

Paweł Walczak

THE HAMILTONIAN BUNDLE OF A SYMPLECTIC LIE GROUP

Let G be a Lie group and K is a closed subgroup of G . A pair (M, Ω) consisting of a homogeneous space $M = G/K$ and a symplectic 2-form Ω on M is said to be a symplectic homogeneous space if the form Ω is G -invariant under the natural action of G on M . In the particular case of the trivial group K we call a pair (M, Ω) a symplectic Lie group. A symplectic homogeneous space (M, Ω) is said to be exact if Ω is of the form $d\beta$, where β is a G -invariant 1-form on M .

The study of symplectic homogeneous spaces was begun by Kostant [3] and Souriau [4]. Recently, remarkable results on the subject have been obtained by Chu [1] and Sternberg [6].

Let us assume $(G/K, \Omega)$ to be a symplectic homogeneous space and denote by p the natural projection $G \rightarrow G/K$. The form $\omega = p^*\Omega$ is a closed, left-invariant 2-form on G . Moreover, is $ad(K)$ -invariant and if $X \in g$, where g is the Lie algebra of G , then the interior product $i_X \omega = 0$ if and only if X belongs to the Lie algebra k of K .

R e m a r k . Chu [1] proved that if ω is a closed, left-invariant 2-form on a Lie group G and G is simply connected or ω is exact, then there is a symplectic homogeneous space $(G/K, \Omega)$, where K is a closed subgroup of G , such that $\omega = p^*\Omega$.

An element X of g is called a Hamiltonian vector field iff the Lie derivative $\mathcal{L}_X \omega = 0$. From the equality

$\mathcal{L}_{[X,Y]} = [\mathcal{L}_X, \mathcal{L}_Y]$ it follows that Hamiltonian vector fields form a subalgebra of the Lie algebra g . Let H be the Hamiltonian subgroup of G , i.e. the connected subgroup of G with h as the Lie algebra.

Lemma 1. H is a closed subgroup of G . The identity component K_0 of K is a normal subgroup of H .

Proof. The first part of the statement can be obtained as follows: H is the identity component of the closed subgroup of G consisting of all elements a of G such that $ad(a)^*\omega = \omega$. The second part of the lemma follows immediately from the equality

$$i_{[X,Y]} = [\mathcal{L}_X, i_Y]$$

which shows that $[k, h] \subset k$.

The above lemma allows to construct the fibre bundle $\pi: G/K \rightarrow G/H$ with the structure group and the fibre H/K , and the projection π defined by

$$\pi(aK) = aH$$

(comp. Steenrod [5], p. 30). This bundle will be called here a Hamiltonian bundle of the symplectic homogeneous space $(G/K, \Omega)$.

Remark. $\mathcal{L}_X \omega = 0$ if and only if $i_X \omega |_{[g,g]} = 0$. This fact implies that if $[g,g] = g$ (in particular, if g is semi-simple), then $H = K$ and the structure group of the Hamiltonian bundle is trivial. Similarly, if the group G is abelian, then $H = G$ and the Hamiltonian bundle is a trivial bundle over a point.

In the case of a symplectic Lie group the Hamiltonian bundle is a principal fibre bundle $G \rightarrow G/H$. This note is devoted to the investigation of connections in Hamiltonian bundles of symplectic Lie groups.

Let us take a subspace m of the Lie algebra g of a symplectic Lie group (G, ω) such that $g = [g, g] + m$ (direct sum). For any X of g there exists the only element Y of m such that

$$(1) \quad i_Y \omega|_m = i_X \omega|_m.$$

Thus, the formula

$$\eta(X) = Y,$$

where Y satisfies (1), defines a linear mapping $\eta: g \rightarrow m$. Moreover, if $X \in m$, then $\eta(X) = X$. Thus, η is the identity mapping on m .

Theorem 1. If $[h, m] \subset m$, then the formula

$$(2) \quad \delta|_{T_a G} = \eta \circ L_{a^{-1}}, \quad a \in G,$$

defined a G -invariant connection form on the Hamiltonian bundle of the symplectic Lie group (G, ω) .

Proof. Of course, the formula (2) defines a left-invariant 1-form on G . Taking an element X of m and denoting by X^* the fundamental vector field on G which respect to X (which is the left invariant vector field on G satisfying $X_e = X$) we have

$$\delta(X_x^*) = \eta(L_{a^{-1}} L_x X) = \eta(X) = X$$

at any point x of G . Now it remains to prove that the form δ satisfies the equality

$$(3) \quad R_a^* \delta = ad(a^{-1})\delta$$

for any a of H . Let $v = L_b X$, $X \in g$, be a vector tangent to G at a point b , $a \in H$. Then

$$R_a^* \delta(v) = \delta(R_a v) = \delta(R_a L_b X) = \eta(L_{(ba)^{-1}} R_a L_b X) = \eta(ad(a^{-1})X)$$

and

$$\text{ad}(a^{-1}) \delta(v) = \text{ad}(a^{-1}) \eta(x).$$

Thus, the equality (3) is equivalent to the following one

$$(3') \quad \eta(\text{ad}(a)x) = \text{ad}(a) \eta(x).$$

In order to prove (3') let us notice that $\text{ad}(H)m \subset m$ and that the form ω is $\text{ad}(H)$ -invariant. Thus, if $\eta(x) = y$, $\eta(\text{ad}(a)x) = y'$, and $z \in m$, then

$$\begin{aligned} i_{y'}\omega(z) &= i_{\text{ad}(a)x}\omega(z) = i_x\omega(\text{ad}(a^{-1})z) = \\ &= i_y\omega(\text{ad}(a^{-1})z) = i_{\text{ad}(a)y}\omega(z). \end{aligned}$$

Consequently, $i_{y'}\omega = i_{\text{ad}(a)y}\omega$ and $y' = \text{ad}(a)y$. This ends the proof of the theorem.

Theorem 2. Every G -invariant connection on the Hamiltonian bundle of a symplectic Lie group (G, ω) is determined by a decomposition of g into a direct sum $[g, g] + m$, where $[h, m] \subset m$, in a manner of Theorem 1.

Proof. We have to prove that for any linear mapping $\eta: g \rightarrow h$ satisfying conditions

$$\eta|_h = \text{id}$$

and

$$\eta \circ \text{ad}(a) = \text{ad}(a) \circ \eta \quad \text{for } a \in H$$

there exists a linear subspace m of g such that $g = [g, g] + m$, $[h, m] \subset m$, and $i_{\eta(x)}\omega|_m = i_x\omega|_m$ for every x of g .

Put $h^0 = \ker \eta$ and $m = \bigcap_{H \in h^0} \ker i_x\omega$. Of course, m is a linear subspace of g . If $X \in h^0$, $Y \in h$, and $Z \in m$, then

$$i_X \omega([Y, Z]) = \omega(X, [Y, Z]) = \mathcal{L}_Y \omega(X, Z) + \omega([X, Y], Z) = 0,$$

since $[h, h^0] \subset h^0$. Thus, $[h, m] \subset m$. If $Z \in m \cap [g, g]$, then $i_Z \omega|_{h^0} = 0$ and $i_Z \omega|h = 0$, that is $i_Z \omega = 0$ and $Z = 0$. For any Z of g there is an element Y of m such that $i_Y \omega|h = i_Z \omega|h$. Putting $X = Z - Y$ we see that $i_X \omega|h = 0$. Using the relation $[g, g] \subset \{A \in g; i_A \omega|h = 0\}$ and the equalities

$$\begin{aligned} \dim \{A \in g; i_A \omega|h = 0\} &= \dim g - \dim h = \\ &= \dim g - \dim \{A \in g; i_A \omega|[g, g]\} = 0 = \\ &= \dim g - (\dim g - \dim [g, g]) = \dim [g, g] \end{aligned}$$

we obtain the relation $X \in [g, g]$. Thus, $g = [g, g] + m$. Finally, if $X \in h$ (resp., $X \in h^0$), then $i_{\eta(X)} \omega = i_X \omega$ for $\eta(X) = X$ (resp., $i_X \omega|m = 0$ and $i_{\eta(X)} \omega = 0$ for $\eta(X) = 0$). It proves the theorem.

It is easy to see that the principal fibre bundle $\pi: G \rightarrow G/H$, where H is an arbitrary closed subgroup of G , admits a G -invariant connection if and only if the homogeneous space G/H is reductive. Comparing this fact and Theorem 2 we get the following results.

Corollary 1. If the homogeneous space G/H , where H is the Hamiltonian subgroup of a symplectic Lie group (G, ω) , is reductive, then

$$[h, g] = [h, [g, g]].$$

Corollary 2. Let (G, ω) be an exact symplectic Lie group. The homogeneous space G/H is reductive if and only if $h = 0$.

Proof. Let us assume that the space G/H is reductive and let m be a subspace of g determined by a G -invariant connection in the bundle $\pi: G \rightarrow G/H$ in a manner of

Theorem 2. Then $[h, m] = 0$ since $[h, m] \subset m \cap [g, g] = 0$. It yields Corollary 1. If, in addition, $\omega = d\beta$ and $X \in h$, then

$$i_X \omega(Y) = i_X d\beta(Y) = -\beta([X, Y]) = 0$$

for all Y of m . Thus, $i_X \omega = 0$ and $X = 0$.

Example. Let g be a 4-dimensional nilpotent Lie algebra, $\dim[g, g] = 1$. Then there exists a left-invariant symplectic form on the connected Lie group G with g as the Lie algebra. In fact, $g = g_1 + g_2$, where g_1 is a 3-dimensional abelian ideal of g ([2], Ch. I, § 2). Then $[g, g] = [g_1, g_2] \subset g_1$. Thus, it is possible to choose a basis A_1, A_2, A_3, A_4 of g in such a manner that $A_1, A_2 \in g_1$, $A_3 \in [g, g]$, and $A_4 \in g_2$. The form ω defined by

$$\omega(A_i, A_j) = \delta_i^1 \delta_j^2 + \delta_i^3 \delta_j^4$$

for $i, j = 1, \dots, 4$, $i < j$, is nondegenerate and $d\omega = 0$. The algebra h of Hamiltonian vector fields on the symplectic Lie group (G, ω) is equal to g_1 . On the other hand, the Corollary 1 shows that if $[g, [g, g]] = 0$, then there are no left-invariant symplectic structures on G with $h = g_2$.

REFERENCES

- [1] B.Y. Chu : Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974) 145 - 159.
- [2] I. Kaplansky : Lie algebras and locally compact groups. Chicago 1971.
- [3] B. Kostant : Lectures in Modern Analysis, III, Lecture Notes in Mathematics, 170, Berlin (1970) 87-208.
- [4] J.M. Souriau : Structure des systemes dynamiques, Maitresses de mathematiques, Paris 1970.

- [5] N. Steenrod : The topology of fibre bundles,
Princeton 1951.
- [6] S. Sternberg : Symplectic homogeneous spaces,
Trans. Amer. Math. Soc. 212 (1975) 113-131.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Received September 14, 1976.

