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ON THE CAUCHY -NEUMANN PROBLEM
FOR THE BIPARABOLIC EQUATION

1. In the paper we shall give the solution of the limit
problem for the eguation

(1 Lu(x) = F(x)
and for the domain
Z ={X: Xi >0 (i-‘-?.z,-..,n), t > 3}; §:=<X1,x2,...,xn,t),
where
2
L=P-—bI,P=ZD 'Dt=A'Dt

=1 i

b >0 1is o positive real number, F(X) is a given function
defined for X € Z, where

Z={X=xi>o (i=1,2’cto,n)’ t)O}.

t) (i = 1,2,000,2%)

2. Let X; = (89%1585,5%0000483 %5
where
1ast =32 -m §=1,2,000,2%%, k = 1,2,...,n,
e =
1k -1a8 L # 325 - m, m = 267N 26N, .., 2K,
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2 K.Warchulski

denote all possible points which are symmetric images of the
point X with respect to the coordinate hyperplanes or are
iterations of those symmetric images.,

In the sequel we zhall use the following denotations:

Y = (31932’00'syn’3)’ X = (x1,x2,...,xn), y = (y1932’°-"yn)9

X = (11,12,...,xi_1,xi+1,...,xn,t) (i 1’2,.oo,n)|

1,2,....n),

y o= (31’32’0-0931_1031*110-0’3n05) (1

4
o
[

= (x?,xg,...,xg_1,0,xg+1,....xz,to) (1 = 1’2’.0.,n)’

xé = (x?,xg,...,x2_1.xg+1,...,xg,to) (i = 1,2,4.4,n0),

X, = (x?,xg,...,xg,o), X, = (x?,xg,...,xg).

2° ={x: x>0 (L=1,2,..0,n},

2% = {2 x 20 (1= 1,200,051 £k, t2 0} (k=1,2,...,n),

Q' ={x: |xy| € ¢y (1 =1,2,000,m), 0<T <t <1},
Q2 ={ Xefxg| < ¢y (1= 1,2,000yn), 0<t< T},

(i=1,2,...,n; ifk),
ostsr},

ok ={X: 0 <c & x <3, Ixil' <cy
(k=1,2,000,0)
5° = {x: x>0 (i=1,2,...,n), t = O},
sk = {%: =0, ;>0 (i=1,2,...,n; 1K), t > O} (k=1,2,...,n),

vhere ¢y < ¢, (i=1,2404.4n) and 0 <T, < T are arbitrary
positive numbers.
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On the Cauchy-Neumann problem 3

Let K denote the class of all functions u(X), conti-
nuous with the derivatives D;D;w'u(x), iwl + 2v £ 4
[w = (w1,w2,...,wn) being the multiindex for which w; 20
(1=1,2,4.0,0)3 |w| = w1+w2+...+wn] and setisfying the equa-
tion (1) in the set Z.

We shall conatruct the function u(X) belonging to the

clasas K and satisfying the initial conditions
(2) 1im Dfu(X) = £,(x ) (k=0,1), as X—X € 8° X ez,

and the boundary conditions

i

lest, xez,

(3) 1im DxiPku(X) = g (x}) (k=0,1), as X —X

(i=1'2’.oo,n)o

The problem formulated above we shall call the [C - N - nJ
problem,

We moreover assume that the functions fk(x), gi(xi)
(k = 0,1; 1= 1,2,...,0) are given and defined on the sets
2° ana z' (1 =1,2,...,n) respectively.

The problem formulated above we shall solve by means of
the Green function for the equation

(4) Lu(X) = 0.

Consider any point X € Z and any point Y € Z. Let
n

2
:E: V(Xi;Y) for s < ¢,

(5) e(x;Y) = {7

0 for sz t, X £ Y,

where V(X;;¥) = exp [—b(t - S)] U(xy;Y),
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4 Y.Warchulski

in;Yfz
exp | - for s < %,

aVlEe]

(t-s) 2(t-5
0 for s» t, X #Y,

n

v Wvl2 _ _ 2

and | X ;Y| ‘Z“’x X! e
x=1

It is easily to prove the following lemma.

Lemmna 1. The function G{(X;Y)} given by formula
(5) has the following properties:

a) for any point X e Z, G(X;Y) as a function of the
point Y € Z 1is bounded, when X £ Y,

b) for any point X e Z, G(X;Y) as s function of the
point Y € Z is of class C® and satisfies the equation

IrYG(X;Y) = 0,

n
where L‘;=ZD§ +D, -b, XY,
i
i=1

¢) for any point Y ¢ Z, G(X;Y) as a function of the
point X € Z is bounded, when X # Y,

d) for any point Y ¢ Z, G(X;Y) as a function of the
point X € Z 1is of class C% and sstisfies the equation (4),
when X £ Y,

e) D, G(X;Y) =0 =0 (i = 1,2,040.,n), when X £ Y,
Yi Yi=

f) lim G(X;Y) =0 for X e2Z, YeZ, X #£7JY.
st
In the sequel we shall call the function G(X;Y) Green’s
function for the problem [C - N - n].

3. e shall prove the lemmas on the uniform convergence
of the certain integrals. Let
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On the Cauchy-Neumann problem 5

'yi-xilpi [ (yi"x-)zJ
Upiql(xict;ylvs) = ———————q exp | - 4<t-5) (i=1,2“."n)’

(t-g) *

n
qu(X;Y) =l |’-Ipiqi(xi;tiyiys)9

Voo (XY) = exp [-b(t-s)] U (X)),

where p; > 0, g {i =1,2,.s4,n) are the real numbers.
Lemma 2, If the f(y) 1is bounded and measurable

function for the ye.Zo, then the integral

1 -
= H d
I),(%) j; £(3)V, (31D | 509,

S
is uniformly convergent in every set Q1.
Proof. Let I ={ suplf(y)l ¥ € Zo}. Since
exp [-b(t-sﬂ < 1 then

=

o0
leq(X JﬂUplql\xi, ,yl,O)dy .
Q

i=1

Let R > max{2c; (i = 1,2,...,n)}. If Xe 2%, then
for y; > R (i =1,2,...,0) we have the inequality

(6) T2 <% < ay? (1= 12,0000,

Loreover for m >0, O £ k<o we obtain the inequslity
{7) kPe ¥ ¢ mfe™®,

According to the formulae (6) and (7) we have the ine-
quality
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O

>R t

[
.

: Py 2
7 e, V&

I (x,,t;y:,0)dy. £ f ——-———\235‘) exp [-}—y—r—-]dy <
©oTpgay iYL i 94 16t i
>k
1

3

1 .
5(p,-2q;+2) - {p;~29,+2) )
$C1t2 ; . f yizdyi € CQtZ : ' ki=1’21"°!n)1

IR
where C4,C, are positive constans.
Besides for O <.yi:é Ry, 0 <2 <« t <7 we have the inequa~
lity

kR pit°Qi
LfUD'q_(xi,t;yi,O)dyi é;ZR(ci+R) (121,2,000,0)0
Pidi
0
Then
P %(pi"2q1+2) Py 4y
(8) fUpiqi(xi,t;yi,O)dyi < Cyt + 2R(c +R)
and
n 1 ) p; -q
=(p.-2q,+2) i, 4
1 ¢ l’—l ., ,2(Pim2y ¢
(9) llpq(x)] <N i C,t +2R(c,+R)
=1

The inequality (9) implies that the integral I;q(x) is
uniformly convergent in every set Q1. Let

s: ={’Y: V=00 ¥;>0 (i=1,2,...,n; i#k), 0 <s, < t} {k=1,2,...40),

Z, ={¥: 3, > 0 (1=1,2,00.,n), 0 < 8 <t}.
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On the Cauchy~Neumann problem 7

Lemnma 3. I1f the function g(yk) is bounded and

measurable for yk € Zk {(k = 1,2,¢4.,n), then the integrals

2,k (py _ K , ok
12K (0 f g(y )qu(X,Y)| o @
. v

St

are uniformly convergent in every set Slk.
Proof. Let k=1, Por k = 2,3,...,0 the proof
is similar. Since exp [Fb(t-s)] < 1, then

n
|15 ] < u

O Syt

-2}
fUpiQi(xi’t;yi,S)dyiUp1q1-(x1 +$30,8)ds,
i=1 0

where M = {sup Ig(y1)l : y1 3 21}.
Introducing the new variables of integration

r 1
3 1=1
(10) zi = (yi'xi) [2(1;'8)2] (i = 1,2,0--,11)
we obtain
1
F P+ 2(pi—2qi+1) Py 1 -zf
(11) fUpiqi(xi,t;yi,s)dyi <2 (t-s) 'zil e “dz g
~00

1
)5(p1-2q1+1 )

< Cj(t-s (iz1,2,...,n)

and

A[2
5[’% (py-2a; )+n—1jl

t
2,1 .
|2 ] < Mc3f(t-s) Up g, (%1rti0s2 )is,
0
where 03 is a positive constant,
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8 K.VWarchulski

From inequality (7) we obtain that there exist numbers
Hq > 1 and Nq> -1 such that

t
2,1 - 74 2y R4+
(12) |1p;J (x)l < MCyc, f (t-s) ~ ds < C,t < C,T 0,

0

4

where C4 is a positive constant.

Then the integral 1561(1) is uniformly convergent in
every set (ﬂ.

Lemma 4., If a) the function F(Y) 1is bounded and
measurable for Y € Z, b) p; > 0 and q; (i = 1,2,...,n)

n

are real numbers satisfying the inequality (pi—?qi‘+n+2> 0,
i=1

then the integral

3 = .
Ipq(x) —fF(Y)qu(X,Y)dY

2

1s uniformly convergent in every set Q2.
Proof,. We have

n

t

3 *

|zam] € uf ] fo, q (xyotsvgisian; as,
0 i=10

where M = {sup IF(Y)I : Ye Z}.
Introducing the variable (10) and using the inequality
(11) we obtain

t 1[2:;: (p;~2q, )+n
2 129y
(12a) ,ng(x)l <M05£(t-s) i= ]ds <

%[% (pi-aqi )""n+2] %[ﬁ: (Pi-?.qi )+n+2]
€ Hcst = < CGT

where Cs. 06 are positive constans.
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On the Csuchy-leumann problem S

The inequality (12a) and the assumption ©b) imply uniform
convergence of the integral IBQ(X) in every set Q2.
Lemma 5. If the F?Y) and Dy F(Y) (i=1,2,e4+4,0)
i _
are bounded and continuous functions for Y ¢ Z, then the
integrals

Ijb(x) =fF(Y)(t-s)D‘t‘D;iv(x;Wdy, (1=1,2,e00,0),

Zy

«=0,1,2,3,43 B=0,1,2; a+ 2B <4

are uniformly convergent ln every set Q2.

Proof. Indeed, if ¢+ 2B £ 3, then from Lemma 4
the integral ;jgx) is uniformly convergent. Consider that
the case ¢+ 28 = 4,

Now

Dx V(X;Y) = "D V(X;Y) (i=1,2,...,n)0
i Vi ;

Applying then the formula for integration by parts {see
[3] p.365) we obtain

f F(y)(t-s)n':u:iv(x;y)dy = f DyiF(y)(t-s)DZD‘;‘;v(x;y)dy, a# 0,

Zt Zt

i.e. from the lemma 4 we have that the integral IiB(X) is
uniformly convergent in every set Q°, «o # O. We observe
that

n
DtV(X;Y) =:E: DiiV(X;Y) - bV(X;Y).

i=1

Then for o = O the proof is similar,
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10 K.Warchulski

4. Consider the functions

u,(X) = Affo(y)G(X;Y), ay,
8=0
sO
uy(X) = At f[f1(y)-(Ay-b)fo(y)J G(X;Y),s=ody,
sO
i 1.1 i
(X) = -A (yH)e(x;y)| . ay-,
u3 j; g,(y7)G( ,y1=0 y
n St
uB(X) =2£: u;(x),
i=1
i _ feoly _ Lot _ . i
wl(x) = Aj;[bgo(y ) - etah] Gesexin Jiog
S
t
n
u, (%) =;u§<x),

ug(X) = Af P(Y)(t-5)G(X;Y)dY,

S

t
where 4 = (2¥m)™R,

We shall prove that the function
5
(13) u(X) = E uy (X)
k=1
is the solution of the problem [C -N - n].
Lemma 6. If the F(Y) and Dy P(Y) (1i=1,2,.4.,0)
i
are bounded and continuous functions in the set Z, +then the
function us(x) is the element of the class K.

Proof. Lemmas 4 and 5 and the formulas

(14) 1im fF(Y)(t-s)’G(x;Y)ay =0 (720,
st~
SQ
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On the Cauchy~Neumann problem

11

(15) Lz[(t-s)e(x;Y{] =0
imply that
12ug(X) = Af FOKLY)| o3,
8=t
SO
where
A F(Y)G(X;Y)‘ dy = lim P(Y)G(X;Y)ay.
s=1 st~
s° S
Let
F(Y) for ye2° s3>0,
F(Y) =
0 for y € En-z°, s 2 0,
Then

AL” F(Y)V(X;Y)l tdy = At/’f(Y)V(X;Y) dy.
8=

0

s=t
s E
Similarly to the [2] p.454, we obtain

1im AL/1§(Y)v(x;Y)dy = P(X) for X 2.
S-’t- E
n

Besides for the 1 = 2,3,...,2"

the pbints xi are
outside of domain 2Z.

Then we have

1un_a [ FOVE;TIEY =0 (122,3,...,2%).
set S0
Then the function u5(x)

is an element of the class K.
Theorem Te

If the P(Y) and DyiF(Y) (1
= 1,2..00.11)

- 777 -
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12 K.Warchulski

Z and the D;,w' £,(3),2,(y), slt(yi) (k = 0,1; lwl < 2
i=1,2,¢e.4n) are bounded and measurable functions
in the sets 2°,z% (1 = 1,2,040,0), then the function u(X)
given by formula (13) is the element of class XK.

Proof. The function u (X) + uQ(X) and its deri-
vatives are linear combinations with constant coefficients
of the integrals in the form I;q(x). By Lemma 2 the integral
I;q(X) are almost uniformly convergent in the domain z°.
Consequently the function u1(X) + uz(x) is continuous to-
gether with the suitable derivatives and satisfying the equa~
tion

12 [u1(X) + uz(X{] = 0.

Similarly, from Lemma 3 and from the conditions

s—t~

(16) 1im f gé(yi)G(X;Y)l dyl =0 (1= 1,2,000,n),
En-'l yi=o

(17)  lim f [bsﬁ,(ﬁ-sﬁ(y‘)} G(x;Y)I ay' = 0 (1=1,2,...,m),

s+t~ B yi=0
n=1

we find, that the function u3(x) + u4(X) is continuous to-

gether with the suitable derivatives and satisfying equation
12 [u'(x) +u (X)] =0
3 4 3 L]

Then Lemma 6 implies that the function u(X) is an element
of class K.

5. We shall prove that the function u(X) given by formu-
la (13) satisfies the initial conditions (2).
Lemma T. If the fo(y) is bounded and measurable

function for y e z° and continuous at the point Xy then

lim u (X) = £ (x ), when X—X e 8%, X e z.
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On the Cauchy-Neumann problem 13

Proof . Iet
n

2
u1(x) = J1(X) + ZJi(X),

i=2
where
3,(%) = Affo(y)V(X;Y), dy,
s=0
sO
Ji(X) = Affo(v)V(Xi;Y) dy (i =2,3,...,2".
s=0
SO

In view of the inequality (7) and the bound of the function
£,(y) we obtain

?
s, €682 (1=2,3,...,2%,

where C7,92 are the positive constans.
Then

lim J,(X) = 0 (i = 2,3,...,2%), when I—+X e 8%, Xxez.

Let

fo(y) for y e« 2°,
0 for y e E_-2°
n
From the definition of the function fo(y) we have
=bt s
J,(X) = Ae £ (y)u(x;Y) dy.
1 o] 8=0

En
Since

Afu(x;nl dy = 1
E 8=0
n
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14 K.Warchulski

we obtain
=bt —
J1(X) = e fo(xo) + J %),
where
R B RN C]
E, 8=

As in [2] p.449 we find
lim J,(X) = 0, when X—X_ e 8%, X e z.
Pinally we obtain

lim u1(K) = T (xo), when X-—X € s°, X e z.

)
Lemme 8. If the D;w’fo(y), f1(y) {w < 2) are

bounded and messurable functions for y e 2°, the f1(y)

is continuous function at the point X, and the function

fo(y) is of class C° in the neighbourhood of the point x,

then

lim Dt[u1(x) + uQ(XJ] = f1(xo), when XX, € g% xez.

Proof . The definition of the function u1(x) + uéXJ
and Lemma 2 imply

D[uy(X) + uy(®)] = Af 2(¥)Dg0(X; Y]] ay +

SO

+ A/[f1(y) - (Ay-b)fo(y)] G(X;Y) | Lo

SO

v ae g6 - (8,02, (3)] D 6(x3Y)
SO

dy.
8=0
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On the Cauchy-Neumann problem 15

Now

DtG(X;Y)I = A,G(X;Y) - bG(X;Y) .
s=0 s=0 8=0

As in the [2] p. 452 we have

lim Af fo(y)DtG(X;Y)ls_ody = A f (x) - bf (x.),
5° )
as X-——Xo € S°, X e 2.

Moreover, it is easy to prove that Lemma 7 implies the
-following equality

_ody = f“(xo >-(4,-v )fo(xo)

lim Af [f1(y) - (Ay-b)fo(y)J G(X;Y)
sO

and
: ]
lim Atf [f.'.(y)-my-b)fo(y)] Dtgc(x;Y)|s=ody =0,
s° )
when X—X  §°, X € z.
From the above formula and from Lemma 7 we obtain

1im Dt[u1(x) + uz(x)] = f1(xo), when X—=X € s, x ez,

Lemma 9. If the Diwlfo(y)p f1Cy), (Jw|] € 2) are
bounded and measurable functions for y e 29, then

lim uy(X) = 0, when X—X e8° Xez.

Proof. Because the functions D§wlfo(y), £,(y)
(lw| € 2) are bounded we have

- 781 -



16 K.Warchulski

fu ()] é3amf G(X;Y)’ dy,
s=0
SO
where M = sup(]f (y)] (w] <2 !Dlwlf (y)!): y € ZO}

Similarly to the proof of Lemma 7 we obtain the follow-
ing equality

lim uy(X) = 0, when X—X e s, X e zZ.
From inequality (12) we find

Lemma 10, If the g(yi) are bounded and measu-
rable functions for yi e zt (L =1,2y0ee,n), then

lim Igai(X) = Q (i = 1,2,... ,n), when X_.Xo e SO’ X e Z.

From Lemma 10 we obtain
Lemma 1. If the gi(y') (k =0,13 i =1,2,00,n)
are bounded and measurable functions for yi e 2t (1=1,2,.444n0)

then
lim Dtu(X) =0 (k=0,1; i= 1,2,...,[1),
lim Dt u4(X) =0 (k=0,11=1,2,00.,n),

when X—-Xo € S°, X e Z,
From inequality (12a) we have
Lemma 12. If the PF(Y) 1s bounded and measurable

n
function for Y € Z and ZE:(pi—2q1) +n+2>0, then
i=1

3 _ — o
limIpq(X)-O, when X—X e S°, X € 2.

It is easy to prove, that the lemma 12 ard the inequali-
ty (7) imply the folliowing lemma.
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On the Cauchy~Neurann problem 17

Lemma 12, If the F(Y) is bounded and measurable
function for Y € Z, then

lim D ug(X) = 0, when X—~3X e 8° X ez, (k=0,1),

Lemmas 7 - 13 yield the following theorem. o
Theorem 2. If the D;Wlfo(y), £,(y), gp(y)

(k = 0,1; |w| <2; i =1,2,,..,0) are bounded and measurable

functions property for y € Z°, yl € Zl, Y € 7, the function

£,(y) 1is continuous at the point x, and if the function

fo(y) is of class 02 in the neighbourhood of the point

X,y then the function u(X) is satisfying the initial con-

ditions (2).

6. We shall prove that the function u(X) given by formu-
la (13) satisfies the boundary conditions (3).
Let

xk(t-s)-1V(xi;Y)' o for s < 1 (k=1,2’ooo’n)’
. yk=

0 for s > t, XAY(i=1,2,...,20).

Similarly then to the [1] p.5 we find

Lemma 14. If the gi(yi) is bounded and measurab-
le function for yi'e zl ana gi(yi) is continuoug at the
point xé(i:i,Z,...,n), then '

t
1 4 [ f etobw eyt = gtxd) (1= 1,2,000,m),

-®© I‘:n-‘l

when X—X. es, xez.

Lemmnma 15. it g;(yi) is bounded and measurable
function for yi € Zi and gé(yi) is continuous at the point
xé (L = 1,2,0.04n), then
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18 K.Warchulski

k
g(xo) for 1 = k; i,k = 1,2,44.,n,

lim D, 3(x)
k
0 fOI‘ i*k; 1,k = 1,2,‘0'0',11,

when X—Xf e s¥, x ez,

Proof. From lemma 3 we have

D, ui(x) =a [ gtyb)p. a(x;y) dyt (1,k=1,2,.0.,0).
X [s] X

k . k yi=0
1

Moreover from Lemma 3 we obtain, that the D u3(x) is

S

continuous function at the point X (L + k; 1i,k= 1 12y000,)e
Then from the following formula

D, G(XE;¥) =0 for s<t
k yi=0

we find
s i k k
llm D u (X) = 0 (i* k; i,k=1,2,oo.'n)’ When X—"x e—s .
X, 3 °

For i = k we have

k-1 n-
2 k
D u(x) A Zf ¥ )wk(x k YAy (k=1,2,...,0),
1=1 j=0 Yk je’|
S¢

Now from inequality (7) we obtain

K
54

for 1=2,3,...,2"" and 3=0,1,...,2%%-1 or 1=1 end 3 =
= 1,2,...,2D'K-1; k=1,2,...,0, where CB and 73 are posi~
tive constans.

.
. 4
(18) |Af gl;(yk)wk(szk l;Y)dykl < Cexkf(t-s) 34s,
+
0
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On the Cauchy-Neumann problem 19

Let
sg(yk) for y* e 2¥,
ég(yk) =
0 for y¥ e En-Zk (k = 1,2,000,n0).
Then
t
stf:(y“)wk(x;!)dy“= Af f By (Y W (XY™ (k=1,2,...,m).
S‘f -ooEn_1

The above equality, Lemma 14 and the inequelities (18) imply
the proposition of Lemma 15,

Lemma 16, If the gi(y}) (m = 0,15 1=1,2,...,n)
are bounded and measurable functions for yi € Zi (L =
= 1,2,e0040), then

1im D_uj(X) = 0 (1,k=1,2,...,n), when X—~X£ ¢ s¥, x e 2.
k

Proof. Lemma 15 implies

(19) 1im nxkuz(x) =0 (1# k; 1,k:1,2,...,n), vhen X—X5 ¢ s5,Xx e 2.

Besides for 1 = k we have inequality

t g il
(20) | kau}:(x), < chkf (t-s) 2 ds = 209xkt2 (k = 1,2,...,n),
0

where 09 is 2 arbitrary positive number,

The 1lnequality (20) and the equality (19) imply the pro-
position of lemma 16,

Lemma 17. If the fo(y) is bounded and measurable
function in the set Z°, then
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20 K.Warchulski

lin D_u,(X) = 0, when X—X: es¥, x ez.
k
Proof. From Lemma 2 we obtain

kau1(x) = Agl;fo(y)kaG(X‘Y) ae0 dy (k=1,2,...,0).

Moreover Lemma 2 implies, that the function D u1(X)

(k = 1,2,444,n) is continuous at the point Xg € 8¢ (k =
= 1,2,s44,n)s Then the formula

k. -
kac;(xo,y)[s=o =0 for t,>0

implies the proposition of Lemma 17.

Similarly we find the tollowing

Lemma 18, If the D;wl(y), £,(¥) (lwl<2), P(Y)
are bounded and measurable functions in the sets 2° and Z
respectively, then

lim D
Xy

2,(X) = 0 (m = 2,5), when X-—-Xﬁ e sk (k=1,2,444,0)

Lemma 19. If the gi(y)) (m=0,15 1 =1,2,...,n)
are bounded and measdrable functions for yi e z* and the
gé(yi) are continuous at the points xi (i = 1,2,¢..,n) res-
pectively, then

gf(xf) for 1 = k (i,k=1,2,...,10),
1in 0 Plul() + ()] -
k 0 for i 4k (1,k=1,2,...,n),

when X——X"; (3 Sk, X e 2.
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Proof, From Lemma 3, the inequalities (16), (17)
and from the formulas

P_{U(X,;Y) =0 (Jj=1,2,4e0,2% 1= 1,2,...,0),
X J ¥.=0
i

we obtain

P[g%(x) + u%(X)] = bu%(X) + buz(x) +

+ Af [bgé(yi) - g%(yi)J 6(X3Y) (i =1,2,..4,n0).
i

St

yi.—.o
Then Lemmas 15 and 16 imply the proposition of Lemma 19.

Lemma 20. If the fo(y) is bounded and measurable
function for y e Z°, then

1im kaPu1(X) 0, when x——x’; es*, X €2 (k=1,2,...,n).

Proof . From Lemma 2 we obtain

Pu1(X) = bu.'(X).

Then Lemma 17 implies the proposition of Lemma 20.

Lemma 21. If the D"z (y), £.(3) (Iwl<?) are
bounded and measurable function for y e 2°, then

lim D Pu,(X) = 0, when X—xX e ¥, X e 7.
X 2 (o]

Proof. Lemma 2 implies the following equality

Puy(X) = buz(X) - A[o [f1(y) - (Ay-b)fo(y)] G(X;Y),s_ody.
S =
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Then from Lemmas 17 and 18 we obtain the proposition

of Lemma 21,
Lemma 22, If the PF(Y) 1is bounded and measurable

function for Y e Z, then

O, When X—"Xlé € Sk, Xel (k_=1,2,...,h).

lim kaPuE(X)

Proof. The Lemma 4 implies the following formula

Pus (X) = bug(X) - Ag[ F(Y)G(X;Y)dY.

2

Moreover from Lemma 4 and from the equality
D, G(x5;Y) = 0
Xy o?

we obtain

k

Dx{Af F(Y)G(X;Y)dY}: 0 (k=124...,n), When x—-x‘: €es,Xez,
K

Zy

The above equalities and lLemma 18 imply the proposition of
Lemma 22.

Lommas 14 - 22 yield.

Theorem 3, If the D;w'fo(y), £,(3), si(yi)
(k = 0,1; |w|<2; 4 =1,2,...,n) are bounded and measurable
functions for y e 2°, yie z' and the g&(yi) are conti-
nuous functions at the points xé (k = 0,13 L = 1,2,0..,1),
then the function u(X) given by formula (13) satisfies the
boundary conditions (3).

Theorems 1 - 3 imply

‘Theorem 4. If the £,(y), gt(y!) (k = 0,1;
i = 1,2,0ee,n), FY), DyiF(Y) (L = 1,2,00.,) are continuous

and bounded functions for y e Z°, yi e 2zt (1= 1,25000,0)
and the function fo(y) is of class C° in the set s°,

- 788 =~



On the Cauchy~Neumann problem 23

then the function u(X) given by formula (13) is the solu-
tion of the problem [C - N - n].
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