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ON SOME GENERALIZATIONS OF BOOLEAN ALGEBRAS 

Introduct ion 
In t h i s paper we considere some c lasses of algebras which 

are cl«osely connected with Boolean algebras and theor i e s with 
condi t ional d e f i n i t i o n s . 

Recently we observe a great development of research of 
theor i e s with condi t ional d e f i n i t i o n s . Some of these examina-
t ions are of l o g i c a l , o thers are of a lgebra ica l charac te r . 
The insp i ra t ion f o r a lgebra ica l d i r ec t ion of these s tud ie s 
was the observation tha t the operations on the se t s determin-
ed by sentent ional formulas containing terms condi t ional ly 
defined do not respect the laws of Boolean a lgebras . 

The s t a r t i n g point fo r the considerat ions of t h i s paper 
was the paper [5] in which the authors study some axiomatical 
theory T. This theory i s the f i r s t t r i a l of a general cha-
r a c t e r i z a t i o n of the p roper t i es of the se t operations determin-
ed by s en t en t i a l formulas containing terms condi t ional ly de-
f i n e d . 

In the paper [1] another approach to these questions i s 
given. Studying from the logica l point of view the set of 
sens ib le expressions of the theory containing condi t ional 
d e f i n i t i o n s one showed the exis tence of some c l a s s a lgebras 
playing the s imi lar ro le as Boolean a lgebras . 

This c lass cal led here the c l a s s S has not been studied 
yet in universal a lgebras . 
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So t h e p u r p o s e of t h i s p a p e r was t o d e f i n e t h e c l a s s S 
by means of a l g e b r a i c c o n s t r u c t i o n s and t o examine i t s p r o -
p e r t i e s , I n p a r t i c u l a r i t s c o n n e c t i o n w i t h t h e known c l a s s e s 
of a l g e b r a s and w i t h t h e t h e o r y T f rom [ 5 j . 

We t r i e d t o r e a c h i t i n t h i s p a p e r . The e s s e n t i a l r o l e i n 
t h e s e s t u d i e s p l a y s t h e c o n s t r u c t i o n of t h e sum of a d i r e c t 
sy s t em of a l g e b r a s f rom [ 4 ] . 

1 . D e f i n i t i o n s of t h e c l a s s e s L t M and S 
F i r s t we g i v e t h e d e f i n i t i o n of t h e c l a s s of a l g e b r a s of 

t h e t y p e ( 2 , 2 , 1 ) , which we c a l l t h e c l a s s L . 
An a l g e b r a 01 b e l o n g s t o L i f f t h e r e e x i s t s a n o n - d e g e -

n e r a t e d Boo lean a l g e b r a <2?= (B; u , n , ' , 0 , 1} such t h a t 
OL = (B * B, * , ° , ^ ) and 

(1 ) * < x 2 , y 2 > = < x 1 n x 2 , y 1 u y 2 > , 

( 2 ) < x 1 , y 1 > o < x 2 , y 2 > = < x., n x 2 , y 1 n y 2 > , 

( 3 ) ^ < = < z 1 ' ^ » 

f o r a r b i t r a r y x 1 , x 2 , y 1 , y 2 e E . 
I n t h e s e m i l a t t i c e ( B ; n ) we d e f i n e t h e o p e r a t i o n s "+" 

and a s f o l l o w s : 

x + y = x r> y 

- x = x 

f o r x , y e B. I n t h i s way we o b t a i n an a l g e b r a Of = 
= ( B ; n , + , s i m i l a r t o t h e a l g e b r a 3 . We g e t a c o r o l l a -
r y : An a l g e b r a OL b e l o n g s t o L i f f t h e r e e x i s t s a n o n - d e -
g e n e r a t e d Boo lean a l g e b r a 3 such t h a t OL = 2 ° * 5 . 

Thus any a l g e b r a of t h e c l a s s L i s , r o u g h l y s p e a k i n g , 
a d i r e c t p r o d u c t of a s e m i l a t t i c e and a Boo lean a l g e b r a . 
However, a l g e b r a s of t h i s e c l a s s a r e no t Boo lean a l g e b r a s 
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since the law lix ° x =ij» j does not (in general) hold 
in them. 

How we define the class M, and we shall show later that 
any algebra from M is a homomorphic image of some algebra 
from L. The type of algebras from M is (2,2,1). An alge-
bra OC belongs to M iff there exists non-degenerated Boolean 
algebra 3 = (B; u,n , ', 0, 1) such that OL = (B * B, +, •, ) 
and 

(4) <x.j,y.|> + <x2,y2> = ^ x1 n x2,(y1 u y2) n (x1 n x2)> , 

(5) <x1,y1> • <x2,y2> = < x1 n x2, y1 n y?> , 

(6) T <xl,y1> = < x v x1 n y^> , 

for x1,x2,y1,y2 e B. 
The operations in the algebras from the class M are-

defined by formulas (10' )~(12' ) from [1] page 158. 
Thus for any non-degenerated Boolean algebras we consi-

der two algebras: one from the class L the other from the 
class M. 

For any Boolean algebra £ = (B;u , n , 0, 1) we de-
fine a subset S(B) of the set B * B as follows 

(7) S(B) = x1 n y1 > : *1,y1 £ Bj. 

So we see that the set S(B) consists of all pairs of ele-
ments of the algebia J8 such that the first element is not 
greater than the second one. 

Observe that S(B) is not a subalgebra of the algebra 
(B * B; * , o , =n ) from the class L. For example <0,0>e S(B), 
tI <0,0 > f. S(B). However, S(B) is a subalgebra of the al-
gebra (B * Bj +, * , ~i ) e M although S(B) t M: 

Thus we define the class S of subalgebras of algebras 
of the class M as follows: an algebra 0(g belongs to S 
iff there exists an algebra OL £ M such that OL =(B * B; + ,•,l) 
and OCg = (A} +, t ) is a subalgebra of OC satisfying 

- 733 -



4 K.Haikowska 

(») A (<x,y> £ i ^ y = xny). 
x.ytB 

Observe that the subalgebra with the carrier S(BJ belongs 
to the class S although we have A t S(B). Prom the formu-
las (*) and (7) it follows only that A CS(B). 

2. The connections between classes L, M and S 
Now we give some theorems describing the connections 

between classes L, M and S. 
T h e o r e m 1. If B = (B(u,n, ', 0, 1) is a 

non-degenerated Boolean algebra then the algebra <X̂  = 
s (B * Bj#,o,1) of the class L is homomorphic to the 
algebra (*2 = (B * B; +, •, t ) of the class M. 

Homomorphism is given by the mapping h: B«B — B<B 

(8) h(<x1,y1> ) = <x1t z1 n y.,> for ,y 1 e. B. 

The easy proof we omit. 
T h e o r e m 2. Let an algebra Ot belong to L and 

let Ot = (B * Bj • , ° , Ti). Then the algebra 0tg = 
= (S(B); +, i ) and <Xg e S is a homomorphic immage of 
the algebra 0C&L. 

For the proof it is enough to check that the function h 
given by the formula (8) satisfies h(B* B) = S(B). This 
is a consequence of (7) and (8). 

Ve have already observed that the subset S(B) of the 
set B * B is not a subalgebra of the algebra (B x B;#, »,11)61, 
however it follows from Theorem 2 that S(B) is a homomorphic 
immage of it* 

T h e o r e m 3. Let the algebra Ot belong to M and 
Ot = (B * B; +, i ). The functions hs B* B —• S(B) defined 
by (8) is a retraction of the algebra Ot onto its subalgebra 
<*s - (S(B)| +, M ). 

Ve omit the proof. 
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3. Problem of equat ions! d e f l n l a b l l l t y of the c l a s s S 
The c l a s ses L and U are not equat ional ly d e f l n i a b l e 

because subalgebras of a lgebras In these c l a s ses do not belong 
In general to them. We ask i f the c l a s s S i s equat ional ly 
de f l n i ab l e? This c l a s s i s heredi tary with respect of subalge-
b ra s . 

Denote by h(S) the c l a s s of a l l homomorphic images of 
a lgebras of S. 

T h e o r e m 1. The c l a s s S does not contain the 
c l a s s h(S) . 

To proof t h i s we consider the following example. Let 
JB1 = (B^; u , n , 0,1) be a Boolean algebra isomorphic 

t o JB= (B;u , n , ' , 0, 1) where B^ n B = 0. Let us denote 
by g the isomorphism of JB onto JB^. 

Consider an algebra (R; © , © , * ) , defined as fol lows 

< x 1 t g (* 2 )> £ R i f f < x 1 f x 2 > e S(B), 

<• *i» g (* 2 )> © < x 3 ' > = < x i n x3» s ( x 2 u x i n x 3 > » 

< x 1 t g (x 2 )> © <Xj, g(x/f)> = < x . ) n x . j , g ( x 2 n x 4 ) > , 

ex . , , g ( x 2 ) > * = <ix1, g ( x 1 n x 2 ) > 

f o r any < x 1 t x 2 > , <x . j , x 4 > e S(B). 
In view of the assumptions the se t R and the above ope-

r a t i o n s are well def ined. 
I t i s easy to see tha t the func t ion f : S(B) — R defined 

by the formula 

f ( < x 1 ? x 2 > ) = < x 1 f g ( x 2 ) > fo r < x 1 f x 2 > e S(B) 

- i s an isomorphism of the algebra (S(B); +, • , ~i ) onto the 
algebra (R; © , © , * where (R; © , © , * ) dcves 
not belong to the c l a s s S. Thus the theorem 1 holds . 

The d e f i n i t i o n s of the c l a s ses L M can be changed 
in such way tha t they S w i l l be closed under homomorphic 

- 735 -



6 K.Haikowska 

images. But i t does not make the c l a s s S to be closed un-
der homomorphic impgos. This remark i s j u s t i f i e d by the f o l -
lowing example. 

Consider the two-element Boolean algebra BQ. The algebra 
«a = ( { <0,0> , ,0> , +, • , ) corresponds to 

BQ and belongs to the c lass S. I t i s easy to cheok tha t 
the only n o n - t r i v i a l congruence in flfg i s the r e l a t i o n 
defined by the following p a r t i t i o n : {<0 r0>},{<1,0 > , < 1 , 1 > ) . 
The quotient algebra 0Cs/~ has two elements and s a t i s f i e s 
the condit ion 

(a) l x = x , 

The algebra i s not isomorphic to any algebra from 
the c l a s s S because the following theorem holds . 

T h e o r e m 2. The only algebras of the o lass S 
which s a t i s f y the equal i ty (a) are the one-element a lgebras . 

P r o o f . Any one-element algebra of the c l a s s S 
obviously s a t i s f i e s ( a ) . Let = (A; +, • , ) e S. Suppose 
< x 1 ( y ^ > e A and s a t i s f i e s ( a ) . Thus 

1 < x , , ? ^ = < x 1 , y 1 > . 

Henoe < x 1 t x1 n y^ > = <x 1 t y . |> , and 

(b) x 1 n y!, = y r 

Prom the l a s t equal i ty i t fol lows tha t (x^ n y^) n y 1 • y ^ 
Thus y^ = 0. From t h i s together with (b) we g e t : 

y1 = x1 n y!j = x1 n o' = x 1 n 1 = x 1 « Ow 

So ¿ x 1 , y 1 > = < 0 , 0 > and | a | = 1. 

4 . Proper t i es of some subalgebras of the a lgebras of the 
c l a s s S 

We have seen tha t the o lass S i s not equat ional . Howe-
ver , in view of app l ica t ions of the a lgebras of t h i s c l a s s 
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in the theory of s e t s determined by the s en t en t i a l expressions, 
where these expressions contain terms condi t ional ly defined 
- i t seems to be use fu l the examine the connection of t h i s 
c l a s s with Boolean a lgebras . 

I t tu rns out tha t many equa l i t e s which hold in Boolean 
algebras hold a lso in the algebras of the c l a s s S, although 
not every equal i ty of Boolean algebras holds in i t * 

L e m m a 1. Any algebra of the c l a s s S s a t i s f i e s 
the following e q u a l i t i e s : 

(a) x + x = x 

(b) x + y = y + x 

(c) (x+y)+z = x+(y+z) 

(d) x*(y+z) = x'y + x*z 

(a' ) x • x = x 

(b' ) x • y = y • x 

(c' ) (x«y)^z = x«(y»z) 

( d ' ) x+(y.z) • (x+y)«(x+z) 

We omit the proof . 
L e m m a 2. The c l a s s S does not s a t i s f y the equa-

l i t i e s : 

(a) x + xy = x 

(b) ( i*)x = (ny)y. 

To prove t h i s l e t us put x = <1,0 > , y = < 0 , 0 > . 
From Lemma 2 follows tha t a lgebras from the c lass S are 

not l a t t i c e s . 
T h e o r e m 1. Let ~ be a r e l a t i o n in A defined 

as fol lows: 

(»*) < x 1 , y 1 > ~ ¿ x 2 , y 2 > i f f "I < x 1 , y 1 > • = 

= ~ '<x 2 ,y 2 > • < x 2 , y 2 > . 

Then ~ i s a congruence in the algebra OCa = (A; +, • , 1 ) e. S. 
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To prove this observe that 

(***) ¿ z ^ y ^ ~ <x 2,y 2> iff x1 = x 2. 

T h e o r e m 2. The congruence classes of the con-
gruence ~ are subalgebras. These subalgebras are Boolean 
algebras. 

Observe that the operations in the subalgebra being the 
congruence class determined by the pair ¿ x ^ y ^ are defined 
by the formulas: 

(4') <x 1,y 1> + < x r y 2 > = <*.,, y1 u y 2 > 

(9') <x 1,y 1> • <x 1 fy 2> = <x 1 f y1 n y g > 

(6') T c x ^ y ^ = < x y ' ^ n for <x 1 ,y^ ,<x2,y2> tA. 

The last formulas are simpler that the formulas (4)-(6), par-
ticularly in the case of the operation "+". 

The 1-element and O-element in the subalgebra under con-
sideration are pairs and <x1,0> , respectively. 
The existence of these pairs follows from the fact the con-
gruence class is not empty. Denote [ ^ x ^ y ^ J the class of 
the element ¿x^.y^ t A. Then 

l<x 1,y 1> . <x 1,y 1> = d 1 ( 0 > 

1<x 1,y 1> + <x 1,y 1> = < x 1 , x 1 > . 

Thus the pairs <x^ ,0> , < x1 » x ^ exist in the set A and 
<x1,0>-'^x1,y1> , <x 1,x 1>~<x 1,y 1> . 

From Theorem 2 it follows that the algebra £*s c S is 
not a Boolean algebra but it is decomposable into disjoint 
subalgebras being Boolean algebras. Thus in the algebra ®g 
there exist local zeros and units although if ~ has more 
than one class, there is neither 0 nor 1 in the whole algebra. 
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Observe t h a t { y : V < x 1 » . y > e C < x 1 , y 1 > J } •'"s a n i d e a l i n 

t h e a l g e b r a JB . Denote t h i s I d e a l by I . Let B I s • j y 
t h e c a r r i e r of B and x.j e B. Denote by (x.j) t h e p r i n c i -
pa l I d e a l gene ra t ed by x 1 i n JB . Thus I . _ _ . c ( x . J . i ,y i 
I n p a r t i c u l a r i f A = S(B) t hen I _ _ . = ( x . J , 

1 1 

5 . The sum of a d i r e c t system of Boolean a l g e b r a s 
The problem a r i s e s , whether t h e r e e x i s t s a c o n n e c t i o n 

between s u b a l g e b r a s b e i n g c o n g r u e n c e - c l a s s e s of t h e congruence 
~ and t h e a l g e b r a OCQ 6 S . To f i n d t h i s c o n n e c t i o n we s h a l l 

use t he n o t i o n of the sum of a d i r e c t system of a l g e b r a s g i -
ven i n [4J. We r ec f i l t h e d e f i n i t i o n of a d i r e c t system of 
a l g e b r a s . 

A d i r e c t system of a l g e b r a s of t h e type t I s a t r i p l e 
L = < 1 } { a i } l f e I . { h i } i t j £ i f > s a t i s f y i n g t h e f o l l o w i n g 
c o n d i t i o n s : 
( i ) I I s a non-empty s e t p a r t i a l l y ordered by t h e r e l a t i o n 

6 wi th t h e upper bound p r o p e r t y f o r any two element 

i»J £ I , 
(11) f o r any i e I t h e a l g e b r a = ( l ^ j F) of t h e type 

Z i s g i v e n , 
( l i i ) f o r any i , j c I , 1 <- j t h e homomorphism h£: Ot^—* OCj 

i s g i v e n . The r e s u l t i n g s e t of homomorphisms s a t i s f i e s 
t h e c o n d i t i o n s : 
( a ) I f K J ^ k then hifo h j « h j , f o r i , j , k c l , 
(b) h* i s t h e i d e n t i t y mapping. 

I n [4] t h e r e was assumed a d d i t i o n a l l y 
(1' ) f o r any i , j € I t h e l e a s t upper bound i n t h e s e t I 

e x i s t s , 
( l i ' ) i f l , j e I , i / i t h e n X1 n X^ « 0 . 

I n [ 4 ] t he new a l g e b r a S(L) « (U X . j ? ) was d e f i n e d , and 

S(L; was c a l l e d t h e sum of a d i r e o t system L. The o p e r a -
t i o n s i n S(L) were d e f i n e d a s f o l l o w s 
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n n 
f ( x 1 , . . . , x Q ) = f ( h i ^ ( x 1 ) , . . . , ( x Q ) ) when i 0 = s u p | l 1 , . . . , i Q | 

and x . e X. ( j = 1 , . . . , n ) . 
3 i 

The s e t s X^ ( i c I ) are c a l l e d the components o f the 
sum o f a d i r e c t system L . 

l e t a g e S , « s = (A; + , "I ) and ^ . j . y ^ e A. 
Because the c l a s s [ « c x ^ x ^ J ^ i s w e l l def ined by the e l e -
ment x 1 t i t w i l l be convenient t o denote t h i s c l a s s by A_ . 

i x 1 

We denote by I the s e t o f these elements which are 
the f i r s t elements o f the p a i r s be longing t o A. 

L e m m a 1. I f z-|»x2 £ 1 a n d X 1 ^ x 2 ' t h e n 

A x n K = 
X 1 2 

We have a l s o 
L e m m a 2 . ( J A x = A. 

x 1 6 l 1 

Denote by 0£ the algebra <A_ ; + , ~l>. Prom x 1 x 1 

Theorem 1 o f §3 and (9 ) i t f o l l o w s 
L e m m a 3 . F o r any x 1 e I the a lgebra AC i s i x.. 

a Boolean a lgebra . 
I n the s e t I we de f ine a r e l a t i o n 4 as f o l l o w s : 

(10 ) x 1 4 x 2 i f f x 2 = x 1 r\ x 2 . 

L e m m a 4 . The p a i r ( l } 4 ) s a t i s f i e s ( i ) , ( i i ) , 
( i ' ) , ( i i ' ) . 

P r o o f . ( i ) and ( i ' ) are obv ious . P u t t i n g sup{x. j ,x2 } = 
= x 1 n x 2 we get ( i i ) and ( i i ' ) by Lemma 1, ( 9 ) and by the 
d e f i n i t i o n o f the a lgebra OC 

X 1 
Po r x 1 4 x 2 , x 1 f x 2 £ I , we d e f i n e the mapping 

x 2 
h_ : A —*• A_ as f o l l o w s 

A^ I 2 

Xp 
(11) ^ ( « x , , » ^ ) = < x 2 , x 2 n y 
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L e m m a 5. If ^ *2, x1fx2
 £ I» t h e Q tfae f u n -

x2 ction Ax deflned ty (11) is a homomorphism 
satisfying conditions (a) and (b) from (iil). 

P r o o f . First we show that h_2: A — - A is a 
X 1 X 1 x 2 

homomorphism of (Xx into atx for x., é x2, x^,x2 e I. 
By (4' M 6 ' ) and (11) we get 

x2, x? 
hx 1

( < x1' y1 > + < x1» y2 > ) = hx^ < X1 , y1 u 3 2
> ) s < x2' x2" ( y1 u y2 ; > = 

= < x 2
, x 2 o y 1 u x 2ny 2> = cxg.xgny^ + <x2,x2ny2> = 

• + hx^(<xi'y2>)' 

hx1
(<x1»y1> ' <*1.y2>) = hx^<xl»yl/1 y 2 ^ = < x 2 , x 2 n y1 A y 2 > = 

« <x2,(x2^y1)^ U2n y2)> = <%2,x2ny^> • <x2,x2ny2> = 
X X 

= • hx^(<x1'y2>)' 
X2/ x? 

hx1
(l<x1»yi>) = hx^(<x1»x1n yí>^ "¿x2.x2nxi',»i> = 

= <x^n x2, x^n x2n (x2ny^)'> =1 <x1n x¿, x2n y1> = 

= l<x2,x2/iy1> » 1 hx*(<x1ty.,>). 

Thus 

h^fcx^jf .<x1ty2>) = h^Ux^y.,» . h^(oc1tj2>) 

x 2 
so hz Is a homomorphism. 
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Suppose t h a t « Xg ^ ^h» x i » x 2 ' x 3 £ H e o o e t h e r e 
x^ r XQ 

e x i s t homomorphisms h_ : tt_ — a n d h _ J : 0f_ — . 
1 2 2 2 3 

For <x. j ,y . |> £ Ax we have by ( 1 1 ) : 

( < X 1 ' 7 1 > J - ^ ( ^ ^ n y ^ ) = < x 3 , x 3 n y 1 > = 

x . 

Hence we g e t t h e e q u a l i t y 

Xg Xi| 
t h u s (a) h o l d s . 

To prove (b) l e t us assume t h a t < x 1 , y 1 > e A_ . Obvious-X, I I 

ly x 1 ^ x 1 t h u s hx_j e x i s t s . By (11) we have 

X 1 ( < x i « y i > ) y-j > = < * 1 , y 1 > • 
X 1 So h_ i s the i d e n t i t y on A_ . x 1 x 1 

T h e o r e m 1. The t r i p l e 
r z<-

L < 1 ; JOIL. l _ { h T
2 } > 

i s a d i r e c t system of Boolean a l g e b r a s . 
P r o o f . By lemma 4 t h e s e t I s a t i s f i e s t h e c o n d i -

t i o n s ( i ) , ( i i ) f r o m t h e d e f i n i t i o n of a d i r e c t system of a l -
g e b r a s . By Lemma 3 t h e a l g e b r a s i (X x \ x £ l a r e Boolean a l -

1 Xp-> I V 1 
g e b r a s . By Lemma 5 Ì h,, ( _ ,, « t ^ • l s t h e r e q u i r e d 
f a m i l y of homomorphisin. 

T h e o r e m 2. Theye e x i s t s t h e sum S(L) of t h e 

d i r e c t system L = < I , j { h ^ ^ ^ x ^ x > • 

The proof f o l l o w s from Theorem 2 $3 and Lemma 2 §5. 
According t o t h e d e f i n i t i o n of t h e sum of a d i r e c t system 

of a l g e b r a s , t h e a l g e b r a S(L) i s d e f i n e d in t h e f o l l o w i n g 
w a y : 
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S(L) = ( U A_ ; * , ° , TI ) where f o r x,y e U A_ t x e A_ , 
xf.1 X1 x ^ I 1 

y £ A . 
2 

ZVlXn X4OX„ 
(12) x # y = h , T 2 (x) + hT

1 (y ) x1 x 2 

(13) x o y = h 2 (x) • h_1 (y ) x 1 x 2 

(14) TI x = l x . 

F i r s t we explain the formula (12) . From the assumption 

tha t x,y £ U Ax I t fol lows tha t ex is t elements x ^ x g £ I 
x1cl 1 

such tha t x £ A_ and y £ A_ . l e t x = < x 1 , y 1 > and 

y = < x 2 , y 2 > . We already know tha t 

sup { x 1 , x 2 j = x 1 n x2< 

To get the value of "#" on the elements x,y in the algebra 
S(L) one should give the Images of these elements in the 
component A and f ind the value of "+" in the component 

] 2 
A_ as in the algebra & Thus 

1 2 1 2 
X A X. X /"l X 

X# y = < x1,y1> # <x2 ,y2>= h ^ ( . ¿ x ^ y ^ ) + h ^ 2(<x2,y2>) = 

x n x xo x 
= h 1 2(x) + h 1 (y) . 

*1 1 

Analogously we explain the formula (13).To explain (14) observe 
tha t the supremum of a one-element set i s equal to t h i s e l e -
ment. Hence from Lemma 5 we have 

x1 
i x - i < z 1 , y 1 > » T h j V x ^ j ^ ) « T < x 1 , y 1 > - l x . 
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So the opera t ion Tl in the a lgebra S(L) co inc ides with the 
opera t ion 1 in the components of t h i s a l g e b r a . 

T h e o r e m 3. Every a lgebra 01 g = (A; +, ' ) 
from the c l a s s S i s the sum of a d i r e c t system of Boolean 
a l g e b r a s . 

P r o o f . To prove the theorem i t i s enough to show 
t h a t the a lgebra £Xg i s equal to the a lgebra S(L) . Prom 
Lemma 2 i t fo l lows t h a t 

A = U A 
V I 1 

So we should prove the e q u a l i t i e s 

x # y = x + y , x o y = x • y , l! x = 1 x . 

The l a s t equa l i ty holds by (14) . We show the f i r s t one a l s o 
ho lds . Let us accept x = , y = <-x 2 ,y 2 > . Hence 
we get by (12) , (11) 

x 1 n x 0 x . n x„ 
* * y = h v

n + h (y) = 
2 

= < x^n Xg, x^n Xg^ y^ > + x^n x 2 , x^n x 2 n y 2 > = 

= < x^n x^ n x 2 n y^ u x^ n x 2 A y 2 > = 

= < x 1 n x 2 , y 1 A X 2 u x 1 n y 2 > = < x 1 ,y 1 > + < x 2 , y 2 > = 

= x + y . 

S imi la r ly using (13) we show t h a t x o y = x • y . Thus 
the theorem i s proved. 

The theorem 3 al lows us to expla in what d i s t i n g u i s h e s 
the a lgebra 01 e. S from other known a l g e b r a s . This a lgebra 
i s in genera l not a l a t t i c e , so i t i s not a Boolean a lgebra 
e i t h e r . However, i t i s composed from the d i s j o i n t Boolean 
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algebras and the operations in the algebra Ots work also 
in the sum of a direct system of i t s subalgebras. 

I t seems that the algebras of the class S are natural 
examples of sums of direct systems. 

6. Connections of the system T with the classes L, M, S 
As we mentioned in the introduction in [5] there is given 

an axiomatic system T whose fundamental symbols are: 

(a) U . N , ' , V , S M , S . 

The f i r s t f i v e symbols are the symbols of the classical alge-
bra of sets. One accepts here that the symbol instead of 
"=" . By means of "=" one denotes the identity in [ 5 j . The 
symbol "S" is a term of a unary function mapping 2^ into 
2^. The variables of the system T are symbols I , Y , . . . , . 

The theorems of T are a l l laws of the f i rst-order cal-
culus of quantifiers with identify and the classical algebra 
of sets. The characteristic axioms of the system T are: 

A 1 . S ( X ' ) = S(X) 

A2. S(XuY) = S(X) N S(Y) 

A 3 . S ( X N Y ) = S ( l ) n S ( Y ) 

A 4 . S ( S ( X ) ) = V 

A 5 . S ( V ) = V 

A 6 . X » Y A S ( X ) « S(Y) => X = Y. 

The following definit ions are included into the system: 

D 1 . X° = Xn S(X) 

D 2 . X * = X V I S ( X ) 

D3. X + Y = (XuY)n S(X)n S(Y) 

D4. X • Y = (XnY )nS (X )nS (Y ) 

D5. A(X) X = Xn S(X). 

- 745 -



16 K.Haikowska 

To e x p l a i n the connec t ion o f the system T w i t h a l g e -
b ras w i t h l , M, S, we Introduce the f o l l o w i n g two d e f i n i -
t i o n s o f the symbols " s " and 

s( < x^,x2> ) 
c x ^ x ^ tha t x 1 ^ Xg 

<1, 1> tha t x 1 = x 2 

f o r X i , x 2
 £ B» «here 3 = ( B ; u , a , ' , 0 , 1) Is a Boolean 

a l g eb r a . 

< x 1 , x 2 > ~ < y 1 , y 2 > I f f x 2 = y 2 f o r x 1 , x g , y 1 , y 2 e B. 

Now l e t us a d j o i n the symbols 

(b) # , o , < 1 f1> f ~ , 3 

to the symbols (a) r e s p e c t i v e l y and the symbols • ¿ x 1 , x 2 > , 
< j 1 t y 2 > to the symbols "X " , "Y" r e s p e c t i v e l y . S u b s t i t u t i n g 
the symbols occur ing i n the axioms A1-A6 and the d e f i n i t i o n s 
D1-D5 by the symbols ( b ) , r e s p e c t i v e l y , we get 

A1' * s(1l-ix1 ,x2>) = s (<x 1 f x 2 >) 

A2' . s(<x1 ,x 2>#<y 1 ,y2>) = s(<.x1 tx2>) o s(<y.,,y2>) 

A 3 ' . s ( c x 1 , x 2 > o < y 1 , y 2 > ) = s ( < x 1 t x 2 > ) o s (<y 1 fy 2>) 

A4' . s t s ^ x , , * ^ ) ) = < 1,1> 

A5' . s(<1,1>) - <1,1 > 

A 6 ' . <x 1 , x 2 > ~ < y 1 , y 2 > A s(<x.j,x2>) ~ s K y - j . y ^ ) 

=> < . x r x 2 > = < y 1 f y 2 > 

D1 . <x 1 , x 2 >° = < x 1 t x 2 > t> s(<x1 ' ,x2>) 

D2 . <x 1 t x 2 >* = H < x 1 , x 2 > o 3(<.x1(X2>] 
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D3'. < x r x 2 > + < y 1 f y 2 > = (ex., ,x2> # < y 1 ,y2>) o s ( < x 1 t x 2 > ) ° 

o s(<y1 ,y2>) 

D4' . < x 2 , x 2 > • < y 1 , y 2 > = x 1 , x 2 > * ¿ y 1 , y 2 > o s (<x 1 fx2>)<> 

° s(<y 1 ,y 2>) 

D5' . ¿(^ x . fXp>) <X1,XC)> = <X1 fX9>0 s(<X1fXp>) 

T h e o r e m 1. The 
ry a lgebra of the c l a s s L. 

P r o o f . For example 
t i s f i e d in every OteL. The 

Assume t h a t 

express ions A1' -A6' hold in eve-

we s h a l l prove t h a t A6' i s s a -
proof of the o the r s i s s i m i l a r . 

< x 1 t x 2 > ~ < y 1 f y 2 > and s(<x1 ,x2>) ~ s(<y1 , y 2 > ) . 

Hence by the d e f i n i t i o n of the symbol "s" we get 

x 2 = y 2 and < x 1 , x 1 > ~ < y ^ y ^ 

thus x 2 = y 2 and x1 = y 1 . 

So < x ^ , x 2 > = < y 1 ? y 2 > . Thus the express ion A6 i s t r u e 
in every Ot e L. 

Now l e t us a d j o i n 

(c) +, i , <1 ,1> , s , c x 1 f x 2 > , < y 1 t y 2 > 

to the symbols (a) and X, Y occuring in the system T t respec 
t i v e l y . 

• T h e o r e m 2. The express ions obtained from A1-A6 
by s u b s t i t u t i n g the symbols (a) and X, Y by the symbols (c) 
a re t r u e in any a lgebra from the c l a s s M. 

T h e o r e m 3. The express ions obtained from A1-A6 
by s u b s t i t u t i n g the symbols (a) and X, Y by the symbols (c) 
a re t r u e in any a lgebra from the c l a s s S. 
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T h e o r e m 4. The function "o" defined by the 
expression D1 is a homomorphism of an algebra fr~m the class 
L into the corresponding algebra from the class M. 

Prom the theorems 1-4 and from the definition of the sys-
tem T it follows that the algebras of the classes L and S 
are models of the system T. 

Final remarks 
In connection with the examination of the class S we 

hsve obtained one more class of algebras considered in \_2J. 
This class is equationally definiable. The type of this class 
is < 2,2> with the fundamental operation symbols + and 
The axioms of this class are expressions (a)-(d), (a' }-(c' ) 
from Lemma 1 §4. 

It is known that from these expressions and from (a) 
(Lemma 2 §4) there fillows (d') (Lemma 1) [comp. [6], pp.27]. 
Observe, that (d') does not follow from (a)-(d) and (a' )-(c' ) 
Lemma 1. 

Namely there exists the following algebra 

OC - (|a1ta2,a^|,A, • ), where 

amax{ifj} f o r 1 . 3 €{1.2,3} 

amin{i,jj i f i ^ l ' -i2'3* 

a3 if {i,j} = {2,3}. 

In this algebra the equalities (a)-(d) and (a1 )-(c' ) hold 
but (d') is false since 

& 2 A n = a2 ̂  81 = a2 

(a2 4 a^} • (a2 A aj) = a2 • a^ = a^. 

ai j 

8 i o a. = 
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In [2J the smallest congruence was found having the pro-
perty that the quotient algebra is a distributive lattice. 

But finding the representation of this class remains as an 
open problem. 
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