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A NOTE ON STRICT CONVEXITY 

AND STRAIGHT LINES IN NORMED SPACES 

In h i s paper " S t r a i g h t Lines i n Metric Spaces" ( [ l ] ) , 

C. Reda presented a theory of s t r a i g h t l i n e s based on degene-

racy in Hero 's formula f o r the area of a t r i a n g l e . One of the 

main r e s u l t s of that work demonstrates that in a H i l b e r t s p a -

c e , the concept of metr ic s t r a i g h t l i n e i s e q u i v a l e n t t o the 

usual a l g e b r a i c d e s c r i p t i o n of a l i n e . In t h i s n o t e , we show 

that t h i s i s a l s o t rue in a s t r i c t l y convex normed s p a c e . 

Further , s t r i c t l y convex normed spaces are c h a r a c t e r i z e d by 

t h i s e q u i v a l e n c e . 

We .begin with some p e r t i n e n t d e f i n i t i o n s from Ql] . 

For a r e a l normed space ( U j l ' l l ) » d e f i n e 

( 1 ) d ( x , y ) = 11x-y11 , 

( 2 ) p ( x , y , z ) = ^ [ d ( x , y ) ¥ d ( y , z ) + d ( z , x ) ] , 

and 

(3) S ( x , y , z ) = [ p ( x , y , z ) ( p ( x , y , z ) - d ( x , y ) ) ( p ( x , y , z ) -

- d ( y , z ) K p ( x , y , z ) - d ( z , x ) ) ] ^ " . 

A subset L of N i s said t o be l i n e a r i f L c o n t a i n s more 

than one point and i f X ( x , y , z ) = 0 f o r a l l x , y , z c L. 
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2 Ch.Diminnie, A.White 

If £ is the set of all linear subsets of N, define the 
relation on <£ by L1 ̂  L2 if L1 £. L2. By Zorn's Lemma, 
for each L £ <£ there is a maximal set LQ £ oC such that 
L £ Lq. The maximal sets of at are called metric straight 
lines. 

If x,e £ N and e / 0, the set L(x,e)a|x+te: t is real] 
is called an algebraic straight line. It is easily shown that 
if x,y £ L(z,e) and x / y, then L(z,e) = L(x,x-y). The-
orem 4.2 of [l] shows that every algebraic straight line is 
also a metric straight line. On the other hand, Example 4 of 
[ij demonstrates that the converse is false in a general 
aormed space. 

Finally, (N,|| • |[ ) is strictly convex if the conditions 
|| x+y || = || x || + || y || and y t 0 imply that x = <*.y for 
some oi > 0, 

T h e o r e m . A normed space (U, || • || ) is strictly 
convex if and only if the concepts of algebraic and metric 
straight lines are equivalent. 

P r o o f . 1. If (V, || • || ) is strictly convex, then 
the equivalence of algebraic and metric straight lines follows 
from Theorem 4.2 and from a proof identical to that of The-
orem 4.4 of [ 1 ] . 

2. To prove the converse, assume that algebraic and metric 
straight lines are equivalent in (N, || • ||) and let x,y £ N 
satisfy the conditions ||x+y|| = || x || + || y || and y t 0. 
Then, since d(x,0) + d(0,-y) = d(x,-y), S(x,-y,0) = 0 and 
hence, {x,-y,o} is a linear set. By our remarks above, 
[x,-y,o] is contained in a metric straight line L. Since 
L is also an algebraic straight line and -y,0 6 L with 
-y £ 0, we may write L = L(0,y). Finally, the conditions 
x £ L and ||x+y|| =||x||+||y|| imply that x =oi y for 
some oc > 0. Therefore, (N, || • || ) is strictly convex 
and the proof is complete. 
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