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INFLUENCE OF 'f” (0) ON THE a~CONVEXITY OF NORMALISED
STARLIKE UNIVALENT ANALYTIC FUNCTIONS OF ORDER g

0. Let a be a real number and 8y(¢9,p) denote the class
of normalised a-convex univalent functions £ of order f
(0<f<1) in the open unit disc D ={z |12]<1} Lees, £
is in S,(9,A) 1if and only if £(z) is regular in D, £(0)=
=£'() -1=0, 2£(0) =9, £(z2)f'(2)/z2#0 for zeD
and

(0.1) Re {(1 ~a)zf' (2)/£(z) +a[1 + 22" (z)/£ (2)]}> 4]

for zeD and 0K B8 <1,
If a =1 then £ in S,(p,8) 1is convex of order g in D
while 1f o= O then £ in 8,(¢,8) 4is starlike of order g
in D, Starlike and convex univalent funotions cf order § inD
are introduced by M.S. Robertson [6]. But a-coavex functions
of order zero are of comparatively recent orligin and are
introduced by Professor Petru T. Mocanu [3] of Rumania. lMocanu,
introduced this class of functions for -1 <a <1 only and
proved each fuanction in this class is univalent and starlike
[3]. Thereafter, Miller, Mocanu and Reade [4] extended the
definition ana proved that f in S,(¢,B) 1is starlike and
univalent for all «, l.,e.,, =oe<a <oo,

In [2] David BE. Tepper obtained the convexity region
influenced by ¢ for the functions £ in So(q,o). In [1] we
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2 Shyam Kishore Bajpai

obtained a ~convexity region for starlike functions of order
zero and independent of ¢ in D. In the present paper we shall
obtain what is the a -convexity region for f in So(q,ﬁ)
influenced by ¢, Because of similarity of the proof wec shall
also obtaln the a -convexity for f in So(q,,e) independent
of ¢. This generalizes Tepper’s result. Our method of proof
is similar to that in [?] and has a relevance to the techni-
ques of V. Zmorovid [7]. Note that Tepper's method is not
workable for the present generalization, We need the following
result in proving of our theorem which I am stating as a‘-lemma
in the next section, I shall provide th® proof of thils, since
it is of interest in its ownright,

. Lemma, Let £ be in So(q,ﬁ), i.e., £ is
starlike of order f, O<f<1, in D with ¢ =2 £'(0) > O,
Further, if we write

(1.1) q(z) = zf' (z)/£(z)

then we have

2 2
(1.2) Jzq (2) = {a(z) =1}{a(z) + (1-2p)} 22(1-P)| < é-%q:_—Bﬂ-} ,

where

(1.3) A =§ﬂ:§%§ y 121 = ,

(1-x%)
(1.4) B = |q(z) - a|< A
and
(1.5) _ [+ (1-2p)r?)

(1=1°)
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Starlike univalent analytic functions

Also if
2.2
(1.6) a1= '|+12-0r0r ,
_2(1~B8)er
(1.7) a, _.F‘___(;%_TI
- ¢°p
and

(1.8 o =tEMR) . vl 020

then we have

(1.9) Iq(z) - a1|<d1.
Further, if
(1.10)  a, _ {1420-p632 - 26r- 26(1-28)r7+ (1-2p)2"

((1-1' ) (1=2tr+ r2)}

(1.11) _feta-pys- I‘)('\-tr)r}
2T ) (- 2we ]

= {2(1=B)(t+ ) (1+ tr)} ,

1.12 d

-2 [1+26r - 2627 -

(1.13) &z = {1+ 2tr+ 2(1-13)1: r +2(1-2p)tr + (=282
{(1= %) (14 260+ 2%)}

and

(1.94) t =3 =3pcgr 0<A<1, 30
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then we have

(1.15) |q(z) - a2| > 4,
ang
(1.16) la(z) - a3l < dz.

Proof, Since £ 1is in So(q,ﬁ), Re{zf' (z)/f(z)}>ﬁ
O0<B <1 for zeD. There exists a function w(z) with
w(0) = 0, |w(z)} € |z|]<1 regular in D such that

(1.17) izl g +~{%%]z—)ﬂ,zem

With our notations of lemma we have

1+ (1-2
(1.18) a(z) = 1 {Tf_ ng;]“'(z)l .

Now we show that the inequality (1.2) is equivalent to

)
(r2= |w(z)l )
(1-1%)

(1.19) l2w' (z) = w(z)| <

for zeD and |z| = r. Since the assertion (1.19) is well-
~known, we need only to show the equivalence of (1.2) and
(1.12), Differentiating q(z) we get

('1.20). q (z) = 2(1-8)w' (z) |
1-w(z)

We have also

(1.21) a(z) + (1 = 2p) = 2(1 = B)/{1 = w(z)}
and
q(z) - 1 = 25,—1-';—,%—%‘}‘-2—)- .
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Starlike univalent analytic functions

Using equations (1.20), (1.21) and (1.22) we get

(1.23)  2q' (z) - [{a(z)=1}{a(z)+ (1 - 2p)}] /2(1-p) =
= 2(1 = p){zw' (2) - w()} 1= (22}

Further we have

(1e28)  q(z) - & = =2(1= R){r2= w(2)} /{(1-r?) [1=u(z)]}

(1.25) B2 = 4(1-B)2{Ira-w(z)l}z/{(ﬂ-rz)z{|1-w(z)|2} .

By using (1.3), (1.24) and (1.25) we get

(42-82)(1-12)° _ (1-r") (P lw(=)|? )
4(1- B)° [1-w(z)|°

(1.26)

Equations (1.23) and (1.26) then substituted in (1.2) yield
(1.19). This completes the proof of (1.2).
Now, we verify (1.9). We have

{~2(1 - B)c®r 4-2(1-B)w(ql
.2 -a, =
(1.27) a(z) - & {(1-c2r&)[1 w(z)]

Using (1.27) in (1.9) we get the inequality

(1.27a)  Ja(z)-a,| = {2(a- B)I(c T —w(z))l :?(1-52

[(1-c ep )(1 w(z))l 1-¢r°)

which is equivalent to

(1.28) |c2r2 - w(z” < cor|1-w(z)| .

But inequality (4.28) in turn is equivalent to

(1.29) (1-c2r?) (c®r2=|u(z)] %) > 0.
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Also, we observe that

(1.30) 1=c?12 > (4=0

2y _ (2—b)(1-r)(:’al+r)(2.‘+b) >0
(2+vr)

since O0<Db = -7 <2 for starlike functions of order g8,
Thus (1.28) to hold, we must have

|w(z)| < or = r(g :bla,r .

But the last assertlon is well-known for the bounded functions
satisfying the conditions of Schwarz’s lemma. This completes
the proof of (1.9).

Now the proofs of (1.15) and (1.16) are exactly similar,
Thus, for completeness we prove (1.16) and leave (1.15) for
the reader to verify. By substituting'the value of a3 we
have

_ 2(1=-p) [P (4x)? - (14t2)2w(2)|
I ~w(z )] [’l+21:r—211r3 wrt] l

(1.31) lq(Z)-a3|

Therefore the inequality |q(z)-aL5|<d3 is equivalent to

lrz(t+r)2- (1+tr)2w(z)
1 - w(z)

(1.32) < (t+7) (1+tr)r

The inequality (1.32) holds if and only if

0< [(1+tr)2—r2 (.t+r)2] [rz(t+r)2- (1+tr)2,w(z)lﬂ .

But (’l+tr)‘2-r2(1:+r)2 = (1-1‘2)(1+2tr+r2)>o for r<1 and
0<% = 5rqopy * Therefore (1.32) holds true if and only if
2 (t+r)2 = (‘1+tr)2|w(z)|2>0 or if

) < =) - B
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Starlike univalent analytic functions 7

The last assertion is the generalised Schwarz?s lemma for
bounded functions and is well known (see [5], P.107). Thus
the proof is finished.

Remark, The inequality (1.16) gives us

1+ 26fr- (1-28)2°
(1.33) a3 -9 = 1+ gtr + rZB <

_ 2f' (2] _.|zf' (2)
< Re 2z <4 (2

_142(1=B)tr + (1-2 f)r°
<agtdy = (1_r2“) r .,

<

The inequality (1.33) gives us the basic distortion theorem
of |David E. Tepper [2].

2, The or e m, Having proved our lemms, now, we are
set to prove our desired theorem, The theorem which we are
going to prove generalizes a result of David E., Tepper for
a-starlike functions of order g to the range O0<B<g (a.,,B)-ﬂo.
The poslitlive number B, 1is the smallest root of the equation

(2.1) W - 2ﬂ(2+a—2,8)w+aﬂ2 =0,

<34

where

and
N(B) = 8p2('1-p)(1+a-2p)15-a2(1-p)213+ 4nzap(1-B) -
- 2p15(2+a-2p) - 2lm,a,
D(B) = mga - algﬁzq-uaﬂ3(1-ﬂ)15 +-a2('|-p)2m5
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and
15 = 215 A(2+a-24) + 21

2 2.2
m3=am1-aﬂlq,

PLIT

1, = 1 - 328°(1-p) (2+a-28),

i

2
o+ 16uﬂ3(1fﬂ),

n

o

where

2(1+a~8) (4tp=48) - a(L4p=28t) - apf (~4+2t) +

Py
H]

+

2p(-t+2t) (24a-28),

2(14a=g) (~4t8B-L4E°) —af(4B=28%) =

=]
S
]

(~t+2t)ag?,

2(1=t) (4p2+2ap° 4B ) (240-2p~t) -

[
[l

2(1-t) (~af°+2ag-a) + 2B(2-2t)(2p+20af -

2ﬂ2-aﬂ)(2+a-2k)-+a2ﬂ2(2-2t) +
+ @ (4-Bpeitp®) (2420-28) - a?p2(~tatit) -

- a® (2-4psupPr2t-4tp),

= (~af2+2ap-a) (2-2t) (28=28°+ ap) -
-aﬂ2(2-2t)(25+2aﬂ-32-aﬂ) +
+ a(~2p+4pZe2tp-4tp2) (242a-24) -

- ap (2-4p+4p°+25-0E8),

t = 9/2(1-ﬂ).
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Starlike univalent analytic functlons 9

For our convenience we also denote ﬂ,]- ﬁ,‘ (ay8) to be the
sm-1llest positive root of the equation

(2.2) aV? - 28(2+a=2Q)V + aB? =
where
N, (4)
A
and
N (p) = -4(2+a2)p> + 4(5+ha40°4a’)p? -
- 8(2+3a+a”)p + 4(1+2a+a°),
D,(8) = Bap® - B(2a+d?) g2 + Bla+a®)f.

It is comparatively easier to find the smallest positive
root from the equation (2,2) than from (2.1). But, if a= 1
and 0<f<1 then it is easy to see that both B, and £,
belong to the lnterval [2, 1), This therefore implies that
Tepper’s result is generalised to the case O <ﬂ<ﬂ (..2 say).
This, however, will become clear from the following theorem,
which I am intending to prove in this paper.

Theoremn, Let £(z) be a function in S (9,8) and
0<¢ <2(1~B) for zeD, Let r(a,B) where a >0 be the
radius of the largest disk in which

Re [a('l+zf"(z)/f' (z) + (1=a)zf’ (z)/f(z)] > 0,

If o,p,p satisfy the followlng conditions

(2.3) aa® - 2(1+2a-28)af + aga =

(2.8) (1=p)%= p(1=f) (-ap=2B)r + (0282 = 2(1=-p)2 [(1-28) +
+ 2a(1= ﬂ)})r -9(1-13)(a+2,8-4ﬂ -aﬁ)r + (1 ,8) (1= 2;3) rt=0
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10 Shyam Kishore Bajpail .

(2.5) 1 = 2(4a-28-af)r+ (1-28)%2° = O

and

Qo (1-2§)r2 ’

1 =r

then r{(ax,8) 1is the smallest positive root of the equation
(2.3) for B1<B <1, the smallest positive root of the
equation (2.4) for O <8 <ﬂ°(a.,p), and the smallest positive
root of the equation (2.5) for 0 <A< p,(x,B), where g (a,f)
and B,(a,8) are the smallest positive roots of the equations
(2.1) and (2.2) respectively.

Let a<0 and

(2.1) (=1=a) + (a=3+48)T + (a-2aﬂ-ﬁ2+8ﬂ-3)r?f -
- (1-28)(1+a-28)r = O,

2}1‘2 -

(2.2) (-1-a) -2¢9r+{a +a(1-28) - (2-48) - ¢

- 29(1-28)7 + [-a(1-28) - (1-28)%) =" = 0.

(2.3) 1+ 2(1+0-af-28) + (1-28)%1° = 0
(2.4) a(t-a+d®) + {202-2a(1-a)? (1-f) }2° +
+{a® + a(1=)(1-2p) }r* =0
(2.5) 1+ gla+Blr+{¢% + 20+ 2(14a) (1-28) }2? +
+{ag+ 20(1-2p)}” + (1-28)%c* = o,
If y' and H are the smallest positive roots of the

equations (2.1) and (2.2) respectively, then r(a,B8) is
the smallest positive root of the equation (2.5) for
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Starlike univalent analytic functions 11

r(a,p)<h’ and the srallest positive root of the eguation
(2.3) for rla,p)<y'. Ctherwise r(a,8) is t.e cmallest
positive oot of the equation (2.4),

Proof, Since £ is in So(o,p),0<ﬂ <1, we have
some w(z) for which

" e 22 (z) _ 1+ (1=2B)w(z)
(2.8) z) - 1-\-/(5) y 2€D

and w(0) = 0, Jw(z)] <1 in D.
Let us write q(z) for 2zf' (z)/f(z) and also write

(2.7) J(f) = Re{(’l-a) z_f"(%_) +a[1 + %]} .

Then from the inequzlity (1.2) we ges

M(q) for o> 0

(2.8) Re[3(£)] = 7(2) >
H(q) for « < O,
where
[a(z) =1 1=2 4° -8°
(2.9)  M(q) =Re{q(z) + St BJ-%{W
and

(2010) H(Q)

la(z) =] [g(=) 1-29]] A% - B2
Refa(a) + 2l raligle) v *‘(jﬁaq-ﬁ Talz)l *

The case a>0, Now let « 3> O, Writing q(z) = a+x+iy and
M(x,y) for u(q) we have

(2.141) M(x,y) = a+x+a(2-2ﬂ)-1 [a+x-2ﬁ+(23-1 )(a+x)R;2- (A%-x2-y? )R:‘] s

where

R, = |a(2)] = V(a+x)? + 32,
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From (2.11) we have

aM(x,y) _ =2(28-1) (as+x)a 0% o
(2.12) 3y = 2(1_3)}{2 3'3—+ = +
2 .2 2, R
a(A"=x"=y%) "
¥ 2(1‘ﬂ)R1 ay_
. a 3 2 .22 '
= Yo [231+ (A%=x“~y )R1+2(’I-2p)(a+x)] =
= ayR:]A W'(Rq oxoy)/é('\"ﬂ)’
where

(2.13) WR,,x,y) = 282 + (A2=xP=y2 )R, + 2(1-28)(a+x) > 2B + 2(1-28)(a+x)>
>2(a+x)(R§+1-2,8)>2(a+x){(A-a)2 + (1-2p)} =
= 4(1-p)arx)(14r) 2 [ + (1-2p1?] > 0 .

Since Ili(x,y) 1is symmetric in y, it follows that

(2.14) | min M(x,y) = M(x,0) = l(a+x).
y

Now, if we write a+x = R, we pget

e o R-28 + (28=1)&"" = (42x2)R""
(2.15)  H(R) = R+ + (201 - 2] .

But

(2.16) 22 - x° = 22 2 2 -R% + 2aR
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and

(2.17) o2 _ 42 o 1=(1-2p)%% ,
(1=12)

80 we have

2
(2.18) a2 - A2 4+ 28-1 = 23[’(‘:“5?”)1‘ 1. 2ap .
-7

Therefore, from (2.15) and (2.18) we huve
(2.19)  M(R) = [1+(1-p 7 a]R+ a(1-p (agr"-a-p).

Thus, from (2.19) we find that M(R) attains its absolute
minimum for

(2.20) R=R = (,l%)% .
Since
(2.21) Rg = aap/(1+a-g) <a<a + A< (a+a)?

it follows that R < (a+A). Thus, either R, 1lies in the
interval [a-A, a+A] or not, If R, 1lies in the interval
[a-A, q:A] then M(R) attains its minimum at R = R, while
if R, lies outside this interval then M(R) attains its
minimum at R = a-A., Hence we have

M(R)) 1if R € [a-A, a+d]

(2.22) min M(R) =
R M(a=4) otherwise.

The radius of a-convexity r(a,B) is therefore
determined either from the equation

(2.23) - MRy) =0,
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where R 1is given by (2.20), or from the equation

(2.24) M(Rz) = 0,

where

(2.25) Ry =a-4A-= 2_:112:%£L£ .

These two equations coincide for <ome A, = ﬂon,p). Now,
we are interested in determining the *ransition value of ﬁo
from (2.24) to (2.23). For this aim, we assume that

(2.26) R, =R, or a.a,l)(’H-cx--,B)—/l = Rg .

]

It follows then from (2.24), (2.19) and (2.26) that

(2.27) [1+a(1-p) R, = [arp-(14a-p)Ro/a] v (1-p)]

or

(2.28) ‘ 2(1+a=p)Ry = ala+p ).

Substituting the value of R, = a-A 1nto (2.28), we have

(2.29) . 2(1+a~B)A = (2+a=-2f)a-af «

Now squaring (2.29) and substituting the value of A2

the resulting equation, we get

into

(2.30) (2+d—2ﬂ)2a? - 2ap(2+a=2p)a + azpz =

il

= 4(1+a-p)°(a%~2ap-1+28).

Bquation (2.30) can be written- in the form

(2.31) A1a2 +Bga+Cy=0
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where

(2.32) A, = a(Ba~4p+s),

(2.33) By = -8,8('1+a-ﬁ)2 + 2af(2+a=28),
(2.34) C, = ~4(1~2f) (14a=p)® - ag?,

Alsq equation (2.23) is equivalent to

(2.35) a%a? - 2a8(2+a-28)a + a4 = O.

Solving (2.35) for a we obtain

2ap(2+a-2p) + VaaP?(24a-2)° - ud'p? _

(2-56) =
2 2a2

-g[(2+a-2ﬂ) e \/('\-,3)(1+a-B)J-

Now, if a is taken with the negative value, then solving
(2.,36) we zet

oS

1/2
{p(2sa-2p) - 2[p(1=p)(1+a-p)} ~ -a}
{a(2+a-28) - 2{p(1-p) (1+a=p)} /% + a(1-2p)]

r(a,p) =

Thus fe€ So(o,ﬁ) i1s @ - convex in |z|< r(a,B) if
ﬂosp <1, where g, is the smallest positive root of tue
equation obtained by elimination of a from (2.31) and (2,35).
Clearly, r(a,f) shows that when O0<f <1 and B<a then
is imaginary. Eence in this case the convexity regioh is de-
termined by M(R2) = O, Again, counsidering the egquation (2,335)
and letting a>0 we have

2 _ 2B(2+a-2ﬂ)a'-°lﬂ2 .
o

(2.37) a
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Gquations (2.31) end (2.37) gives us

. 2 -
(2.38) e bl i = N, (A)
: 2h(2+a-28)A, + B,a Dq(ﬂ) ’

where Nq(ﬂ) and Dq(ﬁ) are the same expressions as stated
in the theorem. Using this value of a in the expression (2,35)
we et the desired equation. The smallest positive root of
this equation zives the transition v. - B, Tor the two
convexity regions stated in the thec.ca, In case when A

does not exist, r(a,B) 1is determined by the equation (2,24).

In the pvresent paper our main emphasis is on the fact how
the second coefficient influences the radius of convexlty or
a - convexity of f(z).

Therefore we leave to reader all the lengthy details ‘to
verify, if the radius of ¢~ convexity is not influenced by the
second coefficient of f£(z). In the previous analysis we noted
that a - convexity depends on the transition value 8 and on
the region of variability of q(z) given by the equation
(1.4). Since region of variability of q(z) implies that R,
may take any value between a-A and a+d, then transition
value @ depends on R = |q(z)|. We also noticed two facts in
the above analysis. First, the minimum of M(x,y) occurs at
y=0 1i.e., on the real axis of the region of variability of
q(z). Secondly the absolute minimum of M(R) is obtained at
Ro which lies below - a+A and may be above or below of a-A.
In the circumstances when we start investigating the minimum
of HM(x,y) and M(R) depending on the second coefficient
in the expansion of f(z) we find that the region of
variability of q(z) glven by the inequality (1.16) plays
the role. However in this case we have

(2.39) a-h < az-Az < la(z)| < azthz < ath.

Hence, as before, we find again that the minimum of
M(x,y) occurs on the real axis y=0 but R lies between
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Starlike univalent analytic functions 17

aB-A and a5+A3. Investigations yield that the absolute
minimum of M{R) is for R = Ro’ where Ro is again- given
by the equation (2.20). In this case there are several
possibilities for Ro. Ro may be less than a5+A3 or a5-A3
or a=A. So in this case we are struck to the situations

Ro< aB-AB’ Ro< 513+A3 and a3+A3< Ro< a+A. Now, if R°< aB-A5
then minimum of HM(R) 1is obtained when

(2.40) M(RB) =0 1i,e, for R5 = aB-AB'

Hence the radius of o - convexity is obtained from the
equation (2.40). On substituting the value of Rz into (2.40)
we get the equation (2.4).

Now, we determine how r(a,f) 1is obtained from the
equation (2.4). For this aim we need to calculate the
transition value f% which determines which of the equations
(2.4) or (2.3) determine the o - convexity for f(z).
Unfortunately, the resuls (2.3) does not depend on the second
coefficient of f(z). Because '

(2.41) Ry = az-Az

we compute the transitional value ﬂl in the followlng way.
From (2.41), (2.23) and (2,19) we have

(2.42) 2('\+a-ﬁ)R3 = a(a+p).

From equation (2.42) we get

(2.43) 2(M+a-plaz - ale+p) = 2(1+a-p)d,.
Also, since

(2. 44) a-a=l=z{1=2f)r

we have

1+4-2a
(2.45) T=g+T-28- &°
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Substituting this value into ::15--d5 we get

M2
(2.46) 8.3—d3 =32—,
where
N, = (a-A+1-28)° + 2t (1+h-a) (a+1=2B-R) - (1-28) (1+4-2)°,
D, = (a+’l-A—2,9)2 + 2t (1+4-a) (a+1-28-A) + (1+a-a)°.

Now from (2.44) and (2.46) we get
(2.47)  2(1+a=g) {(a=A+1-2)° + 26B(1+A-a) (a+1-28-4) -
- (1-28) (1+a-a)?} =

= a(a+g) [(a+’\-2p-A)2+2t(1+A-a)(a+’l—2/3-A)+(’l+A-a)2] .

Equation (2,47) on simplifying and by means of (2,32)
gives us

(2.48) -16aB(1=p)a" + al + m + ha(2+2a-28) (~4+BA+4at -

4582 - 4ap) - ala+p)(~bashp + 2at - 2pt)} = 0,

where 1 and m are defined as in the theorem, On further
simplifying of the equation (2.48) we have

(2.49) —(za.l2 + m2) -_-aA(al,1+m,1).

Squaring (2.49) we get

(2.50) azAa{a[21§lB(2+a—2ﬁ) + 21ma]+ and - aﬂ"’ﬁ} -
= a[2f15(2+a-2p) + 21,myal+ n2a - a124,
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8]

Now substituting the values of the expressions A2 and a
from the equations (2,18) and (2.35), we get

(2.E‘,1) a = N(ﬁ)/D(B)’

where N(B) and D(B) are defined in the statement of the
equation (2.1). Now inserting the value of a from equation
(2,51) into equation (2,35) or identifying the two values of
a given by (2,36) and (2,51), we obtain an equation in £.
The smallest positive root (say ﬁl) of this equation will be
the required transition value. As far as dependence of our
result on the second coefficient of £(z) 1is concerned, e
observe that our result for the range O <f ;ﬂ‘ sives the
a - convexity influenced by it but not in the range ﬂ1<'ﬁ < 1,
Thus, the present method is not sufficiently stroung to yield
the result in the needed form. Now, we dispose off the other
case, .
The case a < O, The situation in this case is comparatively
easy but similar as before. From equations (2.4) and (2.5) we
have

(2.52) Re[J(£)]>H(q) =
= Re[a(z) + alq(z) = 1) (a(z) +1-2B)/2(1-B)a(z) +
+ a{(a%-B2)/2(1-p) la(z)] -

Now putting in (2.52)

q(z) = Rcos x + 1 Rsin x, O<x<27

we get

[R *“'%7\(_3%31_)] CoS8 X =

2

(2.53) H(q)

__2ap . ai® 4B
20 * e
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Forther, if we denote
vritten in the form

(2.54)

where

(2.55)

of, course C(R)<O if 2<f<1 and a<=-2(1=) bdut for
0<p <% and ag =2(1-B), we see that

(2.55)

viiere

(2.57)

Therefore fromn (2.'56), we have for O<B<% and

2(1- B)H(R,x)

[(2+a—2/3)R

"C(R) cos x

It

C(R)

H(q) by H(R, x)

+ D(R)n

2

" 2 52
» 2(28=1) l;,]) + 2aa[cos x yo-h =g =R

R

(2+a-28)R +a££l1-) + 2aa,

p(®) o (EF ) - 2ap,

-1

0(7) - (2+a-28)R =a (B4~ + 2a) <

N;(r)

D, (r)

2aa + Y

2-1) _ N3(0)
0 35

(1-r%) [1=(1-2p)r].

o [(1-20) (1-2)% + 4p + up(1-24)27],

a< O

C(R) = (2+a-2 )R<O and so C(R)<O for a < -2+28.
Yow we have ’

(2.58)

a—Hé-%L}-c—) = -C(R) sinx = 0 for x

- 320 -
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and

(2.59) _af_&gfé_g = =C(R)cos x

20 for x=0

<0 for x =T,

Therefore equations (2.58) and (2.59) give us for
O<x<2n

(2.60) min H(R,x) = H(R,0) = H(R) (say).

From equation (2.60) we have

BH(R) _ 4,,(a°=A%+1-28) _ (1-r )R2+ @ (1-28)r?]a

(@.61) Sax = 2(1-8)R° (1-r°)R®

From equation (2.61) we have

(2.62) ¢ R g2 +a[1-(1-213)r2} <

A=r
{1+('\-2p)r} (1+r) +a{1-(1-28)r }(’l r) _ N (r)
(1-12) (1-r) 5(1"
where
Ng(r) = (1+0) + (3-4f-a)r + (3-8B+ FPuas2af)r? + (1-28)(14a=28)r°,
(2.63) '

3

(r) 1=r - r2+r.

Iet 3y be the smallest positive root of the equation
(2.1) in the statement of the theorem. Now, if r<y then
from the equations (2.62) and (2,63) we get dH(R)/3R<O
showing that H(R) is a decreasing function of R. Therefore
for r<y' and Re [a-A,a+4]

(2.64) min H(R) = H(a+4).
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In case r<y' the absolute minimum of H(R) is obtalned
at R,, where

1
(2065 r - [reh= o)

0 1__r2

Thus, if a<-2(1-g) and r(a,8) 1is the smallest positive
root of the equation H(a+d) = O, then f£f(z) 1is o-convex in
|z| € ¥{a,8) for r{a,B)<y' .

If r(a,f)<y then a -~convexity of £(z) 1is given by the
region |z| € r'(a,p8), where r'(a,B) 1s the smallest positive
root of the equation H(Ré) = 0.

Therefore in this case we have as well the transitional
value of a which determine which of the equation determlne the
-convexity region., This transitional value of o can be
obtained by eliminating r from the equations H(a+d) =0
and Ns(r) = 0. Let a, be the desired transitional value,
i.e,, the largest negative root of the intersection of
equations H(a+d) = O and Ns(r) =0 in o, We emphasise
that o, is negative. If x> a then.the radius of
x-coavexity, r(a,B8) 1s obtained from the equations H(a+d)=0
or from (2.3) . Otherwise the root is determined from (2.4).
In the latter case our result is valld for the range
e <a < =2(1=p). It will not be difficult to see that this
result continue to hold for -2(1-p)<a<0, For this we refer
readers to the paper [1]. Now, we return to the case when
a-convexity depends on the second coeficient in the expansion
of f£(z). In this case we find that

Re [aB'dE' a3+d3] and a—A<a3-_d§.

Using these two facts and starting from the equations ‘
(2.52), (2,53) and (2.54) which are alsc valid in this case,
we find for Re [aB-GB’ a3+d5]
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min H(R,x) = H(R,0) = H(R) (say)

since C(R) < O for a<-2(1-p) and O <g <1,
Now we need to determine the minimum of H(R) given by

(2.60) when 8,~-d; <R<ajz+dz. As beflore, we have
33 3773

(2.66) 2 2R) . g2 +a["_-ﬂ-_2§llﬂ<

1=r

2 2
<[esizgesn] et

where
[ Ng(r) = (1+a) +4(1=p)tr + {4(1-p%2 + 2(1-2p) -

—x-a (1-2[3)r2}+ 4(1-8)(1-2[3)171'5 +

+ {(1-2p)? + a(1-2p)}Y,

LD6(r) = 1-1°,

Now, let h' he the smallest positive root of the equation
(2.2)" stated in the theorem, If r<Hh we have dH/9R<O
from (2.66)., Thus, it follows that H(R) 1is a decreasing
function of R in [a3-d5, a5+d3], so in this region

(2.67) min H(R) = H(a3+d3).

If r is not always less than h' then H(R) gets its

absolute minimum at R = R, glven by the equation (2.65).
Nqw, by eliminating r from the equations

H(a3+d3) =0 and N6(r) =0

we obtain an equation in «, If a.(‘) denotes the largest
negative root of the resulting equation, thean for c:<azéJ £(z)
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is a-convex in |z|<r(a,8) where r(a,p) 1is the smallest
positive root of the equation H(a3+d3) = 0O and the
e-iconvexity is influenced by ¢, If a'°<ac < O then
a-convexity region |[z|<r(a,8) 1is obtained by determining
the smallest positive root r(a,8) for the equation (2,4)
and is the same as before. This result is independent of ¢.
Determination of ¢ -influenced a —convexity region in this case
renained unsolved.

Remarke. One may notice from the proof analysis that
our result is just an exploitation of the region of
variability and Schwarz®’s inequality for bounded functions,. In
fact, the inequality (1.2) is the sole inequality yielding the
result of the bresent paper, after performing the elementary
operations, Thus, if one may succeed in replacing (1,2) by
gsome other inequality which depends from the very beginning
on the second coefficient of f(z) then most likely the above
analysis will give the result too.

3. Sharpness of the theoren

The case a.>0, We first establish the sharpness for r(a,p)
when it is obtained from the equation (2.4). Let us consider
the equation (2.19) and write -z for =z in it, Now, if
there existas some function £(z) <for which the equality (2.4)
holds, then we must have

(3.1) a[1+2t" (z) /2 ()] + (1-a)zf’ (2)/£(2) =

= [+a=-p R [(1-p N (pr* " - - p)] ,

where |
* _ (1-8) - 0Bz = (1-B) (1-2p)z°
(3.2 R" =
) (1-B) -9z + (1-p)z°
and
(3.3) ot = 2(1=28)2" 2

1-2
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Now dividing by 2z and simplifying the right side of (3.4)
we get

(o) (-pRES. {1 G0} = (T +apl; - T, - o8,

where
_ (1=p)-apz - (1=p) (1=2B)2° _
z [(1-8) - 9z + (1-B)z]

I

(1=8)[2(1-p)z - o]
(1-B)-pz + (1-$)2°

2
1+(1=-2 4 1= (1=
I2=;“ECZ’£“;£ - 3+ 1A - R

S
Tz

[1+(1-2p)2°] [(1-B)~ z+(1-p)2°] -
z(1-2)(1+2z) [(1-/3)-92-(1-#)(1-2B)z2]

N Gy ) 51-@2 —2(1= p)2(1-28)2- 9B(1=p) .
2" pT-z T2 (- p)=9pa=(1-p) (1-2)2°)

Fromn (3.1) and (3.4) we have

I3

(3.5) (1-a)log L(z_z_)_ +alog £ (z2) =

= =(1+a=8)1log [(1-/3)-QZ+(1-[3)Z2] +

+ alog [(1-B)-ppz—(1-B) (1-28)2%] + (1-)10g(1-H).

The solution of the above differential equation will be
the required extremal function if that function belongs to
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the class S (g,f). We claim that such a function is

(3.6) F(z) = zl: (1-p)

(1-8)
(1=-8) - 9z + (1—B)Z2J

Since actual computations for this function give the
following

(3.7) 1og{F§Z’}= ~(1=B)Log [(1- @) =02+ (1= B)z%]+ (1- ) Log (1=B)

(5.8) 2P (2) _ (1=p)=gfz- (1-B)(1-20)2°
2 (1=8) =0z + (1=p)z"

we obtain

(3.9) 1log F'(z) - 1og{E—z(—Z—)} = log [(1—p)-¢pz—(1—ﬁ)(‘1-2,'8)z2]-
- log [(1-g)=9z + (1-p)2°].

From (3.7) and (3.9) we have

alog F' (z) + (1-a)log{Eé5)}= R,H,S8. of (3.5).

This shows clearly that F(z) 1is the solution of the
differential equation (3.5). Further we find that

F (2)]_ 4. ge (1=B)2= (1=p)%2 _ Mal2)
Re[%Fre3)- 8 = we (1_,3)_?“(1_3):2 A

where

N,(2) = (=p2(1=121°) [(1=p) (14121 %) = qRre(2)]

Dq(z) |(1—ﬂ) -Qz + (1-ﬁ)22|2.
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But 5 >
N, (2) > (1-9)? (1-12]%) (1=12] )" > 0,

therefore F(z) belongs to the class 8, (9yf). This completes
the sharpness of r(a,f) which 18 obtained from the equation
(2.4), Similarly, we can show that

1s an extremal function for r(ayB) obtained from the
equation (2,.5), Lastly, following the analysis of Zmorovie[7]
we can show that the function
1-8
-1
F(z) = z[,‘ - 2z c0sO + z] ’

where © 1is obtalned from the equation
-‘/ aaf’ _1-2r cos6 - (1-2Q)r2
+a—f 1-2r cos® + r°

and r(a,p) 4is the root of (2.3), is an extremal function
for the a-convexity resuit obtained from (2.3).

The case o< O, If the result (2.5) 1is sharp themn we must
have the equality in the equation (2.57) after R 1is
replaced by a +d3 and r» by z. Tthls 1s so if we have for
some fe S (o,p)

2(1-p)H(R,0) = 2(1-B)H(R)

[}}

= 2(1-P)R +§ {28-1+4%-0%} + 2a(a-p)),
where

2
a =1t (1—2522 ,

1«3

- 327 -



28 Shyam Kishore Bajpai

A = 2(1-B)Z
1=z

_ 1+ (1-25)z2 + 0%
R = 2 ,
1-2

and
H(R) = (1-q) zf zz +a-['l + %].

After substituting these values of a, A and R, the above
equation takes the form

2 2
(3.10) H(R) = 1402 + (g-2ﬁ)z saldr 2o
1-13 1 =2
2
—y A= (1-28)z

1+ Qz + (1-2ﬁ)z2

\ 2
(3.11) zg(g) = "*qu" (lgzﬁ)z , 0<p<2-2f, O0<p<1,

Now, we look for f£(z) which satisfy the equation (3.10).
Let f(z) be a solution of the differential equation (3.11).

Our claim is to prove that this f(z) 1is the required
function. Since f(z) satisfies (3.11), we have

2 2 2
£f"(z) 1+ 2 1+ 0 + (1-28)z
(3.12) 1 + & = + -
£(z) 1=~z 1 - z2

1 - (1-28)z°
1+ 02 + (1-2#5;2

Use of (3.11) and (3,12) for y = £ yields (3.10). There-
fore f£(z) given by (3.11) is an extremal function, Now, we
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determine the solution of (3.11). We have

(1-p+ ;—9) (1 -p- ;‘9)
+ 1=z T+ z

£'(z) .1
(2 T2

and

4
2 1-
(3.13) £(z) = z[} * :] L 12] g

z

It is easy to see that fe 5,(¢,8). This finishes the
verification in this case, Similarly we £ind that

L4 £ = 2
(3 1 ) (Z) (1 + z)a__aﬂ

1s an extremal function for the result given by the equation
(2.3) .
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