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ON SOME GENERALIZATIONS OF BOOLEAN ALGEBRAS

Introduction

In this paper we considere some classes of algebras which
are closely connected with Boolean algebras and theories with
conditional definitions.

Recently we observe a great development of research of
theories with conditional definitions. Some of these examina~
tions are of logical, others are of algebraical character.
The inspiration for algebraical direction of these studies
was the observation that the operations on the sets determin-
ed by sententional formulas containing terms conditionally
defined do not respect the laws of Boolean algebras.

The starting point for the considerations of this paper
was the paper [5] in which the authors study some axiomatical
theory T. This theory is the first trial of a general cha-
racterization of the propertles of the set operations determin-
ed by sentential formulas containing terms conditionally de~-
fined.

In the paper [1] another approasch to these questions is
given, Studying from the logical point of view the set of
sensible expressions of the theory containing conditional
definitions one showed the existence of some class algebras
playing the similar role as Boolean alzebras.

This class called here the class S has not been studied
yet in universal algebras.
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So the purpose of this paper was to define the ciass §
by means of algebraic constructions and to examine its pro-
perties, in particular its connection with the known classes
of algebras and with the theory T from [5].

We tried to reach it in this paper. The essential role in
these studies plays the construction of the sum of a direct
system of algebras from [4}.

1. Definitions of the classes L, M and S

FPirst we give the definition of the class of algebras of
the type (2,2,1), which we call the class L.

An algebra O belongs to L 1iff there exists a non-dege~
nerated Boolean algebra JB= (B;uv,n, °, 0, 1) such that
Ol = (BxB,%,0,7) and

(1) CEHT > # CXpYp> = <XqN Xy Fq U I,
(2) <x1,y1> ° <129y2> = SEG3 N Xy Y40 Tp7
(3) R <x1,y1> = <x1i y'1> ’

for arbitrary Xq1X59¥4sY, € R,
In the semilattice (B;yn) we define the operations "+":
and "-" as follows:

X+3=xny

-X = X

for =x,y ¢ B, In this way we obtain an algebra 3 -
= (B;jyn, +, =) similar to the algebra B . We get a corolla-
ry: An algebra O belongs to I 1iff there exists a non-de-
generated Boolean algebra 3 such that O = 3"x 3.

Thus any algebra of the class L is, roughly speaking,
a direct product of a2 semilattice and a Boolean algebra.
However, algebras of thise class are not Boolean algebras
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since the law 9 x o x =Myoy does not (it general) hold
in them,

Now we define the class M, and we shall show later that
any aslgebra from M is a homomorphic image of some algebra
from L. The type of algebras from M is (2,2,1). An alge-
bra O belongs to M iff there exists non-degenerated Boolean
algebra 3 = (Bju,n, ', O, 1) such that 0L = (BxB, +, «, 1)
and

(4) <x1’y1> + <x2:y2> = <X1f\ 12,(311 v y2) n (x1 n 12)> ’
(5) X pFq7 0 CXpy¥o> = <Xy N Xy, Yq0 Ty,
(6) VX F> = <Xy Xy N y'1> .

for Xq19Xps¥qs¥, € B.

The operations in the algebras from the class M are-
defined by formulas (10 )-(12" ) from [1] page 158,

Thus for any non-degenerated Boolean algebras we consi-
der two algebras: one from the class L +the other from the
class M.

For any Boolean algebra B3 = (Bju,n, ', O, 1) we de-
fine a subset S(B} of the set B x B as follows

(1) S(B) = {411, t SUGES PRI N S - B}.

So we see that the set S{(B) consists of all pairs of ele-
ments of the algebra B such that the first element is not
greater than the second one.

Cbserve that S(B) 1is not a subalgebra of the algebra
(Bx By#,o, ) from the class L. For example < 0,0>e S(B),
N<£0,0> ¢ S(B}). However, S(B) 1s a subalgebra of the al-
gebra (B x By +, -, 1) € M although S(B) ¢ M.

Thus we define the class S of subalgebras of algebras
of the clasg M as follows: an algebra Ots belongs to S
iff there exists an slgebra & € M such that O =(BxBj+,+,1)
and Og = (A; +, *» 1) 1is a subalgebra of (& satisfying
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(%) /\ (¢<x,y> e Ay =xnNnY)e
x,y€B

Observe that the subalgebra with the carrier S(B) belongs
to the class S although we have A # S(B). From the formu-
las (%) and (7) it follows only that A ¢ S(B).

2. The connections between classes L, M and S

Now we give some theorems describing the connections
between classes L, M and S.

Theorem 1, If B=(Bju,n, ', 0, 1) is a
non-degenerated Boolean algebra then the algebra lX.l =
= (Bx B;#,0,M) of the clags L 1s homomorphic to the
algebra O, = (B x B; +, *, 1) of the class M,

Homomorphism is given by the mapping h: BxB — Bx B

(8) h(<x1,y1>) = <Xgy Xy N ¥4> for x,,94 € B,

The easy proof we omit.

Theorem 2, Let an algebra O{ belong to L and
let Ot= (BxB;#,°,M), Then the algebra 0g =
= (8(B); +, *,7) and Olg e S is a homomorphic immage of
the algebra 0lel.

For the proof it 1s enaugh to check that the function h
given by the formula (8) satisfies h(Bx B) = S(B). This
is a consequence of (7) and (8).

We have already observed that the subset S(B) of the
set BxB 1s not a subalgebra of the algebra (Bx B;#,0,7M)el,
however it follows from Theorem 2 that S(B) is a homomorphic
immage of it.

Theorem 3, Let the algebra O belong to M and
0t=(BxBj +, ¢, 1). The functions h: BxB — S(B) defined
by (8) is & retraction of the algebra (X onto its subalgebra
as = (S(B){ +y *y 1)

We omit the proof,
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3. Problem of equational definisbility of the class S

The classes L and M are not equationally definiable
because subalgebras of algebras in these classes do not belong
in general to them. We ask if the class § 1is equationally
definiable? This class is heredltary with respect of subalge=-
bras.

Denote by h(S) the class of all homomorphic images of
algebras of S.

Theoren 1. The class S does not contaln the
class h(s).

To proof thils we consider the following example. Let
,B1 = (B1; u,n, ’y, 0, 1) be a Boolean algebra isomorphic
to B=(Bju,n, ‘, 0, 1) where B,n B = f. Let us denote
by g the isomorphism of B onto B,.

Consider an algebra (R; @, ® ,* ), defined as follows

<Xy, g(x2)> eR Iff <x.,x> € s(B),
<X, g(x2)> ® <Xq, g(x4)> = < X4n x4, g(xzux4)n x,nx3>,
<Xy, g(xz)> ® <Xq, g(x4)> = < X4N X5, g(xzn x4)> .

<x19 S(xz)>* =<x1u 8(x1n 1'2)>

for any < x4,x,> , <X3,X,> € 5(B).
In view of the sssumptions the set R and the above ope-

rations are well defined.
It is eagy to see that the function f: S(B) — R defined

by the formula
f£(< XXy> ) = < x4, g(x2)> for < xy,X,> € S(B)

- i8 an isomorphiam of the algebra (S(B); +, °*, 1) onto the
algebra (R; @, ® ,*), where (R; ®, ® ,*) does
not belong to the class S. Thus the theorem 1 holds.

The definitions of the classes L .nd M can be changed
in such way that they S will be closed under homomorphic
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images. But 1t does not make the class S to be closed un-
der homomorphic imegmes. This remark is justified by the fol~
iowing example.

Consider the two-element Boolean algebra Bo‘ The algebra
oy = ({<0,0> , $<1,0>, <1,1>}; +, *y 1) corresponds to
Bo and belongs to the class S. It is easy to cheok that
the only non~trivial congruence in as is the relation "~",
defined by the following partition: {<O,.0>},{<1,0> . <1,1>j.
The quotient algebra OLS/~ has two elements and satisfies
the condition

(a) Ix = X,

The algebra O(S/... is not isomorphlc to any algebra from
the class S Dbecause the following theorem holds,
Theoren 2. The only algebras of the class S
which satisfy the equality (a) are the one-element algebras.
Proof. Any one-element algebra of the class S
obviously satisfies (a). Let oOt= (A; +, », 1) € S. Suppose
<x4,94> € A and satisfies (a). Thus

7] <Xy ¥4> = <Xg,79>

Henoce <Xqy X4 N y'1> = <x1,y1> s, and
(b) X4N 3y = 34.

From the last equality it follows that (x4n y'1) N Yy =g
Thus y, = O. From this together with (b) we get:

Jq = XN y'1=x1n o’ =x,N 1=2x, =0
So <x,,3,> = <0,0> and |a] = 1.

4. Properties of some subalgebras of the algeljras of the
clags S
We have seen that the class S 1is not equational. Howe-
ver, in view of applications of the algebras of this class
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in the theory of sets determined by the sentential expressions,
where these expressions contain terms conditionally defined

- it seems to be useful the examine the connection of this
class with Boolean algebras.

It turns out that many equalites which hold in Boolean
algebras hold also in the algebras of the class S, although
not every equality of Boolean algebras holds in it.

Lemma 1. Any algebra of the class S satisfles
the following equalities:

(a) x+x=x (a8) xox=x

(b) x+3=93+x () xey=y.x

(¢) (x+3)+z = x+(y+2) (¢')  (xey)ez = x(y+2)

(d)  x*(y+2) = x°y + x°2 (@")  =x4(y-z) = (x+y)e(x+z)

We omit the proof,
Lemma 2 The class S does not satisfy the equa-
lities:

(a) X+ Xy =X

(b) (x)x = (y)y.

To prove this let us put =x = <1,0>, Yy = <0,0>,
From lLemma 2 follows that algebras from the class S are

not lattices.
Theorem 1. Let ~ be a relation in A defined
as follows:

(= *) LRy 4>~ <Xy, T5> iff T L3> ¢ €X,3> =

=7<x2,y2> ¢ L Xpy¥p> .

Then ~ 1is a congruence in the algebrs 0l = (A; +, », 1) e 8,
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To prove this observe that
(=) <Rq¥ 1> ~ < X5,35> iff xy = x5,

Theoren 2. The congruence classes of the con-
gruence ~ are subalgebras, These subalgebras are Boolean
algebras,

Observe that the operations in the subalgebra being the
congruence class determined by the pair <X,,y,> are defined
by the formulas:

(4')  <xqy¥4> + <X4,3,> <Xqy YU Ip>

(5') <x1931> ¢ <x1,y2> = <x1s Jq0 YQ>
(6') 7<x1,y1> = <xq, yyn x> for  <Xy,¥4>,<X,5,¥,> €A

The last formulas are simpler that the formulas (4)-{6), par-
ticularly in the case of the operation "+",

The 1=element and O-element in the subalgebra under con-
sideration are palrs <X4,X4> and <x1,0> , respectively.
The existence of these pairs follows from the fact the con-
gruence class 18 not empty. Denote [< x1,y1>J the class of
the element <x1,y1> € A. Then

1<x1,y1> ¢ LX¥y> = <x1,0>
‘l<x1,y1> + <x1,y1> = <x1,x1>.

Thus the pairs <x1,0> » $XgpX,> exigt in the set A and
<x1,0>~<x1,y1> s LX) Ky>~ <Xy, Y 4>

From Theorem 2 it follows that the algebra ozs €S |is
not a Boolean algebra but it is decomposable into disjoint
subalgebras being Boolean algebrdas. Thus in the algebra as
there exist local zeros and units although if ~ has more
than one class, there is neither O nor 1 in the whole algebra,.
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Observe that {y:\,{<x1 wI> € [<x4,5,>]} 1s an ideal in

the algebra B . Denote this ideal by I<x > Let B 1is
171
the carrier of B and x, € B. Denote by (x1) the princi-

pal ideal generated by x, in B . Thus I<x1’y‘l> c (x1).

In particular if A = S(B) then I<x1,y1>= (x1).

5. The sum of a direct system of Boolean algebras

The problem arises, whether there exists a connection
between subalgebras being congruence~classes of the congruence
~ and the algebra as € S. To find this connection we shall
use the notion of the sum of a direct system of algebras gi-
ven in [4]. We recel the definition of a direct system of
algebras.

A direct system of algebras of the type T is a triple

L= <13 {0}ycpe {bi}y, se1, 1oy > Setisfying the following

conditions:

(i) I 1is a non-empty set partially ordered by the relation

< with the upper bound property for any two element
1,J eI,

(11) for sny 1 € I +the algebra oy = (xi; F) of the type
T is given,

(111) for any 1,j €I, 1< j the homomorphism hj: or, — o,
is given. The resulting set of homomorphisms satisfies
the conditions:

(a) if 1<j<k then hgo hf = b, for 1,3,k 1,
(v) bl 1s the 1dentity mapping.
In [4] there was assumed additionally

(') for any 1,3 € 1 the least upper bound in the set I
exists,

(11') if L,3 eI, 1 £ 3 then Inn xJ = g,

In [4] the new algebra S(L) = (U X;; F) was defined, and

iel
S(L) was called the sum of a direct system L. The opera~

tions in S(L) were defined as follows
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i i
f(x1,...,xn) = f(hi:(x1)""’hiz(xn” when 1°=sup{11,...,in}

and x4 € X (3 = 1,00eyn)e

The sets X, (1 € I) are called the components of the
sum of a direct system L.
Let Og €S, Og = (4; +, *,T) and <x4,94> € 4.
Because the class [<x1,x1>] A is well defined by the ele~
~ 9

ment Zqs it will be convenient to denote this class by Ax .
1

We denote by I the set of these elements which are
the first elements of the pairs belonging to A.
Lemma 1e It x1,x2€_I and x, ;é.xz, then

AN A 2.
X4 X2
We have also
Lemma 2. U A =4
xq.el 1
Denote by O,  the slgebra <A, ; +, ¢, 1>, From
1

Theorem 1 of §3 and (9) it follows

Lemma 3. For any x, € I the algebra ax is
a Boolean algebra. 1

In the set I we define a relation < as follows:

(10) x, < x5, iff x, = x4n X,

Lemma 4., The pair (I;<) satisfies (i), (ii),
(&), (1i').

Proof. (i) and (i') are obvious. Putting axp{x1,x2}=
= x,N x, we get (11) and (ii' ) by Lemma 1, (9) and by the
definition of the algebra (xx1.

N For Xy € Xy, XX, € I, we define the mapping
2

by

s A, —™ A as follows
1 X X2

x
(11) hx3(<x1,y1>) = <Xy XN Yy>
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Lemma 5. it Xy £ X5y XyX; € I, then the fun-

x
ction hx2: AL — & defined by (11) is a homomorphism
1 1 x

2
satisfying conditions (a) and (b) from (iii),

X
Proof . First we show that nx2= A.— A is a
1 X X2

homomorphism of ozx into o‘x for x, £ Xpy XqsXpy € I.
By (4')-(6") and (11) we get
X2 X2
hx1(<x1,y1>+<x1,y2>)=hx1(<x1,y1u y2>)=<x2,x2n (y.lu y2)> =
= <Xy Xy NIV Xy NY 5> = <Xy X, NY 4> + <Xy Xy NY > =
X2 X2
= hx1(<x1,y1>) + l:lx1(<x1 'Ip>) s
X2 %2
hx1 (<x1 ¥y <x1,y2>) = hx1(<x1,y1ny2>) = LXy KN Y N Y > =

=<12:(12"y1)" (x2hy2)> =<x2,x ﬂy1> . <x2,12/\ y2> =

2
X2 *2
= hx1(<x1,y1>) . hx1(<x1,y2>),
X2 X2
- ’ — 1 -
hx1('l<x1.y1>) = hx1(<x1,x1n I9>) = <Xy Xpn XN > =
=<X40 Xy, XN XN (X0 7,) > =74x4n x5, XN Y> =

x
=1<x2,xan ¥4> = | hxf(<x1,y1>).

Thus

*2 X2 X
By (X107 9> + <x4,35>) By, €X10347) + By (“x0¥ )

X2 X X2
hx1(<x1,y1> ©<X4,35>) hx1(<x1,y1>) . hx1(<x1,y2>)
x, x,
hx1(-1<x1’y1>) = —, hx1(<x19y1>)
X2
so hx is a homomorphism.

1

- 741 -



12 K.Hatkowska

Suppose that x4 $xx2 < xp, Xy1X59Xq € ,I;' Hence there
2 3,
exist homomorphisms hx1: ax1—- otx2 and nxz. oty
For <X,,¥y.> € A we have by (11):
1291 x4

—~ 0. .
2 X3

X3 X, )
(hxzo %1> (< X4y34> ) hx2(<x2,x2n y1>) = <X3,X3N §4> =

Xq
1&1 (<xq,34>)s
Hence we get the equality

X X X
3 2 3
h_"o h = h
X, x4 x1’

thus (a) holds.
To prove (b) let_us essume that <X4y¥¢4> € Ax » Obvious=-

ly x,<x, thus hx: exists. By (11) we have |
X4
hx1 (<x1,y1>) SLXHXNY > = LXYy> .

X
So hx1 is the identity on Ag o
1 1

Theorem 1, The triple
b 4
2
L=<I;fol {2} >
{ x1}x1eI‘, X4 Xq9%pel, X & X,
is a direct system of Boolean algebrag.
Prootft., By lemma 4 the set I satisfies the condi-
tions (i), (ii)-from the definition of & direct system of al-
gebras. By Lemma 3 the algebras {0(!1}2!161 are Boolean al-

x
gebras. By Lemma 5 L{hxz} is the required
1

XysX, ¢ I,ex1sx2
family of homomorphism,
Theorem 2. There exists the sum S(L) of the
b 4
- * 2
direct system L = <I’{ax1}x1e1-{hx1}x1,x2el, x1‘xa> .
The proof follows from Theorem 2 §3 and Lemma 2 §5.
According to the definition of the sum of a direct system
of algebras, the algebra S(L) is defined in the following
way:
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s(n) =(U Ay 3#,°,7) where for x,y e U 4, , xed,,

1161 1 1161 1 1
y €A .
X2

x.nX x.NX
(12) X#y = hx1n 2(x) + hx1 2(y)

1

X.NX XX
(13) Xoy = hx1n 2(x) » hx1 2(y)

1 2
(14) Tx=1x,

First we explain the formula (12). From the assumption

that x,ye U 4
x1€.I 1
such that x € Ax1 and y € Ax2. Let x =<x1,y1> and

it follows that exist elements X4X, € 1

Yy =<X,y¥,> « We already know that
sup {x1,12} = XN X,

To get the value of "#" on the elements Xx,y in the algebra
S(L) one should give the images of these elements in the

component Ax Ax. 2nd find the value of "+" in the component
1772
Ay nx. @8 1n the algebra Otx nx.* Thus
172 17 "2
x,Nn X, x,N %X,
XHY 2 $x),§,> #F LX500,>= hx1 (€xg09,> ) + hxa (<x2,y2>) =
X, NX x,Nx
I 17 2
= hx1 (x) + hx1 (y) .

Analogously we explain the formula (13).To explain (14) observe
that the supremum of a one-element set is equal to this ele-
ment. Hence from Lemma 5 we have

x
X = W< X,34> = '1hx:(<x1,y1>) =7<x,,74> =1x,
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So the operation 1 in the algebra S(L) coincides with the
operation 1 in the components of this algebra,

Theorem 3. Every algebra Og = (A; +, », ')
from the clagss S 1is the sum of a direct system of Boolean
algebras,

Proof. To prove the theorem it is enough to show
that the algebra (g 1is equal to the algebra s(L). From
Lemma 2 it follows that

So we should prove the equalities
X#y=X+y, Xoy=XxX-ey, Nx=1x,

The last equality holds by (14). We show the first one also
holds. Let us accept =x = <Xq¥4” 3 ¥ = £X,5,3,> . Hence
we get by (12), (11)
X,N X X, N X
V) -

1% %2
X#y=~h (x) + h
x2 12

<x1r\ Xps X4Nn Xpn y1> + <x1n Xos Xqn Xpn y2> =

<x1nx2,x1nx2ny1ux1nxgﬂy2> =

<x1n x2, y1n x2u x1ny2> = <x1,y1> + <x2,y2> =

X + Yo

Similarly using (13) we show that x o y = x « y. Thus
the theorem is proved.

The theorem 3 allows us to explain what distinguishes
the algebra 0t € S from other known algebras. This algebra
is in gereral not a lattice, so it is not a Boolean algebra
either. However, it is composed from the disjoint Boolean

- 744 -



On some generalizations of Boolean algebras 15

algebras and the operations in the algebra zxs work also
in the sum of a direct system of its subalgebras.

It seems that the algebras of the class S are natural
examples of sums of direct systems,

6. Connections of the system T with the classes L, M, S
As we mentioned in the introduction in [5] there is given
an axiomatic system T whose fundamental symbols are:

(a) Uor\’,'v’”’ S.

The first five symbols are the symbols of the classical alge-
bra of sets. One accepts here that the symbol "a" instead of
"=", By means of "=" one denotes the identity in [5]. The
symbol "S" is a term of a unary function mapping 2 “into
2v. " The variables of the system T are symbols X, Y,eeeye

The theorems of T are all laws of the first-order cal-~
culus of quantifiers with identify and the classical algebra
of sets. The characteristic axioms of the system T are:

A1, 8(x') = s(x)

A2, S(XuY) = 8(X)ns(Y)

A3, S(XnY) = 8(X)ns(Y)

A4, s(s(x)) =V

AS. s(v) = v

A6, I=YASX) =s8(Y)=>12x=Y,

The following definitions are included intp the system:

D1. x° = XnS(X)

D2. X* = ¥'nS(X)

D3. T+Y=(XuY)nsS(X)ns(Y)
D4. X+«Y=(Xn¥)ns(X)ns(Y)
D5. A(X) <= X = XnS(X).
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To explain the conneotion of the system T with alge-
bras with L, M, S, we introduce the following two defini-
tiong of the aymbols "s" and "%,

<X4,Xq> that x4 £ x,
s8( < e % e ) =
<1, 1> that Xy =X,

for x,,Xx, € B, where B = (Bju,n,’, 0, 1) is a Boolean
algebra,

<x1,x2>~< y1,y2> iff Xy = Yo for X49X5s¥1s¥p € B.
Now let us adjoin the symbols
(b) # 40 ,TW,<1,1> ,~, 8

to the aymbols (a) respectively and the symbols <x1,x2> ’
<y1,y2> to the symbols "X", "Y" respectively. Substituting
the symbols occuring in the axioms A1-A6 and the definitions
D1-D5 by the symbols (b), respectively, we get

AT . 8(Bexy,xy>) = 8(<xy,x5>)

42'. s(<x1,x2>a<y1,32>) = s(<x1,xz>) ) s(<y1,y2>)

A3 . 8(¢xyyx,>0<Y,3,>) = 8(4x4,%,>) © 8(4Y4,¥,>)

a4'. s(slexy,x,>)) =<1,1>

A5, 8(<1,1>) =<1,1>

a6’ . CX XG>V LY T A s(<x1,12>) ~ s(<y1,yz>) =
T LXyXy” = <Y 4035>

D1, <x1,x2>° =<XyyXy> 0 s(<x1~,x2>)

D2 . <x1,x2>" =" <XqXy> 0 s(<x1,x2>)
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D3’ . <Xy Xy> +LY4,¥,> = (<x1,x2> #<y1,y2>) o s(<x1,x2>)°
e S(<y1132>)
DA's < XpyXp> ¢ LY qyYp> = CXyX,>H LY ,Y,> 08,2 >)0
os(<y1,y2>)

D5 . AExy,x>) <D $XyyX,> = £XqyXy>0 s(<x4,x,>)

Theorem 1., The expressions A1 -A6' hold in eve-
ry algebra of the clsss L.

Proof . Por example we shall prove that A6’ is sa~
tisfied in every ®el. The proof of the others is similar,

Assume that

< XqgyXy>~<Y,,¥,>  and s(<z1,x2>) ~ s(<y1,y2>).

Hence by the definition of the symbol "s" we get

X5 = Yo and <x1,x1>~< Y1034
thus Xy = ¥p and Xy =99

So <XqpXp> = S P e Thus the expression 46 is true
in every (X el,
Now let us adjoin

(c) +y 0y Ty L,12,~, s,<x1,12>,<y1,y2>

to the symbols (8) and X, Y occuring in the system T, respec-
tively.

Theorem 2. The expressions obtained from A1-A6
by substituting the symbols (a) and X, Y by the symbols (c¢)
are true in any algebra from the class M,

Theorem 3. The expressions obtained from A1-46
by substituting the symbols (a) and X, Y by the symbols (¢)
are true in any algebra from the class S.
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Theoremnm 4, The function "o" defined by the
expression D1 is a homomorphism of an algebra fr-m the class
L into the corresponding algebra from the class M,

From the theorems 1-4 and from the definition of the sys~
tem T it follows that the algebras of the classes L and S
are models of the system T.

Final remarks

In connection with the examination of the class S we
heve obtained one more class of algebras considered in [2].
This class is equationally definiable. The type of this class
is «2,2> with the fundamental operation symbols + and -
The axioms of this class are expressions (a)-(d), (a' )-(c' )
from Lemma 1 §4.

It is known that from these expressions and from (a)
(Lemma 2 §4) there fillows (d') (Lemma 1) [comp. [6], pp.27].
Observe, that (d') does not follow from (a)-(d) and (a' )=(c')
Lemma 1.

Namely there exists the following algebra

0t = ({31,82,33},A,U), where

a; Aa; = Spax{i, 3} for 1,3 €{1,2,3}

amin{i,j} iz {1'3§ # {2'3}

a5 if {1,3} = {2,3}.

ail‘_‘l aj

In this algebra the equalities (a)-(d) and (a')~(c’) hold
but (d') is false since

a,4 (a1 Da3) =a,A a; = a,

(a2A a1) (m] (52A 33) = 32D 83 = @5,
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In [2] the smallest congruence was found having the pro=-
perty that the quotient algebra is a distributive lattice.

But finding the representation of this class remains as an
open problem.
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