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ON THE NORM-STRONG APPROXIMATION OF 2x-PERIODIC
FUNCTIONS

1. Notation

Let 19 (1<q<eo) be the class of all 2m~periodic, real-
~valued functions £ whose g-th power is Lebesgue-integrable
in the interval <-, ¥>; the norm of fe¢ 1% is defined by the
formula

,, 1
‘ q q
2] g = 1£00)] g = l’[f(xn ax} .

Consider the Fourier series

. a =l
(1) s[g] =3 + ? (a,c08 vx + bysin vx)

of a function fe Lq. Denote by Sk(x) and Gi(x) the
partial sums and the Cesaro (C,d)-means of the series (1),
respectively. Let us 1lntroduce the integral modulus of
continuity of fe L3:

@91 q = wleit) g = oup | (xen) -2 g

We shall deal with a regular summability method for real
sequence, dgtermined by a triangular matrix uank/"n " (>0

and Ay =3 ”"nk)" that is the condition w -—~w implles
k=0
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2 W.Lenski

1 &2

—Z a,W, ——W as n—eoo0.

An t= nk "k

The aim of the present paper 1ls to estimate the quantity
1

n 1
1 -1 P
I-If:(f):[‘q = A—n k§=o Xy “615 - f"Lq} for &, p>0.

For convenlence, the suitable positive constants
independent of f,n and r will be denoted by C;j
(J = '1,2,5,.. . ,20)-

2. Statement of results

In this Section the theorems, relative to the norm-strong
approximation, will be presented (cf,[4], P.89).

Theorem 1. Suppose that for a certain T>1

i 5 “l qi’ 1 v P
=] < Cqh =0,1925402)s
(2) 1=0 k:dl (k+1) - < 1*n n#+i %‘fk (n— sty )

' 41 1
where Jj satisfies the condition 2°<um1<2’’, ay=2"-1,
A= min(2'*7- 2,0), and

k
l% gw(@%ﬁ)]}q if a=1,

(Pk =
A
w<k+1>Lq £ q > l"

and let §>1/2 be such that (1-8)p<1 - -%: « Then, for
n = 0,1,2,-."
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On the norm-strong spproximation 3

1

n L

p\ P
(02<£_1qu> if p>q or p<gq<2,

o
(3) (D) g« |

/I

n A

! S WP (] P
\C3<;n+1ﬂp7q k=°(° (k+1)L%> if q>mex(2,p).

Under the assumptions of Theorem 1, the following more
precise result holds.

Theorem 2, (1) If (1~6)max(p,q)<1 - + , then

T
a
n P P
(4) Hg(f)Lq<C4<1—17| % ?k> (D = 0,1,25000)s
(i1) For A A
(k+1)3-a“’(ﬁ)1,q if  g>max(2,p),
Wk =

G if q=1 or q>1 and (p<q<2 or p>q

satisfying the condition (2) in place @+ We have
1

n P
(5) Hﬁ(f)ngc5 1 gﬁ) (0=0,1,2,...).

Remark, It'can be easily observed that the condition
(2) holds, for a_ = A1), wnenever p>1-3i (by definition,

o (k)

3. Preliminary lemmas
We start with the basic estimates of the Hardy-Littlewood
type (cf.[3], p.78 and -[6], p.150).
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4 W.Lenski

Lemma 1. Let u(r,x), v(r,x) be the Poisson and
the Polsson conjugate integrals of a functlon fe1d having
the integral modulus of continuity w(g) Q Write

' L

(6) F(z) = u(r,x) + 1 v(r,x) = % +i (a,-i-b‘,)z° (z=retX, 0<r <4 Y
¥ =1

where a,, b, are the Fourler coefficients of £. Them, for
r e (0,1), we have

w(’l-r)
c6 1 -\-I‘ if q>"9
F (re®)| <
(7) H T n:fl ;
1 -2 _
Cr 7 1!; ¥ w(y)Lq dy if aq=t.
Pro of. Clearly,
‘F- (z)l = %IJ_FG(:%lI and é'F(z) 6u(rxx) +16V(rxx)

Eva]uate first the quantity HM?&)—" (1<q <oo ). Since

Jr P(r,x)dx

where P(r,x) denote the Poisson kernel, we obtain

7
Su(r,x) _ r(’l-rz)f -t sin y ay.
6x 0T {f(X) (x+y)] (1-2r cos y + r°)° !
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On the norm-strong approximation 5

By the generalized Minkowski inequality ([9], p.38),

ld’u(r,x)
éx

<r(’l-r2)ff( £ (x) - f(x+y)'|}'12 qu q<

14 T l_ (1=-2rcos y +r )

4 y o(y)
< 21‘&]-1‘2) Lq dy .
T ) ((1-r)2 + sr7~%2)2

If 0<r<1/2, then

T
6u(r,x) 4r T -
(8) sx a7 8y w(y)quy<16n(1_r + 1) w4 r)Lq<

0

w(1=r) q

L
< Z2ry oo

In the case 1/2<r<1, the substitution 2 Vr y/(x(1-r)) =
leads to (cf.[2], p.892)

2Vr/(1-r)

x w(rx(1-r)/Vur)
I 6u(r,x)u < 7(1+1) f 2)2 14 ax <

4 STT=7 5 (1+x
avr/(4-r)
1 1= -
- r(1+r) w( I')Lq f (xx/V4r + 1)x dx <C,r - r)
1-r 0 —(_:‘—*';272_ d _1_—

Estimate now the quantity "M‘ for g>1. Ve
6x (1.9
start with the identity

v(r,x) = -;I? f(x'FY)'P(I"y)dy’
-
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6 W.Lenski

where f 1is the conjugate function of f£; whence

T
6v(ryx) _ r(1-r2)f{f(x) - f(x+y)} sin y 3.
n

6x r (1-2r cos y +1°)

Using the generalized Mlnkowskl inequality mentioned above,
and the Riesz inequality ([9], p.404), we obtain

y w(y;f) q

n
sv(r,x) <2r(’l-r2)f L dy <
" 6x |14 N (1=r)2+ aea2y2)2 7

9 = I 2.0 .

T (y)
<o 2x(1-r?) y:? 14
((1-x)< + 4r7~<y<)

Repeating the previous argument, we get

a)('l-r)Lq

§v(r,x)

L

To estimate the quantity |6v_(r,x_)ﬂ for q =1 the
6x i1

following generalized form of Theorem 2,30(II) of [9],p.414
will be neecded.

Let U(r,x) and V(r,x) be two conjugate harmonic
functions in the disc {z:|z|<']} (z=re’™*, 0<r<1), and let

IIU(']"Q,X)HL,\ < x(g) for ge(0,1),

where the function x(¢) is continuous in (0,1). Then

1
ﬂV(I‘.X)ﬂL1 < 4 1.[ v /2y @y £ o<r<A.
-r
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On the norm-strong approximation 7

Putting x(y) = " w(y) o and applying the inequalities

(8) and (9) for au(r x)" , we obtain
3v( ) 1 2

v(r,x < - .

———ax ﬂLq C,M 1:[1‘ N w(Y)dy

Since w(@) , is a non-decreasing function of ¢, we have
L

w(’l-r) ,‘ f 5 J‘ >
r = w(1=-r) vy < ¥ wy) 4 dy.
- ! A2 VS i )

Collecting the results we get (7).
How two further lemmas are going to be proved.
Lemmna 2, Suppose that 6>1/2 and (1-8)p<i.

.Tken
1
p

20 1 g P
(10) {ﬁ—}qg_ﬂ i“rﬂ} < Cpoyy (020,1,2,..0)0

P r o o £f. Consider the power series (6) with
z_qe (0 <Q<1) Denote by 'L‘k(x) the (C,d)-meatis of the
series F(e™

If p>gq, then the generalized Minkowski inequality ([12],

Pe35) gives
2 4
m - P
5pl 6= -1 JIIP kp | P Sp‘ 3 ’l_ 6P xp "
{Z :k 't'k . r < 2 k Tk | T Lq.

k=0 k=0

As it is known ([4], p.241),
=25) ix , ix
82 A(k)(r" Yoo -tS @z = e F ),
=0

1-2

- 291 -



W.beaski

) -
whare Ali ) = C‘i‘;d)and g=rel® (0<r<1); whence by the Haus-

dorff-Young inequality ([10],,.153), for 1<p < 2, 6p'>1
]

and p = _P'_%r we get
1
T . -
p

o [ |p (ret@x)y|” ?
r 55 dg .
".—reiq’l a

'l

Further, applylng the first mean value theorem for integrals,
or the generalized Hinkowski inequality if q>7p',

R, < C,]5

we obtain
0 »
< C,.1 "F' (rei(q +x))" . I’(’l-i‘euc)-d-ﬂ 'y
Rm 13 Lq Lp

wnere Lpoe <mu>. Fronm Lemna 1 it follows that

w(1-r) q - 6
060131‘ —T—% "(’I-relx) HLP' if g>1,
B < 1
C,C f 77 w(y)_, dye u(’l-reix)-G . Af g=1
73 4o A P *

which, together with

1
-6
- p’
ll(’l-reix) JHLP' <C,y (1-r) for 6p'>1 (cf.[3],p.65),

shows that

5-1
3

rCeCq5Cay w(’l—I‘)Lq (1~-r) if g>1,

&y < 1

4
= <
07013014 (1=r) 2. y w(y)Lq dye{1-x) if q=1.
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On the norm-strong approximation 9

Setting 1-r = 1/(n+1) (m>1) and using the inequality

> k A\ 4
-1 7 1-F’T> >e for k<n+l,

we obtaln

LSTEN

/I
n s 61 Py S+
[g k pl't‘k - Ty a < R < 015me-(m+'l) P (see [5],p.239).

Finally,
2 1 2n 1
n
‘LZ[,G&-/‘ _ 65"p P< 1 rcS"-’l _TJIIP P<
n+1 k=n k k 19 n+1 jramy k k 14
a
P 1
Y it
1 Jpﬂ -1 5 ” P \ D
k T -t < (o#+1) <
(n+1)1+6p [ k k 14 R2n o

<2 P 015 szn if p>2, (1=8p<1,

and so, because

Pre< Py for k>k',

we have (10) under the restrictions above,

Since the left-hand side of (10) 1s a non-decreasing
function of p, the estimation (10) is also true for any p=q
such that (1-8)p<1.

In the case q>p, 1< 9«2, taking P4 such that
Q< py<2 ((1-6’)p1<1) and reasoning as before we get (10)
for P=Pqe Now, by the previous observation, the ilnequality
(10) remains valid for p< P4y as required.

We have still to examine the case qg> max(2,p). Here
applying the following inequality of Toyame-type ([7], f>.285,
3.6.,47)
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10 W.Lenski

o \Els_, 3% G
flgp(x)l dx> } < (m+1) {f(}:lgﬂ(x),> dx} , O<sgt<ooy

¥ (u=0,1,2,...,m) 1=0,1,2,..., we obtain

=

s P [N §|P k %
=t kp P q Pl 6-1 P
rkIILq r < (m+1) I][Z k lrk -‘L’kl r [Lq .

k=0

Consequently, arguing similarly as in the first case, we have
the last part of (10).

Lenmmna 3, Suppose that 6d>1/2 and (1-68)max(p,q) <.
Then

(1) {n+1 Z, ‘I d‘-’l s " q} < Coefy  (n=0,1,2,...).

Proo f. Confine our attention to the case g>max(2,p),
because for p>q and q>p,1<q<2 the inequality (41) is
a consequence of (10), In view of H8lder's inmequality, we have

1] BN

m

. & -1 P P

1 § kp

(12) -——z k -'L‘u r <
m+1 jromr k k 14

A
q q

" ’-‘k“}

1
n q -1
1 d'q 5-1 slq kq _ q
[m g:_o | T q = Slm+) =

To the last expressilon we apply the Hausdorff-toung inequality,
the generalized Minkowskil inequality and Lemma 1, successivelyn
Then for q'e(1,2> such that 6q'>1 and ¢ =(—13_'_—_,[ (a/a > 1),
the argument similar to that of Lemma 2 glves

m 6’_1
1y bq 6
<{m Lk ﬂfk - Tk
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On the norm-strong approximation 11
F L)y ¥ | T
7 ot ) @]
I ==
. |1-rem|6q q

7 ¢ i
“F‘ (rei(wx))" q- 4 51
L
<r017 - a9l < Cqg m(’l-—r)Lq'(’l-r) q,
-

4-re? oq

Qm < rC;;, 9

-1
Further, for J-r=(m+1) (m>1), we obtain

1 1
2n q )a 2n q 14
=1 & il 6 H -1 &
A > .¢a
o+ Zkk - 61:" af < V() PO B % ‘Tk” af <
i=n L L
§+1/q
-2 +1/a. (A 6+1/a (1
< )57 %n<C1s 2 °’<2n+'l>Lq<c’18 2 @)

whenever (1-6)q<1. Finally, by (12) the estimate (11)
follows.

4, Pr o 0o £ of Theorem 1. We begin with the obvious
inequality

p P 1 2 6=1 s
H (f) < 2p< Z o HG . - 6\
[ n Lq} An =0 nk [ "k k

P
qu *

1 8 H d ﬂp ) P
+——E.a 6 ~f = 2°(A + B).
A = nk |“k 19
It can be easily observed that

)
“6k-f|lllq<019(pk for &6>0.

(see [1], p.546 if 0<8<1,q9>1;[8],p.424 if 6>1,9>1 and
[11],p.53 if 6>0,q=1). Hence and from the condition (2) it
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12 W.Lenski

follows that

n J ﬁl P
1 P z
B<Ox0 K ;anqu <Cy g 2 2 Apye P [ <
n k=0 n 1l=o k-al
1
1 J >1(7-1) 7
<Cxo & g : “nk op t <
n l=o
<0y f- ‘_‘k‘_’f“ < 04Co0 77 2 9 -
n 1=0 | k=a; (k+1) o+ K=o

Purther if 1/1 + 1/y = 13 747>, BHblder’s inequality gives

s]p
A<AZZ - u 1-6kH <

n l=o k—a 14
o7 1
T 1 6-1 6 ()
< E -(k+1) é " (k+1) 5 -6 <
n 1=0 < ) <—d k k
J ﬁl ol 1 ﬂl A\ L
1 nk \T/ 1 6-1 JIPT )
<1y — ok Yy 6 -6 )
h I \Eg (ke) -7/ \ 2L =ty k kl1a

Since (1-6) y'p <1, Lemma 2 leads to

1
AT

P
A<c2 "'lal .

n l=o k-al 1)
It is ¢lear that

y, <2y for 2a<k<2loz,
2t
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13

This and the above inequality for 4 1imply

i[hA af TP
a3 nk 'k

P
A<(2C,,)
127 Ay 15 | = ()T

Now, by the condition (2), we obtain

n
p
and
TP 1
p AR i Py alw (E%)Lq 7
A< (2C,,) (n+1) — <
12 Lis | wen™T

n

P 1 1

. <C,(2C,.) -3 ,wp(k——) if q>p and q>2.
11520 (0PI *1719

Collecting the results, we get the desired assertion,

5 Pr oof of Theorem 2, The argument runs along the
lines of the proof of Theorem 1, namely

P
{Hg(f)Lq} <2P(a + B),

where A, B are as before,

To prove case (1) we apply the same calculation as in the

previous proof and thus
1§ P
B<C0x0 a7 %-;—o- Pic -

Consequently, by Lemma 3 and condition (2) we obtain

1
J Ay al ¢TP |7 n
P
R<(20,)° 23 43— ek oo (a0,)" L

>
- 1]
n To|k=a; (k+1)'7 k

K

=0
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14 W.Zenski

where § and 7' are as before. These estimates imply (4), and
thus Theorem 2 (i) is proved.

In the case (i1), Lemma 2 and condition (2) with y,
instead of i leads to

1
3 [P o7 yap T a
P 1 nk Yk P 4 p
ac(2c,,) & Y {2 < C,(20,,) —- v
12 rnl=o K=oy (k+'|;|"'7 117127 b == Vi !
and
11
1 R “Um‘Pg:p s
B<C e 2:: ~Ji——ﬁF:—r <
20 ‘A‘n 1=0 k:dl (k+1) )
11
RN 0
1 nk *k 1
<Cyp 1 B Xt < CC B IV
20 &, 720 k=a, (k+1) () 1720 n+1 k=0 'k

which gives tue estimate (5).
I am indebted to Professor R, Taberskl for his kind criti-
oism and valuable suggestions.
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