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ON SOME (ef;, ef;) STRUCTURE MANIFOLDS

1. Introduction

In 1964, Hashimoto defined and studied (P,G) structures
on a differentiable manifold [1] In this paper we have ob-
tained some interesting resulis connecting the structure ten-
sor of an (ef1, ef2) structure manifold [3]. Few special
structures have been defined and certain results which bring
out the interrelationship are proved.

Let M? be a C® real differentiable manifold and £y
f2 be two non null (1,1} tensor fields of sonstant rank =
(r<n, n is dimension of M?), satisfying [3]

3 L 3 -
£,7 - &f, =0, £f,7 - e,f, =0
(1.1)

2 2 »
r—.1f1 = €2f2 , f1f2 = e.;zf.l,
where 62—62-1ande-ee and €4 = + 1
4 =€y = = €49 €7 €4 3= "
Then if we put
111’2 = - ef2
we get

3 -
f3 - €3f3 = O-
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Theoren 1.1. The following relations hold on
(e.f1, e,fz) structure manifolds

-

(1.2) £57 - €4f5 = O,

(1.3) £if, =ef,fy = -efy,
(1.4) 8y = €538, = - €,fy,
(1.5) £3f, = €f,fy = - €,f,,
(1.6) e1f12 = e2f22 = 53f32.

Let & and m Dbe two projection operators defined by

(1.7) 028 72, n=1-652 k=123

Then we note that

(1.8) ¢l +m=1, nl=In-=o0, 22 - snd  m? = m
and further
be, = £l =1, mf, = fym = O
(1.9)
2 2 2
£e, © = eke, nf,® = £ “m = 0,

Thus we obtain, corresponding to ¢ and m the two distri-
butions L and M respectively.

Remarks,. 1) If ey =€, = €4 = -1, then
(ef1, efz) structure acts as an slmost quaternion structure
on the horizontal distribution, consequently in this case
the dimension of 1L 1is a multiple of 4,

2) If €, = -1, €, = €3 =1 then (ef1,e:f2) structure
is an almost complex structure of first kind on horizontal
distribution [4].
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3) If € =€, = -1, €3 =1 then (ef,, €f,) structure
acts as an almost complex structure of second kind [4].

4) 1If € =€y =€3 = 1 then each of the tensor fields
£i0 £, ,and £y of (efa, €f,) structure is an almost pro-
duct structure on the horizontal distribution.

If we take rank (fk) = n, then the above remarks from
(1) to (4) hold for the entiie manifold.

Since MP always admits a positive definite Riemannian
metric "g" defined by

(2.0) g, (x,7) L g(£,x, £,Y) + glax,¥), k= 1,2,3,
hence we have

2
(2.1) g (£ X,¥) = g (£,°X, £Y).

A two co-tensor F, defined by [3]

(2.2) P (X,Y) = g, (£, X,Y)
always satisfies
(2.3) P (X,Y) = ¢, F (Y,X).

For the tensor fields f

40 £, the Nijenhais tensor is de-
fined by [3]

[£,%,2,Y] - £,[2,5,Y] - £,[x,2.0] +
[£,52,Y] - £,(2.5,7] - £, [x,2,¥] +

(£,8, + £,£,)[x,Y].

(2.4) [f."fz] (X,Y)

+

+

Let V be the Riemannian connection on MP., Then the
following equalities hold.
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(2.5) X(g(¥,2)) = g(Vy¥,2) + g(¥, VyZ)
(2.6) [X,1] = Vp¥ - V,x
(2.7) Ve(£0(Y) = Vy(fY) - £, VoY

(2.8) VeF, (Y,2) = g (7 (£,)(Y),2).

Theoren 1.2. The following results hold in an
(ef1, €f2) structure manifold.

(2.9) £, Vx(fz)(ij)

{

[}

(3.0) £, Vp(£3)(£4Y) = €4 Vg(£,)(£,Y) - e, V(£ ) (£,Y),

(3.1) f3 Vx(f1)(f2Y) € Vx(f3)(f3Y) - €&, Vx(fz)(sz),

(3.2) £, Vg(£3)(£,Y) = €4 €5 VR(£,)(£,Y) - €565 Vy(£,)(£,Y),
(3.3) £, Vx(f1)(f3Y) = €,5€, Ve(£,)(£,Y) - VX(fB)(fBY)F,
(3.4)  £3 (£, (£,Y) = V3(£3)(£3Y) - e4eq Vy(£)(£,Y).

Theorem 1.3. Inan (ef1, ef,) structure mani-
fold the following hold

(3.5) £ Vx(fj)(ka) = -€f Vx(fj)(fiY),

(3.6) £, Vx(fj)(ka) + fj Vx(fk)(fiY) + I Vx(fi)(ij) =0,
(3.7) VxR I(£,8,242) = - €, Vg(F)(£,Y,5,2)

i,J,k being all possible different permutations of 1,2,3
(1434x).

Theorem 1.4. In an (ef1, €f,) structure mani-
fold the following equalities always hold

- 666 -



On some (ef1, efz) structure manifolds 5

(3.8) £, Vel£)(X) + Vpl£)(£,Y) = -evy(£5)(Y),

(3.9) £, Vx(£3)(Y) + Va(£,)(£5Y) = - €, Vy(£,)(Y),

(4.0) £4 Va(£)(Y) + VR(£3)(£,Y) = - €, Vg(£,)(Y).

Theorenmn 1.5. In an (ef1, ef2) structure mani-
fold the 2~co-tensor F'k with respect to the Riemannian con~-
nection VX' always satisfies the identity

(4.1) €y VX(Fi)(fJY,ka) + €y VX(FJ)(ka,fiZ) +

+ 63 VX(Fk)(fiY’f z) =0

J

for all possible permutations of i, j, k.

Theorem 1,6, In an (e.f1, €.f2) structure mani-
fold the following hold

(.2)  3[eg,8] (x0) - Ve x(£0(0) - Vo y(2)(X)

+ £ Ve (£)(X) - £, Vi(£,)(Y),

[}

£, Val£) () - £, Vi(e)(y) -

+ 23 Vy(£)(X) + £, Vy(£,)(X).
Definition: We shall call an (€f1,ef2) struc-
ture manifold to be an fijk-K-manifold iff

(4.4) £, Vx(fd)(ka) =03
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fijk-AK-manifold iff

(4.5) x’g’ZVx(Fi)(fJY,ka) = 0,

where T denotes the cyelic sum over X, Y, Z3

fiJ-NK manifold iff
(4.6) ijx(fi)(Y) - €y Vy(2)(£5T) = 0
and

Vx(fi)(ij) + VY(fi)(fjx) =04

fiJ-QK manifold iff

(4.7) Vfdx(fiY) + \7f 2X(f1)‘(fJY) = 03
fijk'H manifold iff
(4.8) [fi,fj] (£,X,2,Y) = O.

Theoren 1.7, An fldk-u-manifold is also an
~K-manifold.,
The proof follows from (3.8) and (4.4).
Theorem 1,8. If an (efy, €f,) structure mani-
fold is any two of the six types f123-K, f132-K, f231-K,
f213-K, f312-K and f321-K then 1t is also of the remaining
types.

Proof, If the manifold is fi k'K and fjki'K
then f, V&(fj)(ka) = 0 and f;j V&(fk)ifiY) = 0, Now using
(3.6) we obtain

Tyt

£, Vy(£y)(£4¥) = 0

and therefore manifold is fkiJ'K' Moreover using Theorem
1.7 the proof follows,
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Theorem 1.9, An fijk"AK manifold is also an
-AK manifold.
Theorem 1,10, If (ef1, efz) structure manifold
is any two of the six types f123-AK, f132-AK, f231-AK,
f213-AK, f312-AK, f321-AK then it is essentially of the
remaining types.

Proof . Let M® be ¢
(4.5) we have

fiye

123-AK and f231-AK then from

(4.9) VX(F1)(f2Y,f32) + VY(F1)(f22,f3x) + VZ(F1)(f2X,f3Y)=O,
(5.0) V(P (£5Y,£,2) + Vy(F)(£32,£,X) + V,(F,)(£f,3X,£,Y)=0.

Now adding (4.9) and (5.0) after multiplying them by €3 and
€4 respectively, we obtain

+

€4 VX(F1)(f2Y,f32) + €y VX(FQ)(fBY,f1Z)

+

+ €3VY(F1)(f2Z,f3x) + €, VY(FZ)(f3z,f1x)

0.

+ €5 VZ(F1)(f2X,f3Y) + €4 VZ(Fz)(f3X,f1Y)

And using the identity (4.1) we obtain
VX(FB)(f1Y,f22, + VY(FB)(f1Z,f2X) + VZ(FB)(f1X,f3Y) =0
i.e. the manifold is f312-AK. Now with the help of Tneorem
1.9 the theorem is completely established,

Theorenmnm {.11. An fiJ-NK manifold is also fij'QK
nanifold,

Proof. If M% is £,4-NK then

{(5.1) ijx(fi)(Y) - €y Vx(fi)(fjx) = 0,

{(5.2) Vx(fi)(ij) + VY(fi)(ka) = 0.
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Now

Ve x(£)(0 + V5 (£ = Vg y2)(1) - Vy(£,)(2,%1) =
3

consequently MP  is fij'QK'

Theoremn 1.12. An fijk'H manifold is also an

fjik'H manifold.
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