

K. D. Singh, Rakeshwar Singh

ON SOME $(\epsilon f_1, \epsilon f_2)$ STRUCTURE MANIFOLDS1. Introduction

In 1964, Hashimoto defined and studied (F, G) structures on a differentiable manifold [1]. In this paper we have obtained some interesting results connecting the structure tensor of an $(\epsilon f_1, \epsilon f_2)$ structure manifold [3]. Few special structures have been defined and certain results which bring out the interrelationship are proved.

Let M^n be a C^∞ real differentiable manifold and f_1, f_2 be two non null $(1,1)$ tensor fields of constant rank r ($r \leq n$, n is dimension of M^n), satisfying [3]

$$(1.1) \quad \begin{cases} f_1^3 - \epsilon_1 f_1 = 0, & f_2^3 - \epsilon_2 f_2 = 0 \\ \epsilon_1 f_1^2 = \epsilon_2 f_2^2, & f_1 f_2 = \epsilon f_2 f_1, \end{cases}$$

where $\epsilon_1^2 = \epsilon_2^2 = 1$ and $\epsilon = \epsilon_1 \epsilon_2 \epsilon_3$ and $\epsilon_3 = \pm 1$.
Then if we put

$$f_1 f_2 = - \epsilon f_2$$

we get

$$f_3^3 - \epsilon_3 f_3 = 0.$$

Theorem 1.1. The following relations hold on $(\epsilon f_1, \epsilon f_2)$ structure manifolds

$$(1.2) \quad f_3^3 - \epsilon_3 f_3 = 0,$$

$$(1.3) \quad f_1 f_2 = \epsilon f_2 f_1 = -\epsilon f_3,$$

$$(1.4) \quad f_2 f_3 = \epsilon f_3 f_2 = -\epsilon_2 f_1,$$

$$(1.5) \quad f_3 f_1 = \epsilon f_1 f_3 = -\epsilon_1 f_2,$$

$$(1.6) \quad \epsilon_1 f_1^2 = \epsilon_2 f_2^2 = \epsilon_3 f_3^2.$$

Let ℓ and m be two projection operators defined by

$$(1.7) \quad \ell \stackrel{\text{def}}{=} \epsilon_k f_k^2, \quad m = 1 - \epsilon_k f_k^2, \quad k = 1, 2, 3.$$

Then we note that

$$(1.8) \quad \ell + m = 1, \quad m\ell = \ell m = 0, \quad \ell^2 = \ell \quad \text{and} \quad m^2 = m$$

and further

$$(1.9) \quad \begin{cases} \ell f_k = f_k \ell = f_k, & m f_k = f_k m = 0 \\ \ell f_k^2 = \epsilon_k \ell, & m f_k^2 = f_k^2 m = 0. \end{cases}$$

Thus we obtain, corresponding to ℓ and m the two distributions L and M respectively.

Remarks. 1) If $\epsilon_1 = \epsilon_2 = \epsilon_3 = -1$, then $(\epsilon f_1, \epsilon f_2)$ structure acts as an almost quaternion structure on the horizontal distribution, consequently in this case the dimension of L is a multiple of 4.

2) If $\epsilon_1 = -1, \epsilon_2 = \epsilon_3 = 1$ then $(\epsilon f_1, \epsilon f_2)$ structure is an almost complex structure of first kind on horizontal distribution [4].

3) If $\epsilon_1 = \epsilon_2 = -1$, $\epsilon_3 = 1$ then $(\epsilon f_1, \epsilon f_2)$ structure acts as an almost complex structure of second kind [4].

4) If $\epsilon_1 = \epsilon_2 = \epsilon_3 = 1$ then each of the tensor fields f_1, f_2 and f_3 of $(\epsilon f_1, \epsilon f_2)$ structure is an almost product structure on the horizontal distribution.

If we take rank $(f_k) = n$, then the above remarks from (1) to (4) hold for the entire manifold.

Since M^n always admits a positive definite Riemannian metric "g" defined by

$$(2.0) \quad g_k(X, Y) \stackrel{\text{def}}{=} g(f_k X, f_k Y) + g(mX, Y), \quad k = 1, 2, 3,$$

hence we have

$$(2.1) \quad g_k(f_k X, Y) = g_k(f_k^2 X, f_k Y).$$

A two co-tensor F_k defined by [3]

$$(2.2) \quad F_k(X, Y) = g_k(f_k X, Y)$$

always satisfies

$$(2.3) \quad F_k(X, Y) = \epsilon_k F_k(Y, X).$$

For the tensor fields f_1, f_2 the Nijenhuis tensor is defined by [3]

$$(2.4) \quad [f_1, f_2](X, Y) = [f_1 X, f_2 Y] - f_1[f_2 X, Y] - f_2[X, f_1 Y] + \\ + [f_2 X, f_1 Y] - f_2[f_1 X, Y] - f_1[X, f_2 Y] + \\ + (f_1 f_2 + f_2 f_1)[X, Y].$$

Let ∇ be the Riemannian connection on M^n . Then the following equalities hold.

$$(2.5) \quad X(g(Y, Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

$$(2.6) \quad [X, Y] = \nabla_X Y - \nabla_Y X$$

$$(2.7) \quad \nabla_X(f_k)(Y) = \nabla_X(f_k Y) - f_k \nabla_X Y$$

$$(2.8) \quad \nabla_X F_k(Y, Z) = g_k(\nabla_X(f_k)(Y), Z).$$

Theorem 1.2. The following results hold in an $(\epsilon f_1, \epsilon f_2)$ structure manifold.

$$(3.0) \quad f_1 \nabla_X(f_2)(f_3 Y) = \epsilon_2 \nabla_X(f_1)(f_2 Y) - \epsilon_1 \nabla_X(f_3)(f_2 Y),$$

$$(3.1) \quad f_2 \nabla_X(f_3)(f_1 Y) = \epsilon_1 \nabla_X(f_2)(f_3 Y) - \epsilon_2 \nabla_X(f_1)(f_3 Y),$$

$$(3.2) \quad f_3 \nabla_X(f_1)(f_2 Y) = \epsilon_1 \nabla_X(f_3)(f_1 Y) - \epsilon_1 \epsilon_2 \nabla_X(f_2)(f_1 Y),$$

$$(3.3) \quad f_2 \nabla_X(f_1)(f_3 Y) = \epsilon_2 \epsilon_3 \nabla_X(f_2)(f_1 Y) - \epsilon_2 \epsilon_3 \nabla_X(f_3)(f_1 Y),$$

$$(3.4) \quad f_3 \nabla_X(f_2)(f_1 Y) = \nabla_X(f_3)(f_2 Y) - \epsilon_1 \epsilon_2 \nabla_X(f_1)(f_2 Y).$$

Theorem 1.3. In an $(\epsilon f_1, \epsilon f_2)$ structure manifold the following hold

$$(3.5) \quad f_i \nabla_X(f_j)(f_k Y) = -\epsilon f_k \nabla_X(f_j)(f_i Y),$$

$$(3.6) \quad f_i \nabla_X(f_j)(f_k Y) + f_j \nabla_X(f_k)(f_i Y) + f_k \nabla_X(f_i)(f_j Y) = 0,$$

$$(3.7) \quad \nabla_X(F_k)(f_i Y, f_j Z) = -\epsilon_k \nabla_X(F_k)(f_j Y, f_i Z)$$

i, j, k being all possible different permutations of 1, 2, 3 ($i \neq j \neq k$).

Theorem 1.4. In an $(\epsilon f_1, \epsilon f_2)$ structure manifold the following equalities always hold

$$(3.8) \quad f_1 \nabla_X(f_2)(X) + \nabla_X(f_1)(f_2 Y) = -\epsilon \nabla_X(f_3)(Y),$$

$$(3.9) \quad f_2 \nabla_X(f_3)(Y) + \nabla_X(f_2)(f_3 Y) = -\epsilon_2 \nabla_X(f_1)(Y),$$

$$(4.0) \quad f_3 \nabla_X(f_1)(Y) + \nabla_X(f_3)(f_1 Y) = -\epsilon_1 \nabla_X(f_2)(Y).$$

Theorem 1.5. In an $(\epsilon f_1, \epsilon f_2)$ structure manifold the 2-co-tensor F_k with respect to the Riemannian connection ∇_X , always satisfies the identity

$$(4.1) \quad \epsilon_k \nabla_X(F_i)(f_j Y, f_k Z) + \epsilon_i \nabla_X(F_j)(f_k Y, f_i Z) + \\ + \epsilon_j \nabla_X(F_k)(f_i Y, f_j Z) = 0$$

for all possible permutations of i, j, k .

Theorem 1.6. In an $(\epsilon f_1, \epsilon f_2)$ structure manifold the following hold

$$(4.2) \quad \frac{1}{2} [f_i, f_i] (X, Y) = \nabla_{f_i X}(f_i)(Y) - \nabla_{f_i Y}(f_i)(X) + \\ + f_i \nabla_Y(f_i)(X) - f_i \nabla_X(f_i)(Y),$$

$$(4.3) \quad [f_i, f_j] (X, Y) = \nabla_{f_i X}(f_j)(Y) + \nabla_{f_j X}(f_i)(Y) - \\ - f_i \nabla_X(f_j)(Y) - f_j \nabla_X(f_i)(Y) - \\ - \nabla_{f_i Y}(f_j)(X) - \nabla_{f_j Y}(f_i)(X) + \\ + f_i \nabla_Y(f_j)(X) + f_j \nabla_Y(f_i)(X).$$

Definition: We shall call an $(\epsilon f_1, \epsilon f_2)$ structure manifold to be an f_{ijk} -K-manifold iff

$$(4.4) \quad f_i \nabla_X(f_j)(f_k Y) = 0;$$

f_{ijk} -AK-manifold iff

$$(4.5) \quad \tau_{X,Y,Z} \nabla_X(f_i)(f_j Y, f_k Z) = 0,$$

where τ denotes the cyclic sum over X, Y, Z ;

f_{ij} -NK manifold iff

$$(4.6) \quad \nabla_{f_j X}(f_i)(Y) - \epsilon_j \nabla_Y(f_i)(f_j X) = 0$$

and

$$\nabla_X(f_i)(f_j Y) + \nabla_Y(f_i)(f_j X) = 0;$$

f_{ij} -QK manifold iff

$$(4.7) \quad \nabla_{f_j X}(f_i Y) + \nabla_{f_j^2 X}(f_i)(f_j Y) = 0;$$

f_{ijk} -H manifold iff

$$(4.8) \quad [f_i, f_j] (f_k X, f_k Y) = 0.$$

Theorem 1.7. An f_{ijk} -K-manifold is also an f_{kji} -K-manifold.

The proof follows from (3.8) and (4.4).

Theorem 1.8. If an $(\epsilon f_1, \epsilon f_2)$ structure manifold is any two of the six types f_{123} -K, f_{132} -K, f_{231} -K, f_{213} -K, f_{312} -K and f_{321} -K then it is also of the remaining types.

Proof. If the manifold is f_{ijk} -K and f_{jki} -K then $f_i \nabla_X(f_j)(f_k Y) = 0$ and $f_j \nabla_X(f_k)(f_i Y) = 0$. Now using (3.6) we obtain

$$f_k \nabla_X(f_i)(f_j Y) = 0$$

and therefore manifold is f_{kij} -K. Moreover using Theorem 1.7 the proof follows.

Theorem 1.9. An f_{ijk} -AK manifold is also an f_{kji} -AK manifold.

Theorem 1.10. If $(\epsilon f_1, \epsilon f_2)$ structure manifold is any two of the six types f_{123} -AK, f_{132} -AK, f_{231} -AK, f_{213} -AK, f_{312} -AK, f_{321} -AK then it is essentially of the remaining types.

Proof. Let M^n be f_{123} -AK and f_{231} -AK then from (4.5) we have

$$(4.9) \quad \nabla_X(F_1)(f_2Y, f_3Z) + \nabla_Y(F_1)(f_2Z, f_3X) + \nabla_Z(F_1)(f_2X, f_3Y) = 0,$$

$$(5.0) \quad \nabla_X(F_2)(f_3Y, f_1Z) + \nabla_Y(F_2)(f_3Z, f_1X) + \nabla_Z(F_2)(f_3X, f_1Y) = 0.$$

Now adding (4.9) and (5.0) after multiplying them by ϵ_3 and ϵ_1 respectively, we obtain

$$\begin{aligned} & \epsilon_3 \nabla_X(F_1)(f_2Y, f_3Z) + \epsilon_1 \nabla_X(F_2)(f_3Y, f_1Z) + \\ & + \epsilon_3 \nabla_Y(F_1)(f_2Z, f_3X) + \epsilon_1 \nabla_Y(F_2)(f_3Z, f_1X) + \\ & + \epsilon_3 \nabla_Z(F_1)(f_2X, f_3Y) + \epsilon_1 \nabla_Z(F_2)(f_3X, f_1Y) = 0. \end{aligned}$$

And using the identity (4.1) we obtain

$$\nabla_X(F_3)(f_1Y, f_2Z) + \nabla_Y(F_3)(f_1Z, f_2X) + \nabla_Z(F_3)(f_1X, f_2Y) = 0$$

i.e. the manifold is f_{312} -AK. Now with the help of Theorem 1.9 the theorem is completely established.

Theorem 1.11. An f_{ij} -NK manifold is also f_{ij} -QK manifold.

Proof. If M^n is f_{ij} -NK then

$$(5.1) \quad \nabla_{f_jX}(f_i)(Y) - \epsilon_j \nabla_X(f_i)(f_jY) = 0,$$

$$(5.2) \quad \nabla_X(f_i)(f_jY) + \nabla_Y(f_i)(f_kX) = 0.$$

Now

$$\begin{aligned} \nabla_{f_j X} (f_i)(Y) + \nabla_{f_j^2 X} (f_i)(f_j Y) &= \nabla_{f_j X} (f_i)(Y) - \nabla_Y (f_i)(f_j^3 Y) = \\ &= \nabla_{f_j X} (f_i)(Y) - \epsilon_j \nabla_Y (f_i)(f_j X) = 0 \end{aligned}$$

consequently M^n is f_{ij} -QK.

Theorem 1.12. An f_{ijk} -H manifold is also an f_{jik} -H manifold.

REFERENCES

- [1] S. Hashimoto : On the differential manifold admitting $F^3 + F = 0$, $G^3 + G = 0$, $FG = GF$ and $F^2 = G^2$. Tensor 15 (1964) 269-274.
- [2] A. Gray : Some examples of almost Hermitian manifolds. Illinois J. Math. 10(1966) 353-366.
- [3] K.D. Singh, R.K. Vohra : On $(\epsilon f_1, \epsilon f_2)$ structure manifolds. Doctoral Thesis, Dep. Lucknow University.
- [4] H. Wakakuwa : On linearly independent almost complex structure in a differentiable manifold. Tôhoku Math. J. 13(1961) 393-422.

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY,
LUCKNOW, INDIA

Received September 8, 1976.