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NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF LINEAR CONNECTION DETERMINED BY THE FIELD
OF A TENSOR OF TYPE (1,1) COVARIANTLY CONSTANT
IN THE THREE DIMENSIONAL SPACE

1. Introduction

Let M be a three-dimensional differential manifold and §
a chart belonging to its atlas atl M, By F (M), resp. X(M),
we denote respectively the ring of smooth functions and the
module of smooth vector field on M,

Let T be a vector field of type (1,1) and V a linear
connection on M. Let V De a vector field belonging to X(M).
Then VVT denotes the covariant derivative of the given
vector field T along the vector field V,

In the present paper we shall give a necessary and
sufficient condition for the existence of a linear connection
V determined by the field of a tensor T covariantly
constant, i.e, satisfying the condition

(1.1) VVT =0

for every V e ¥(M). We call such a tensor field parallel
with respect to the linear connection V.,

Condition (1.1) can be written out with respect to an
arbitrary chart § ¢ atl K
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2 T.Bury

M, u U mo a uo_
(1.2) Vs Ty #=08T5 + GaTy =LY Ty =0
(6gagtyu=1,2,3),

where T; are given coordinates of the tensor field T 1in
the chart ¢, 66T; are partial derivatives of the field T

and r;ﬁ are unknown coordinates of the linear coanection in
the given chart., (1.2) can be treated as a system of n2
equations (for every 6) linear non-~homogeneous with respect to
I;ﬁ. This problem has been solved fo- “-dimensional space in
[1] for 3-dimensional space in [2] (oot published doctoral
thesis of the author)., In the present paper we give main
stages of this solution.

2. Some scalar concomitants of the tensor field T
Let T denote the set of all non-zero tensor fields of
type (1.1) defined on M.
We shall consider scalar fields which are concomitants of
TeT [3]

1, (2)
Py = 22,5 @ 15 - 1505+ T3 - 2307 4 15021205,

(2.1)

(3)
S (T):

det (T}) = 31 T} 1515,

()
S (T) 1is called the trace of first order of th? 3atrix (T'1 )

of the tensor field T and is denoted by tr T, §'(2) 1is
called the trace of second order of_the matrix (T%) and it
is seen from the definition that (& (T) = det (T4).

, i
The traces S(T) (i = 1,2,3) are scalar fields

(1)
S (7) e F(M).
The partial derivatives of these scalar field

(1) (1)
(2,2) Uz (T)1=23g8 (T) (L =123 6=1,2,3).
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are co-vector fields, The vanishing of these fields, i.e.

1
U&(T) = 0 is an invariant property holding in every chart
¢ e atl M,
Let T, denote T;, where Q 1is a joint index: Q = (u,1),
(Q = 1,2,...,9). By (2.1) and (2.2) we have

(1
(2. 3) U)(T) = as (T) —Z aS () aSTQ (1 = 1,2,3).

Let us consider the matrix

(1) |
(2.4)  A(T): é%ﬂl> (1= 1,235 Q= 12,.00,9), .
"o |

where 1 denotes the row and Q@ the column of the matrix
A(T). Let

(2.5) rA'(T)z = the rank of A(T).

It is known that rA(T) is an absolute invariant,
Further, let r, be the maximal rank of the matrix A(T)
where T runs through T, i.e.

(206) I‘A = maIx rA(T).

From a theorem in [3] it follows that
Theorem 1., Under the above assumptions
= 3,
Moreover, let us consider the following scalar fields which
are concomitants of given tensor field Te7T [2]
| (1) (2)
(2.7) ¢ (1)1=12, ¢ (=185,
(3)
$ (1)s=18 o] 2%,
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Partial derivatives of these scalar fields
(1) (1)
(2.8) Vg(T)z = 85 o) (T) (i= 15243),

are coxariant vector fields, The vanishing of these fields,

i.e. Vg(T) = O 1is an invariant property holding in every
chart £¢ atl M.
From (2,7) and (2.8) we obtain

(1) (1) =,
(2.9) Vg(T) = 959 (T) =Z_a%Q£L 8sTq (1= 1,2,3),
a=1

where T denotes the coordinates of the tensor Tf}

Now let us form the matrix

(1) (i =1,2,3;
(2.10) B(T): = <%{£‘L(T_> ;: 1:2:?:-‘,9),

Q

where 1 denotes the row and @ the column of the matrix
B(T).
Let rB(T) denote the rank of this matrix

(2.11) Tp(p)? = rank B(T) for TeT7.
The maximal rank of B(T) will be denoted by rp:

2.12 = .
( ) Ty mgx (1)

(1)
In [2] it was proved that the scalar field ¢ (T) defined
i.

)
by (2.7) can be expressed by ueans of the traces S (T)
defined in (2.1), in the following way:
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(1) 1)
¢ = 5 (= 1)
(2) (1), (2)
(2.13) {¢ = 8°--235
(3) (1)(2) 3) (1%
L¢ :—BD S 7 .
(1)(2)(2)
The mawning S —=¢ deTined above, where 3= (3, 3, o),

(1)(2)(3)

$=(¢, ¢, ¢) 1is a bijection, The inverse masping can de
expressed as follows

(1) (1)
s = ¢
(2) (1) (2)
(2.14) W S =-;- $° -% ®
(3) (1) (1)(2) (3)
8 =2 ¢ -3¢0 +35 6 -

From Theorem 1 and from the fact that the mapping S-—=9
is a bijection it follows that
Theoren 2., Under the assumptions above we have

I‘B=I‘A=5.

3, The matrices of the system of equations (1.2)

In the system of equations (1.2) we taxe the pairs (u,2)
in the following order: (11), (12), (13), (21), (22), (23),
(31), (32), (33), and for the uaknows [gﬁ the pairs (a,f) in
the same order. Let MW (T) denote the fundamental matrix of
the system (1.2) and its elements by Mi”},‘ , where the pair
(u4y A) denotes the row, (a,8) the column of the matrix M,
From (1.2) we obtain

M a
(3.1) M(®): = 63 D=6 1] -
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From this formula it is seen that the matrix w(T) 1is
skew-symmetrix with respect to the pairs (u,12) and (a,p),
ice. M3%(L) = - M43 (D). Writing out the sugmedted matrix
mﬂ;(T) of the system (1.2) we obtain from (3.4):

o 1, T, -5 0 o 13 o o asTf
= SO S T; -3 0 o 8577
<} o o T§ o o T;'-Tg ! Tg %1}
wRT, 5 0 -1 0 o -2 o 85T2
(3.2) M= | o -1} O ” o T§ 0 -T;’ 0 T3
o -1y o o —T§ o 1 Tg—Tg T§ as'r§
1 Tg-T:]] o o -5 o o -1 g
o o -1 T?‘ 1] Tg-wg o o 1] 813
o o ] o o -'1‘§ o o as'ri

The basic matrix ®(T) consists of the first nine c¢olunmns
of the matrix IR;T). Let us introduce the following notation

- . - ”
(3-5)rm(,1,). = the rank of F((T), rm;(.r). = the rank of WL(T).
Since the matrix MWYT) is skew symmetrix, we have

rJIZ(T) # 1’3) 5’7’9-

In [2] it is proved that for the non-zero tensor field Tg
the rank T mr) of the matrix T(T) can asume the following
vaiues

(3.4) rWZ(T) = 0,4,6,
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Necessary and sufficient counditions 7

and the followlng equivalences hold

(a) T4 =a6y(a#0)e>ry = (1] #0)

b) 1y = 1T, £ 0)e> = 0T, # 0)
-2 W c) rp = 2<>r,=4

\d) rB=3<=>r,m= 6,

where 5; is the Kronecker delta.

4, The exlstence of linear connection

The following theorem holds:

Theorem 4, A necessary and sufflcient condition in
order that there exist a linear connection V , with respect
to which the tensor field T € T is ?ﬁfallel, is the
vanishing of three covector fields V;(T) defined in (2.8),
i.e.

(1)
Ve (T) =0 (i=1,2,3),

Outiline of t he proof, Necessity
follows from the theorem proved by A.Lichnerowicz (7] and
A.Zajtz EB]: if a tensor field T 4is parallel (covariantly
constant) with respect to the comnection V and the field K
is its concomitant, then K 18 also parallel, Hence in
particular for.the scalar concomitant K(T) we have

VsK(T) = 0 €>3,K(T) = O,

Thus for scalar concomitants (2.7) we have by (2.8):

(1)
V&(T) = O for every i = 1,2,3.
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(1) .
Conversely, assume that Vg(T) =0 (i = 1,2,3). We have
to show that rm(T) = r.m; m)e
From the assumption by (2.9) is follows that

9 (1)
(4.1) QL;%%H%TQ =0 (i=1,2,3).

a) In the case ry;yny =6 we show that B(T). Wg(T) = [0]
(see [6],[5]).

Ian fact, in the last column of the product B(T)- WZ;(T)
we obtain

g (1)
S et g
6 L]
& %%q 79
These expressions are equal by means of (4.1)., For the re-—
maining columns of this product we also obtain zero (see [6]).

This implies that
I‘m;(T) = I‘m(T) = 6.

b) For the case =r, = 4 the proof is given in [2].

c) If ) =0, from (3.1) and (3.5) it follows that
for the non-zero field Ti the following equivalences hold:

: M 1 .2
(r,m(T) = O)<=>(rB(T) = 1)@;‘1"; =a6)_,. where a = a (€ ,¢ 093)

i
and 6; is Kronecker’s symbol. Then (Vg(m) =0 (for i=1,2,3),

(1)
i.e. Vs(aé";) = 0 implies a = const, and consequently

rm;(,l.) = rm(T)_ = 0 for o = const.

From (3.4) we obtain the following corollary.

Corollary 1, If T gy = © (where ;;1:0,4,6)
then for any non-zero field T with respect to ro'a the
solutions of the system (1.2) depend upoa 3+ (9-m) arbitrary
functions, .

Jdaking use..of"Theorems 1 and 2 we can express Theorem 4
in the following equivalent form.

~ 280 -



Necessary and sufficient conditlons 9

Theorem 5. A sufficlent and necessary condition-in
order that there exist a linear connection V with respecyito
which a non-zero tensor field Te T is parallel is the vani=-

. i
shing of the covector fields (U)

6(T) defined in (2.2), i.e.

(1)
U (?) =0 (L =1,2,3).

5. The relation to the results of Y.C. Wong

Let M3 be a three-dimensional connected differential
manifold of class C°° with a non-zero smooth tensor field
T:(p), ;)eN%. Clearly, any system of 3rd linearly independent
vectors lyling in the space Mp tangent to the manifold M3
at the point p 1is a»basis of Mp.

The followlng theorem 1ls a special case of the theorem
proved by Y.C. Wong ([{10], p.72): A necessary and sufficlent
condition in order that these exist a linear connection V
with respect to which the tensor field Tﬁ is parallel (i.e.
satisfying the system of equation (1.2)) is that at every
point pe M3 there exist a basis (in general non-holonomic)

5
(5.1) v (p) (Qs 6= 142,3)
in which the coordinates of the tensor Tg(p) are constants

Ga: which are not simultaneously zero and such that the
following identities hold:

a, a=A N
(5.2) 72(e) ¥ ()on () = O},
a9 " ,
where b, (p) 1is the system inverse to B (p)y i.e.

g1
(5.3) v (p) Balp) = 67

From the above-mentioned theorem and from Theorem 4 e obtain
the following corollaxy.
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10 T.Bury -

Curollary. A necessary and sufficient condition
in order that in a three-dimensional space for the tensor field
T;(p) at every point p there exist a basis (5.1) in which
the coordinates of the tensor Tﬁ(p) are constants Cﬁ which
are sinultaneously non-~zero and satisfy (5.2) and (5.3) is the

(1)
vanlshing of the covector flelds V}(T), i.e. the ?e%ations
i 1
V(T) =0 (1=1,2,3) (or in the equivalent form Ug(T) = O,

(1)
where Ug(T) 1s defined in (2.2)).
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