[a+x-2jU(2*-1 )(a+x)R~2- (A2-x2-y2)R~1] , 

where 

R. = |q(z)| = V(a+x)2 + y2. 
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From (2.11) we have 

(OA p) dM(x,y) _ -2(2j3-1)(a+x)«aa i 2ga 

+ a(A2-x2-y2 ) gR1 _ 

= tty a Í2R^ + (A2-x2-y2 )R. + 2(1-2/?) (a+x)l 
2 (l-^)ß/j η 1 J 

= ayR~4 W(R,,,x,y)/2(l-/}). 

where 

(2.15) vfcR^x.y) = 28^+(A2-x2-y2)R1 + 2(1-2j8)(a+x)>28^+2(l-2/)(a+x)> 

^2(a+x)(R2+1-2je)>2(a+x){(A-a)2 + (1-20)} = 

= 4(l-/3)(a+x)(l+r)~2[l + (l-2/3)r2] > O . 

Since M(x,y) is symaetric in y, i t follows that 

(2.14) ciin M(x,y) = M(x,0) = M(a+x). 
y 

Nov;, i f we write a+x = H, we set 

3-1 ( 2 . 1 5 ) H(H) = R + ¿ H - 2 / i , ( 2 ^ 1 ) R ^ - ( A 2 - x 2 ) f í - 1 ] # 

But 

(2.16) A2 - χ2 = A2 - a2 -R 2 + 2aR 
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and 

.(2.17) a 2 _ A 2 = 1r(l 
(1-r ) 

so we have 

(2.18) a 2 - A 2 + 2/5-1 = 2<? [l+(l-2J3)r2] • = 2 & β < 

(1-r ) 

Therefore, from (2.15) and (2.18) we have 

(2.19) M(R) = [l+(l-y3)~1a]R+a(l-j8)~1(aíR"1-a-)í). 
Thus, from (2.19) we find that M(R) attains its absolute 
minimum for 

(2.20) R = R0 = ( ^ f . 

Since 
(2.21) R2 = aa/3/(l+a-ß) < a < a + A< (a+A)2 

it follows that R Q< (a+A). Thus, either RQ lies in the 
interval [a-Α, a+A] or not. If RQ lies in the interval 
[a-Α, a+A] then M(R) attains its minimum at R = RQ while 
if Rq lies outside this interval then M(R) attains its 
minimum at R = a-Α. Hence we have 

M(R0) if Ro e [a-A, a+A] 

M(a-A) otherwise. 
(2.22) min M(R) = 

R ' 

The radius of α-convexity r(atß) is therefore 
determined either from the equation 

(2.23) M(R0) = 0, 
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where Rq is given by (2.20), or from the equation 

(2.24) MiHg) = 0, 

where 

(2.25) R2 = a - A = 1 . 

These two equations coincide f o r «ome ßQ = ßQ(a,ß). Now, 
we are interested in determining the transition value of ßQ 

from (2.24) to (2.23). For this aim, we assume that 

(2.26) Rq = B^ or &αβ(Λ+α-β)~Λ = b| . 

I t fo l lows then from (2.24), (2.19) and (2.26) that 

(2.27) [ l+aO-yS ) " 1 ] ^ = [ ^ rß -^+a -ß^/a i f eC l -ß ) ] 

or 

(2.28) 2(Λ+α-β)Ε2 = α(α + β ). 

Substituting the value of R2 = a-Α into (2.28), we have 

(2.29) 2(ΐ+α-/3)Α = (2+α-2β)&-αβ . 

ρ 
Now squaring (2.29) and substituting the value of A into 
the resulting equation, we get 

(2.30) (2+tf-2/3)2a2 - 2α.β(2+α-2β)& + α2β2 = 
¡i 

= 4(1+a-j8)2(a2-2a/3-1+2/3). 

Equation (2.30) can be written-in the form 

(2.31) A^a2 + B.a + C, = 0 
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where 

(2.32) A1 = a ( 3 a - W 0 , 

(2.33) B1 = - 8 ß ( - ] + a - ß ) 2 + 2aß(2+a-2ß), 

(2.34) C,, = -4(1-2/3)(Λ+α—β)2 - α 2 β 2 . 

Also equation (2.23) i s equivalent to 

(2.35) a 2 a 2 - 2a.ß(2+a-2ß)a + a2ß2 = 0. 

Solving (2.35) for a we obtain 

_ 2aß{2+<t-2ß) ± V4a2y32(2+a-2/3)2 - 4 a V 2 _ (2.36) a = ρ 
2 α 

= |[(2+α-2^) I 2 V(1—/O (1+«·-β) J . 

Now, i f a i s taken with the negative value, then solving 
(2.36) we set 

r(a,/2) = 
r V 2 ι 
{j3(2+a--2/3 ) - 2{β(Λ-β) [Λ+α-β)) - a ] 

2+α-2β) - 2{ß('\-ß) (1+a-y3)J + d(l-2/})jJ 

Thus f e So(?, j8) i s a - convex in \z\< r(α, β) i f 
ßQ^β <1, where ßQ i s the smallest posit ive root of the 
equation obtained by elimination of a from (2.31) and (2.35). 
Clearly, ν ( α , β ) shows that when 0 < β < 1 and β<α, then 
i s imaginary. Hence in this case the convexity region i s de-
termined by M(32) = ° · Again, considering the equation (2.3J>) 
and le t t ing a > 0 we have 

(2.37) a 2 = 2l(2+a-2/?)a-a/>2 . 
OC 
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3qua t i ons (2 .31) and (2 .37 ) g i v e s us 

Ά , α * 2 - 0Λα 
( 2 . 3 8 ) a = 2yj(2+cc-2jí)A/| + B^ä - D^TTT ' 

where IT̂  Cy3) and D^i/8) a r e t h e same e x p r e s s i o n s as s t a t e d 
in the theorem. Using t h i s va lue of a in t h e e x p r e s s i o n (2 .35) ' 
-;ie s e t t h e d e s i r e d e q u a t i o n . The s m a l l e s t p o s i t i v e r o o t of 
t h i s e q u a t i o n g ives t h e t r a n s i t i o n v e ß Q f o r t h e two 
convex i ty r e g i o n s s t a t e d in t h e thec.-.x.a, In ca se when 
does not e x i s t , r ( a , / ? ) i s de termined by t h e e q u a t i o n ( 2 . 2 4 ) . 

In t h e p r e s e n t paper our main emphasis i s on t h e f a c t how 
the second c o e f f i c i e n t i n f l u e n c e s t h e r a d i u s of convex i ty o r 
a - convexi ty of f ( z ) . 

T h e r e f o r e we l e a v e to r e a d e r a l l t h e l eng thy d e t a i l s "'to 
v e r i f y , i f t he r a d i u s of a - convexi ty i s not i n f l u e n c e d by the' 
second c o e f f i c i e n t of f ( z ) . I n t he p r e v i o u s a n a l y s i s we noted 
t h a t a - convex i ty depends on t h e t r a n s i t i o n v a l u e β and on 
t h e r e g i o n of v a r i a b i l i t y of q ( z ) g iven by t h e e q u a t i o n 
( 1 . 4 ) . S ince r e g i o n of v a r i a b i l i t y of q (z ) imp l i e s t h a t RQ 

may t a k e any v a l u e between a-Α and a+A, then t r a n s i t i o n 
v a l u e ßQ depends on Η =. | q ( z ) | . We a l s o no t i ced two f a c t s i n 
t h e above a n a l y s i s . F i r s t , t h e minimum of M(x,y) occurs a t 
y = 0 i . e . , on t h e r e a l a x i s of t h e r e g i o n of v a r i a b i l i t y of 
q ( z ) . Secondly t h e a b s o l u t e minimum of M(R) i s ob ta ined a t 
Rq which l i e s below · a+A and may be above or below of a-A. 
I n t h e c i r c u m s t a n c e s when we s t a r t i n v e s t i g a t i n g the minimum 
of H(x ,y ) and M(R) depending on t h e second c o e f f i c i e n t 
i n t h e expans ion of f ( z ) we f i n d t h a t t h e r e g i o n of 
v a r i a b i l i t y of q ( z ) g iven by t h e i n e q u a l i t y (1 .16 ) p l a y s 
t h e r o l e . However i n t h i s c a se we have 

(2 .39 ) a-A < a ^ - A j < | q ( z ) | < a^+A^< a+A. 

Hence, as b e f o r e , we f i n d aga in t h a t t h e minimum of 
M(x,y) occur s on t h e r e a l a x i s y=0 bu t R l i e s between 
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a^-Aj and a^+A^. I n v e s t i g a t i o n s y i e l d t ha t the abso lu te 
minimum of M(R) i s f o r R = RQ, where RQ i s again given 
by the equat ion (2 .20 ) . In t h i s case t h e r e are s e v e r a l 
p o s s i b i l i t i e s f o r RQ. Rq may be l e s s than a 3 + Aj o r a3~^3 
or a-Α. So in t h i s case we a r e s t ruck to the s i t u a t i o n s 
R„< a , - A 2 . R„< a,+A, and a z+A, < R„ < a+A. Now. i f R <; a , -A , 

o 3 3 o 3 3 3 3 o ' o 3 3 
then minimum of. M(R) i s obtained when 

(2.40) M(Rj) = 0 i . e . f o r = a^-Ay 

Hence the r a d i u s of α - convexity i s obtained from the 
equat ion (2 .40 ) . On s u b s t i t u t i n g the value of R^ in to (2.40) 
we get t he equat ion ( 2 . 4 ) . 

Now, v/e determine how r(a, /3) i s obtained from the 
equat ion ( 2 . 4 ) . For t h i s aim we need to c a l c u l a t e the 
t r a n s i t i o n va lue β^ which determines which of the equat ions 
(2 .4) or (2 .3) determine the a - convexity f o r f ( z ) . 
Unfo r tuna t e ly , the r e s u l t (2 .3) does not depend on the second 
c o e f f i c i e n t of f í a ) . Because 

v/e compute the t r a n s i t i o n a l va lue ß-̂  in t he fo l lowing way. 
Prom (2 .41) , (2.23) and (2.19) we have 

(2.41) R3 = a 3" A 3 

(2.42) 2(1+a-j8)R, = a(a+ß) 

Prom equat ion (2.42) we get 

(2 .43) 2(l+a-y8)a, - a(a.+ß) = 2(1+a-J8)d 

Also, s ince 

(2.44) 

we have 

(2 .45) r = 1 + A -+ A - a 
a + 1 - 2β - A 
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S u b s t i t u t i n g t h i s va lue into a, . -d, we get 

where 

N 2 = (a-A+1-2/3)2 + 2t/3 (1+A-a) (a+1-2j3-A) - ( l-2;8) ( 1 + A - a ) 2 , 

D2 = (a+1-A-2j8)2 + 2t ( 1+A-a ) ( a+1 -2yS -A ) + ( 1 + A - a ) 2 . 

Now from (2 .44) and (2 .46) we get 

(2 .47) 2(Λ+α-β) {(a-A+1-2j3)2 + 2t j3( l+A-a) (a+1-2j3-A) -

- (1-2j8) (1+A-a) 2 } = 

= a(a+/?) [(a+1 -2j?-A ) 2 + 2 t ( 1+A-a) (a+1 -2β-A)+ ( 1+A-a) 2 ] . 

Equation (2 .47) on s i m p l i f y i n g and by means of (2 .32) 
g i v e s us 

(2./te) - 1 6 a j j ( l - ^ ) a 2 + a l + m + λα{(2+2α-2β) (-4+8/J+4at,3 -

-4tj32 - 4aj3 ) - a(a+j8) (-4a+4ß + 2at - 2j3t)} = 0 , 

v/here 1 and m are def ined as i n the theorem. On f u r t h e r 
s i m p l i f y i n g of the equation (2 .48) we have 

(2 .49) - ( a l 2 + mg) = a A ( a l , , + m̂  ) . 

Squar ing (2 .49) we get 

(2 .50) a 2 A 2 {a[21 2 J3(2+a-20) + 2 1 ^ « ] + am2 - c tß 2 !*} = 

= a[2j?l2(2-H*-2j3) + 212m2a}+ m | a - a l 2 0 2 . 
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2 
Now s u b s t i t u t i n g the va lues of t he express ions A and a?~ 
from t h e ' e q u a t i o n s (2.18) and (2.35)» we get 

(2 .51) a = N(j8)/D(jB), 

where N(/)) and ΐ>(β) a re def ined in the s ta tement of the 
equat ion ( 2 . 1 ) . Now i n s e r t i n g the va lue of a from equat ion 
(2.51) in to equat ion (2.35) or i d e n t i f y i n g the two va lues of 
a given by (2.36) and (2.51)» we ob ta in an equat ion in β . 
The smal les t p o s i t i v e roo t (say β o f t h i s equat ion w i l l bs 
the requi red t r a n s i t i o n va lue . As f a r as dependence of our 
r e s u l t on the second c o e f f i c i e n t of f ( z ) i s concerned, we 
observe t h a t our r e s u l t f o r the range Ο < β gives the 
a - convexity inf luenced by i t but not in the range β < 1. 
Thus, the present method i s not s u f f i c i e n t l y s t rong to y i e l d 
the r e s u l t in the needed form. Now, we dispose off the o ther 
ca se . 

The case α < 0 . The s i t u a t i o n in t h i s case i s comparatively 
easy but s i m i l a r as b e f o r e . From equat ions (2 .4) and (2 .5) we 
have 

(2 .52) Re [J(f )] > H(q) = 

= Re [q(z) + o c ( q ( z ) - 1 ) ( q ( z ) + 1-2 /J ) /2( l - j8)q(z) + 

+ a { ( A 2 - B 2 ) / 2 0 - / ? ) | q ( z ) | ] . 

Now p u t t i n g in (2.52) 

q(z) = Reos χ + i Rsin χ , 0<χ<23Γ 

we get 

(2 .53) COS X -

2αβ , oA2 + B2 

" 2(1-/3) + 2(1-/3)R ' 
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F a t h e r , i f we denote H(q) "by H(R, x ) then (2.55) can be 

wr i t ten in the form 

(2. $4) 2( l - jB)H(R,x) = 

= [(2+a-2jB)H + + 2aej cos χ +α-

= OÍR) cos χ + D(R) , 

.2 2 - 2 A - a - H 
- 2<tß= 

where 

(2.55) 

' C(R) = (2+a-2j3)R + a + 2acc, 

/ .2 2 d 2 \ 
. D(H) = " g ) -

Of, course C ( R ) < 0 i f " ~<β<Λ and a < - 2 ( 1 - j 3 ) but f o r 

0 < β < g- and α < - 2 ( ΐ - / 3 ) , we see that 

(2.56) C(R) - (2+a-2/5)R = a ( - ^ p 1 + 2a) < 

ct(2ß-l) N 3 ( r ) 

2 a a + = dJtft' 

v/here 

(2.57) 

' N 5 ( r ) = a [ ( l - 2 0 ) ( l - r ) 5 + + 4j3(l-2;8)r3] , 

D 3 ( r ) = ( 1 - r 2 ) [ l - ( l - 2 j ? ) r ] · 

Therefore from (2.56) , we have f o r 0 < β < g - α<, 0 
C(R) - (2+a-2 0 and so C ( R ) < 0 f o r a < - 2 + 2 j 3 . 
Nor/ v.re have 

(2.58) = -C (R ) s i n χ = 0 f o r χ = 0,JT 
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and 

(2 .59) d ^ R . x ) = _c(R) 
9x¿ cos χ 

> O f o r χ = O 

< O f o r χ =or. 

Therefore equations (2.58) and (2.59) give us f o r 
0 < x <2η 

(2.60) min H(R,x) = H(R,0) a H(R) (say) . 

Prom equation (2.60) we have 

(2.61 ) ^ = 1 + o (a2-A2+1-2¿) = ( l - r 2 ^ + ( l - ( V 2 ^ r 2 ) a , 
a R 2(l-j8)R (1-r )R 

From equation (2.61) we have 

(2.62) H 2 - ^ 5 ) = R 2 + a 1-(l-2/3)r£ 

1 - r * 

^ ( l+( l -2 f l ) r | 2 ( l + r ) + o i ( l - ( l -2 l ) r 2 } (1-r) N 5 ( r ) , 
< rr: Dj( r ) ' (1 - r ) (1 - r ) 

where 

(2.63) 
N,-(r) = (1+a) + + + (l-2^)(l+a-2^)r3, 

? Djj(r) = 1 - r - r 

Let y' be the smallest pos i t ive root of the equation 
(2.1)' in the statement of the theorem. Nov/, if r < y ' then 
from the equations (2.62) and (2.63) we^get 3H(R)/3R<0 
showing tha t H(R) i s a decreasing func t ion of R. Therefore 
f o r r < y ' and R e [a-A, a+A] 

(2.64) min H(R) = H(a+A). 
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Ια case r < y ' the absolute minimum of H(R) i s obtained 
a t Rp, where 

Thus, i f a < - 2 ( l - j 3 ) and r(a,/5) i s the smallest posit ive 
root of the equation H(a+d) = 0, then f ( z ) i s α-convex in 
I ζ I < r '(a, β ) f o r r<a ,y3)<y ' . 

I f r ( a t ß ) < y then a -convexi ty of f ( z ) i s given by the 
region | z | < r ' ( a , / ? ) , where r'(α,β) i s the smallest pos i t ive 
root of the equation H(R^) = 0 . 

Therefore in t h i s case we have as well the t r a n s i t i o n a l 
value of α whiuh determine which of the equation determine the 

-convexity region . This t r a n s i t i o n a l value of α can be 
obtained tay el iminating r from the equations H(a+d) = 0 
and N c(r) = 0. Let α be the desired t r a n s i t i o n a l value, 5 o * 
i . e . , the l a rges t negative root of the in t e r sec t ion of 
fcquatioos H(a+d) = 0 and N^(r) = 0 in α . We emphasise 
tha t aQ i s negative. If aQ> a then . the radius of 
α-convexity, r (a t / 8) i s obtained from the equations H(a+d)=0 
or from (2.3)' . Otherwise the root i s determined from (2 .4 ) ' . 
In the l a t t e r case our r e s u l t i s va l id f o r the range 
a Q <a < - 2 ( ΐ - β ) . I t w i l l not be d i f f i c u l t t o see tha t t h i s 
r e s u l t continue to hold f o r - 2 ( 1 - J ! ) ^ a < 0 , Por t h i s we r e f e r 
readers to the paper [1]. Now, we re turn to the case when 
α-convexity depends on the second coe f i c i en t in the expansion 
of f ( z ) . In t h i s case we f ind tha t 

Using these two f a c t s and s t a r t i n g from the equations 
(2.52) , (2.53) and (2.54) which are also val id in t h i s case, 
we f ind f o r R e 3» a3+ d3] 

(2.65) 

1 

-<x[l - ( 1 -2 l ) r 2 }1 ?
 # 

and a - A < a , - d 3 . 3 
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min H(R,x) = H(R,0) • H(R) (say) 

since C(R) < 0 for a.<-2(Λ-β) and 0 <β <1. 
Now we need to determine the minimum of H(R) given by 

(2.60) when a^-d^ <R<aj+dj. As before, we have 

(2.66) η2 3ΗΟ*) = R 2 + a [ l - ( l - ^ ) r 2 l < 

1+2(l-ß)tr + (l-2^)rg !,a[l-(l-2^)r2] .üfiW. + a — ^ -

where 

N6(r) = (1+a) + 4(l-/3)tr + {4(l-/3)2t2 + 2(1-20) -

- a - a. (1-2j3)r2}+ 4(1-0) (1-2/3 )tr5 + 

+ |(l-2/})2 + a(l-2/3)}r4, 

D6(r) = 1-r2. 

Now, let h' he the smallest positive root of the equation 
(2.2)' stated in the theorem. If r < tí we have 3H/dR<0 
from (2.66). Thus, it follows that H(R) is a decreasing 
function of R in ^ - d ^ , a3+<3jJ » 8 0 this region 

(2.67) min H(R) = Hia^+dj), 

If r is not always less than h' then H(R) gets its 
absolute minimum at R = R^ given by the equation (2.65). 
Nqw, by eliminating r from the equations 

H(a5+dj) = 0 and Ng(r) = 0 

we obtain an equation in a. If denotes the largest 
negative root of the resulting equation, then for <*<<x'0 f(z) 
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i s ot-coavex in | z | < r ( a , / j ) votiere r ( a , ß ) i s the smallest 
positive root of the equation H(aj+dj) = O and the 
o-iconvexity i s influenced by ç . I f a'0<<* < O then 
α-convexity region |z|<r(a , / } ) i s obtained by determining 
the smallest positive root r(a,/}) for the equation (2.4)' 
and i s the same as before. This resul t i s independent of Ç. 
Determination of Ç-influenced α-convexity region in th i s case 
remained unsolved. 

H e m a r k ε . One may notice from the proof analysis that 
our result is jus t an exploitation of the region of 
var iabi l i ty and Schwarz's inequality for bounded functions. In 
f a c t , the inequality (1 .2) i s the sole inequality yielding the 
result of the present paper, a f t e r performing the elementary 
operations. Thus, i f one may succeed in replacing (1 ,2 ) by 
some other inequality which depends from the very beginning 
on the second coef f i c ient of f ( z ) then most l ikely the above 
analysis wi l l give the resul t too. 

3. S h a r p n e s s o f t h e t h e o r e m 
The case a > 0 . We f i r s t establ ish the sharpness f o r τ(αψβ) 

when i t i s obtained from the equation ( 2 . 4 ) . Let us consider 
the equation (2.19) and write - z for ζ in i t . Now, i f 
tjfcere ex i s t s some function f ( z ) f o r which the equality (2 .4 ) 
holds, then we must have 

(3 .1 ) a [ l+zf " ( z ) / f (z)] + ( l - a ) z f ( z ) / f ( z ) = 

= [ l + t t ( l - p r 1 ] R V [ ( l - p ) - 1 ( a X _ 1 - 8 T - / 3 ) ] , 

where 

(3 .2 ) R» = ( l - | 8 ) - 9 f l z - ( l - f l ) ( l - 2 / * ) z 2 

" 0 - p ) - ç z + (1-/Ϊ)ζ* 

and 

(3 .5 ) a- = 3 ± Ü = § t í ¿ . 
1 - * r 
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Now dividing by ζ and simplifying the right side of (3.1) 
we get 

(3.Ό (1-/5)R.H.S. [ I (3 .1) } = (Λ+α-β)ΙΛ + α$Ι3 - - aß , 

where 

j „ (1-β)-αβζ - (l-j3)(l-2/î)z2 _ 
1 Z [ ( 1 - £ ) - Ç Z + ( 1 - P ) Z ¿ J 

_ 1 _ ( l - g ) [ 2 ( l - p ) z -<?] 
" Z ( 1 - / 0-ÇZ + ( l - 0 ) z 

T 1+(l-2J3)z2 1 (1-0) (1-/3) 
1 2 = ζ (1-z 2 ) = » ~ ' 

j _ [ l+( l -2f l )z 2 ] [ (1-g)- z+(l-f l )z 2] = 
3 " Z(1-Z)(1+Z) [d- j Î )-çz-( l- j J ) ( l -2/ î )z 2 ] 

1 , (1-e) (1-g) -2( l-A) 2 ( l-2^)z- ? i 8(l-ß) 
- Ζ X Î Î Î J · 

Prom (3.1) and (3.4) we have 

(3.5) ( l - a ) log M + a l o g f (z) = 

= -(1-Ht-/3)log[(l-)3)-çz+(l-^)z2] + 

+ a l o g [ ( l-ß)-pj5z-( l-0)( l-20)z 2 ]+( l- /3) log( l-0) . 

The solution of the above d i f f e r e n t i a l equation wil l be 
the required extremal function i f that function belongs to 
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the c lass S We claim that such a function i s 

(3.6) F(z) = ζ O-/?) 
_(Λ-β) - çz + (Λ-β)ζ' 

(1-/0 

Since actual computations for th is function give the 
following 

(3.7) l o g p l ^ = -(1-/3)log [(l-(3)-çz+(l-j3)z^] + (l-/3)log(1-ß) 

(3.8) zF' (ζ) _ (l-j3)-g<3z- ( l -g ) ( l -2f l )z f 

TC7 (1-jî) - ç z + (1-0)ζ' 

we obtain 

(3.9) log F' (z) - logp|5i} = log [(1-/3)-9/3ζ-(1-/3)(1-20)ζ2]· 

- log [(1-0)-9ζ + ( l - 0 ) z 2 J . 

From (3.7) and (3.9) we have 

alog F' (z) + ( l - a ) log [^ - } }= R.H,S. of (3 .5) . 

This shows clear ly that F(z) i s the solution of the 
d i f f e ren t i a l equation (3 .5) . Further we find that 

H e K U t f - * » Re . , 
r r c r j * ( ^ . ç z + Î ^ u j z 2 V 8 ) 

where 

'Ν^(ζ) = (1-^)2(1-Iz|2) [(l-)3)(l+|z|2)-QRe(z)], 

D^(z) = I (1-J3) - ? ζ + (1-0)z£ 
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But 
Ν4(ζ)>(1-Ρ)3(1-|Ζ|2)(1-|Ζ|)2>0, 

therefore F(z) belongs to the class S0(9,/J). This completes 
the sharpness of r(a.tß) which is obtained from the equation 
(2,4-). Similarly, we can show that 

is an extremal function for r(a,/3) obtained from the 
equation (2.5). Lastly, following the analysis of Zmorovic [7] 
ν/θ can show that the function 

and r(a,/}) is the root of (2.3), is an extremal function 
for the α-convexity resulti obtained from (2.3). 

The case a<0. If the result (2.5)' is sharp then we must 
have the equality in the equation (2.57) after R is 
replaced by a3 + d3 a n d r by z. Tfltiis is so if we have fer 
some feS0(ç,j8) 

1 

Λ-β 

where θ is obtained from the equation 

2(1-/3)H(H,0) = 2(1-/8)H(H) = 

= 2(-M)R+$ {2jî-1+A2-a2} + 2a{a.-ß)v, 2 2 . -a 

where 

= 1 + (l-2g)z2 
1 - ζ 
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. _ 2 (1-/3) ζ Λ - ρ , 
1 - z 

R = 1 + ( l - 2 g ) z 2 + oz f 

1 - z ' 

and 

π ω . ( ν * * [ · > • £ $ ] 

After substi tuting these values of a, A and R, the above 
equation takes the form 

(3 .10) H(R) = 1 + ( ? z + ( g - 2 * ) * 2 + a ^ t . z 2 

1 - z ' 1 - z ' 

1 + qz + (l-2j9)zc 

( 3 . ^ ) g ^ f f i = 1 + < ? z + (1-2^)Z2 t 0 < 9 < 2 _ 2 / ¡ > O</}<1. 
1 - z 

Now, v;e look for f ( z ) which sa t i s fy the equation ( 3 . 1 0 ) . 
Let f ( z ) be a solution of the d i f f e r e n t i a l equation ( 3 . 1 1 ) . 

Our claim i s to prove that t h i s f(z) i s the required 
function. Since f ( z ) s a t i s f i e s ( 3 . 1 1 ) , we have 

( 5 . 1 2 ) 1 + ^ M = 1 + 4 + 1 * 9 2 * ( 1 ^ ) Z 2 . 
1 ( z } 1 - z ¿ 1 - z ¿ 

_ 1 - ( 1 -2 )8 )Z 2 # 

1 + 9z + (1-2j3)Z¿ 

Use of (3 .11) and (3 .12) f o r y = f y ie lds ( 3 . 1 0 ) . There-
fore f ( z ) given by (3 .11) i s an extremal function. Now, we 

- 3 2 8 -



Starj- lke univalent ana ly t ic func t ions 29 

determine the so lu t ion of (3.11) . We have 

f ' (ζ) ι + 
f U ) = ζ + * - " ' " • -1 - ζ 1 + ζ 

and 

(3.13) f ( z ) = ζ 1 + ζ 2 1 
1 - ζ Li - z^l 

I t i s easy to see tha t f t S Q ( ? , £ ) . This f i n i s h e s the 
v e r i f i c a t i o n in t h i s case. Similarly we f ind tha t 

(3.14) f (z) = z 

(1 + z ) ¿ 

i s an extremal func t ion f o r the r e s u l t given hy the equation 
(2.3)' . 
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