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ON SOME SURFACES IMMERSED IN A MANIFOLD 

ADMITTING A SPECIAL CONCIRCULAR VECTOR FIELD 

1. I n t r o d u c t i o n 
Let M q be an n - d i m e n s i o n a l Riemannian m a n i f o l d of c l a s s 

C°° cove red by a sys t em of c o o r d i n a t e n e i g h b o u r h o o d s {u jx^ 1 } 
and l e t g^ 1. ' i j ^ i l » ^ i d e n ° i ; e t t l 8 m e t r i c t e n s o r , t h e C h r i s -
t o f f e l symbols formed w i t h g ^ and t h e o p e r a t o r of c o v a r i a n t 
d i f f e r e n t i a t i o n , r e s p e c t i v e l y . 

Let Mm (1 < m < n ) be an m - d i m e n s i o n a l Riemannian ma-
n i f o l d of c l a s s C°° cove red by a sys tem of c o o r d i n a t e n e i g h -
bourhoods {V;y a } , immersed i n MQ, and l e t x*1 = x^Cy 3 ) 
be t h e l o c a l e x p r e s s i o n of t h e m a n i f o l d Mffl i n Mn . 

The i n d i c e s h , i , j r u n over t h e r a n g e { 1 , 2 n} and 
t h e i n d i c e s a , b , c , d , e over t h e r a n g e | l , 2 , . . . , m j . 

I f we pu t B f l
h = ? a x h , where 3f l = 3 / 3 y

a , t h e n t h e f u n -
damen ta l m e t r i c t e n s o r of Mm i s g i v e n by 

«ba ' « j l B a j V ' 

We d e n o t e by 

{ c a b } ^ V b h - { A } W ; B d
k g d a g h k 

t h e C h r i s t o f f e l symbols d e t e r m i n e d by g b a , l 3 y ^ a ^ e c o r r e s ~ 
pond ing o p e r a t o r of c o v a r i a n t d i f f e r e n t i a t i o n . 
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2 R.Deszcz 

Let an<^ 5 denote the curvature tensor, 
Ricci tensor and the scalar curvature of Mm, respectively. 
Since the van der Waerden-Bortolotti covariant derivative of 
B k ig given by 

8 

V hB D
h = 3,Bd b a D a • {A} V Ba 1 " Bo" M-

from (1.1) it follows that 

«31 ( V b V > Be' -

which states that viewed as a vector of ljn is 
orthogonal to M^ [4]. 

If we choose n-m mutually orthogonal unit vectors N ^ 
which are normal to M (x,y = m+1,m+2,...,n), then we have 

(1 .2) 

«31 Ba j V -

«31 *xS V = ^xy ex 

and 

(1.3) g ^ B . 1 ^ - g « " Z I ex ^ V ' 
x 

where e„ is the indicator of 
h 

Wow V bB a
n can be expressed in the form 

(1'«> V b B a h - H ex Hbax \ h > i.e. in the form of the Gauss equations, where are the 
second fundamental tensors with respect to the directions 
N The covariant derivative of the vectors N ^ can be 
written in the form 

- 648 -



On some surfaces immersed in a manifold 3 

y 
where 

The equations (1.5/1 are the Weingarten equations for the sur-
face NL. 

* h h If Schouten s curvature tensor H>,„ = V ^ B„ of the _ _ Da d a 
manifold K m [_3J vanishes, then M is called a totally geo-
desic surface. 

We consider now the normal Dundle N(M ) of M . For h « m m w e NiM^, we define a connection V on N(Mm) as follows 

V a w h = ( V aw h) W, 

where ( V a w h ) ü denotes the normal component of = 
= Bg" V^w h ([3], p. 254). When V g w h vanishes identically 
along M m, we say that w b is parallel with respect to the 
connection of the normal bundle N(M ) [2]. « m 

We say that the connection V of the normal bundle of Mffl 
is trivial [2], if there exist vector fields nj0- satisfying 
the equationj 

Laxy = 0 ' 

An m-dimensional Riemannian manifold M m (m > 2) is said 
to be the fcinstein manifold, if its Ricci tensor satisfies 
the condition 

% a = l « b a -

-dimensional Riemai 
rized by 

An m-dimensional Riemannian manifold (m > 2) characte-
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4 R.Deszcz 

(1.8) V cRb a = 0 

wi l l be called Ricci symmetric. 
Thus each Einste in manifold (m > 2) i s Ricci symmetric, 

but not conversely. I f the condit ion R^a = 0 holds, then 
M_ i s cal led Ricci f l a t , m 

The purpose of t h i s paper i s to obtain some r e s u l t s on 
sur faces immersed in MQ admitting a spec ia l concircular 
vector f i e l d v*1. 

A vector f i e l d v*1 i s called specia l concircular [3] , 
i f i t s covariant der iva t ive is of the form 

(1.9) V o O i } , 

where C iB some non-constant func t ion . 
We denote by vfl = v^B^ the pro jec t ion of v^ = g - j j ^ 

onto M . The covariant der iva t ive of v„, in view of (1.9) ni a 
and the equation 

V a " < V h V + V b a " . 

i s given by 

V b v a = C e b a
 + T ba ' 

where ( [3 ] , p.254) 

V b v h " V a o d Tba - V b a h ' 

2. Prefljimlnary r e s u l t s 
L e m m a 1* Let be a connected surface immersed 

in a manifold MQ admitting a specia l concircular vector 
f i e l d v*1, i f the sca l a r func t ion vavQ i s everywhere non-
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On some surfaces immersed in a manifold 5 

zero, then the function vaCa cannot vanishes identically, 
where CL = V„C = and C. = V,C. a a a j J J 

P r o o f . For every manifold M_ admitting a special h f concircular vector field v we have [lj 

(2.1) C d v h = C h V j ' 

Transvecting this with B^v 8, we obtain v 8C a = v
av a. 

Suppose now that vac s o. Then the last equation yields 
a a vgv Cjj = 0. Since oy assumption vflv £ 0 everywhere),^ = 0 

i.e. C is constant - a contradition. Our lemma is thus prov-
ed. 

L e m m a 2. Let M„ be a surface immersed in a ma-m . 
nifold M admitting a special concircular vector field v . 

h Then the vector field w £ given by 

(2.2) w h V 1 . 
x 

is parallel with respect to the connection V if and only if 

(2.3) v \ f l x = 0 
« 

holds. Moreover, if the connection N7 is trivial and w is 
parallel with respect to it, then 

(2.4) V0(VjHx^) = 0. 

P r o o f . Transvecting (1.3) with v, and using the 
definition of w h and va, we find w^ = v* - v^B^. Dif-
ferentiating this covariantly and applying (1.9), (1.10), 
(1.4) and the equation 

(2.5) V = B„l V.v3, a a 1 
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6 R.Deszcz 

we obtain 

(2.6) V . - T * ^ - v b ^ e x H b c x ^ , 
x 

where T b
c = gbaTflC. 

But (2.6) by the definition of V , gives 

V " " S I V \ « A J . 
x 
h * 

hence by assumption that w is parallel with respect to V 
it follows (2.3), which completes the proof of the first part 
of our lemma. » 

If the connection V is trivial, then the equations (1.5) 
and (1.6) yield 

(2.7) V0Nx3 = - H c d I g b V . 

Differentiating now v^N^ covariantly and using (1.9), 
(2.5), (2.7), (1.2) and (2.3) we obtain (2.4), as desired. 

L e m m a 3. Let Mffl (m > 2 ) be a Ricci symmetric 
surface immersed in a manifold M_ admitting a special con-h circular vector field v . Then the relation 

(2-8) _Ca^bc_ 7 a T V e c = Va V c + ^a V ^ e T V 

ha 
holds, where T = Tbgg . 

P r o o f . Differentiating (1*10) covariantly, we have 
V c \7bva = Ccgba + so in view of the Ricci identity, 
it follows that 

(2.9) - v eR e
a b 0 = Ccgab - C bg a c + 7 cT a b - 7 bT a c. 
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On some surfaces immersed in a manifold 

ab This by contraction with g gives 

(2.10; - veRe
c = (m-1)Cc + 7 CT - 7 eT e

c 

which by covariant differentiation together with (1.8), (1.10) 
implies that 

- C*bc - T V e c - ^ V o + " 

But the last equation gives (2.8), which completes the proof. 
L e m m a 4. Let (m > 2) be a Ricci symmetric 

surface immersed in a manifold M Q admitting a special con-
circular vector field vh. If T ^ satisfies the equation 

^cTaD " ^bTac = Pc«ab " Pb«ao 

for some vector p„, then the condition 

(2.12) t d [ v a v X + (m-1 )v at ag bJ = 0 

holds, where 

(2.13) tc = Cc + pc. 

P r o o f . Substituting (2.11) in (2.9) we have 

( 2' 1 4 ) - V ' a b o " V a b " V a c -

whence oy contraction with g a b and transvection with va, 
obtain 

12.15) - v Re = (m-1)t O C C 
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8 R.Deszcz 

and 

(2.16) V b = V e » 

respectively. Substituting now (2.11) in (2.8) we get 

(2.17) " Ca*bc - V V e c = ( m- 1 ) ^a V b V 

and consequently 

- Ca«bc + Cb*ac ' V V e o + ^ b T V e c = 

= (m-1)( 7 a 7 b t 0 -

This, in view of (2.11), (2.13) and the Ricci identity yields 

" V b c + V a c " " ( m- 1 ) teR ecba' 

Multiplying the last equation by vd and using (2.16) and 
(2.14), we find 

V b c + V a c " ( V b c " V a c ' ] = 

from which the condition (2.12) follows by transvection 
with v a and on account of (2.15). Our lemma is thus proved. 

Since the tensor Tflb is symmetric, we have the follow-
ing 

R e m a r k . If satisfies either of the following 
conditions 

<2-18> V b c + ^bTac = Kc«ab. 

(2.19) ? a T b c + \7bTac = 2ucgab - u ag b c - u bg a c, 

(2.20) V c T a b = 
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Oft some surface immersed in a manifold 9 

then the equation (2.11) holds , where pb = -Kb , pb = -3ub 

and p 0 = J T o , Tq = V c?, r e spec t ive ly . 

L e m m a 5. Let Mm i.m > 2 ) be a Ricci symmetric, 
connected sur f ace , immersed in a manifold M admitting a 

h s p e c i a l concircular vector f i e l d v . I f the condition (2.18) 
or (2 .19) i s s a t i s f i e d , v a v 3 ^ 0 everywhere and t d s 0, 
then M_ i s Ricci f l a t , m 

P r o o f . Since t d = 0 the conditions (2 .15) and 
(2 .17) give 

(2 .21) v Re = 0 " C 

and 

whence 

- C Ev + ^ T ^ R = 0, 8 be a b ec ' 

Cy.R + Vx-T6 R = 0, d ac o a ec ' 

and consequently 

(^•22) - C aRb c - CbR a c + ( VaT% + V b T e a ) R e c = 0 . 

In the f i r s t case , i f C„ = K , the equation (2 .22) y i e l d s 9 a 

" C aRb 0 - CbR a c + .^ a bC eR e 0 = 0 . 

Transvecting (2 .23) with v a and using (2 .21) we have 

(2 .24) v aC aRb ( J + v b C e R e c = 0 . 

and transvect ing (2 .1 ) with B ^ B ^ we obtain 

(2 .25) C a v b = C b v a . 
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10 R.Deszcz 

Thus from (2.24) and (2.21) we have ^ aC aR b c = 0, whence, 
in view of Lemma 1 and the assumption that the Ricci tensor 
is parallel, it follows that M m is Ricci flat. 

In the remaining case, if C_ = 3u., the equation (2.22) 3 fl 
yields (2.23), from which, in the same way as in the first 
case, it follows, that M is Ricci, flat. Our lemma is thus 
proved. 

3. On totally geodesic surfaces 
T h e o r e m 3.1. Let ML he a connected surface m 

immersed in a manifold M„ admitting a special concircular 
h * vector field v . Moreover, let the connection V be trivial 

and v„va £ 0 everywhere. Then M_ is totally geodesic if 
and only if the vector field w defined by (2.2) is parallel 
with respect to the connection V and the condition 

(3-D ^cHabx = ° 

holds. 
P r o o f . Prom (1.4), (2.4) and (3.1) it follows that 

(3.2) V cT a b. = 0. 

Differentiating (2.3) covariantly and using (1.10) we get 

(3.3) CH a c x + T d
c H d a x + vd V cH d f l x = 0, 

hence 

CH v + T ^ H - = 0. acx c dbx 

Differentiating this covariantly and applying (3.1) and (3.2), 
v;e find C H „„ = 0, whence 6 OCA 

(3.4) ' V a o x " 
But from the last equation in view of Lemma 1 and (3.1) it 
follows that J£m is totally geodesic. 
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On some su r f ace immersed in a manifold 11 

Conversely, i f M i s t o t a l l y geodes ic , then obviously 
the condi t ion (3 .1) i s s a t i s f i e d , and from (2 .6) i t fo l lows 

h * 
t h a t w i s p a r a l l e l with respec t t o the connection V . 
Cur theorem i s proved. 

T h e o r e m 3 . 2 . Let Mm be a connected su r f ace 
immersed in a manifold M_ admit t ing a s p e c i a l conc i r cu l a r l. n # 
vec to r f i e l d v . Moreover, l e t the connection V be t r i v i a l 
and v g v a t 0 everywhere. Then Mm i s t o t a l l y geodesic i f 
and ^only i f the vec tor f i e l d w*1 i s p a r a l l e l with respec t 
to V and the cond i t ion 

VcHabx - ?xcSab 

ho lds , where 

£xc = 7 c P x ' ftt = i g abx* 

P r o o f . S u b s t i t u t i n g (3 .5) in (3 .3) we get CHD„ + 
d a c x 

+ T c H d a x + v
a P x c = from which, by t r a n s v e c t i o n with 

v a and by ( 2 . 3 ) , we ob ta in v 0 v a o = 0 . Thus the condi t ion 8 ' ZC 
(3 .5 ) reduces to (3 .1) which in view of Theorem 3.1 completes 
the proof of the theorem. 

T h e o r e m 3 .3 . Let M_ be a connected s u r f a c e m immersed in a manifold M admi t t ing a s p e c i a l c o n c i r c u l a r l n « 
vec tor f i e l d v . Moreover, l e t the connect ion V be t r i v i a l 
and l e t v v a £ 0 everywhere. Then M„ i s t o t a l l y geodesic 

h 
i f and only i f the vec to r f i e l d w i s p a r a l l e l with r e spec t 
to V and the condi t ion 

( 3 ' 6 ) ? c H a b x + ?bHacx = Kxa*bc 

holds f o r some vec to r f i e l d s K_„. 
a n 

P r o o f . Transvect ing (3 .6 ) with v and v we 
obta in 

T7 II . —® V7 ti _ „ B t , 

< 3 ' 7 ) v V c H a * x + * V a c x = v K x a « b c 
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12 R»Deszcz 

and 

<3-8> T°7oHaDX + v C V b H a c x - K x gv b , 

r e spec t ive ly . Multiplying both s ides of (3.3) by 
summing over x and using (2.4) and the d e f i n i t i o n of T a b , 

we get 

(3.9) CTab + Td aTd
b + v d V b T d f l = 0, 

whence 

(3.10) v d 7 b T d a = v d 7 a T d b . 

In the same way, the condit ions (3.7) and (3.8) give 

(3.11) vd VcTbd + vd 7 b T d c = vdKdgb0 

and 
(3.12) vd VdTb0 + vd \7bTcd = Kcvb 

respec t ive ly , where 

KC -lEIexVx3l£»-
X 

Prom (3.10) and (3.12) i t fol lows tha t 

(3.13) V b - V a ' 

Applying (3.10) in (3.11) we f ind 

Subs t i tu t ing now the l a s t equation in (3.9) we obtain 

(3.14) CTgb + Te aT% + \ v®Kegab = 0, 
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On some s u r f a c e s immersed in a manifold 13 

whence by t r a n s v e c t i o n with v13 and in v i r t u e of (2 .3 ) and 
(3.13) we have v

a
v S K t i = 0 a n d consequently K^ = 0. Thus 

mu l t i p ly ing (3 .6) by e
x

v j^x*'» summing over x and using 
the d e f i n i t i o n of K^ we get 

VcTab + V b T a c = 

whence 

(3.15) V c T a b = 0 . 

D i f f e r e n t i a t i n g now (3.14) covar i an t ly and s u b s t i t u t i n g 
(3.15) and K^ = 0 we ob ta in ^e^ab = ® hence t r a n s v e c t i n g 
t h i s with v e we f ind v e C e T a b = 0 . Prom Lemma 1 and (3.15) 
we conclude t h a t T ^ = 0 . Thus the equat ion (3 .3) i s reduced 
t o CHa c x + vd ^ c H d a x = 0 . But from the l a s t r e l a t i o n and 
(3 .7) i t fo l lows t h a t 2CHa(JX + vdKx dg f l C = 0, from which 
-2Cpx = v < J K

xd' a n d ' consequent ly , H a c x = Qx&ao* D i f f e r e n -
t i a t i n g t h i s covar i an t ly we c|btain (3 .5 ) which in view of 
Theorem 2 completes the p roo f . 

T h e o r e m 3 . 4 . Let M„ be a connected s u r f a c e m 
immersed in a manifold Mfi admit t ing a s p e c i a l c o n c i r c u l a r 
vec to r f i e l d v*1 such t h a t vaC„ ^ 0 everywhere. Then Mm h 
i s t o t a l l y geodesic i f and only i f the vec to r f i e l d w i s 
p a r a l l e l with respec t t o t he connect ion V and the fo l lowing 
cond i t ions 

( 3 ' 1 6 ) 7 d ^ a b x - 7dHab* " 0 . 

( 3 ' 1 7 ) 7 b T a d " V a b 

hold . 
P r o o f . In view of the Ricci i d e n t i t y , the equat ion 

(3 .16) y i e l d s 

HebxS%cd + Haex®ebcd a 
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14 R.Dsszcz 

whence by transvection with v° we obtain 

(3.18) * V ° S o d e a + ^ a x ^ c d e b = 

On the other hand substituting (3.17) in (2 .9 ) , we have 

" ve^6abc = Cc8ab " C b g ac ' T h e l a s t e 9 u a t i o n together with 
(3.18) gives 

CaHdbx " SadCeHebx + CbHdax " « b d ^ a x = 

Transvecting this re lat ion with v a and using (2.25) and 
(2.3) we get (3 .4 ) , from which it follows that M i s tota l ly 
geodesic. 

Conversely i f Mm i s total ly geodesic then thé conditions 
(3.16) and (3.17) are s a t i s f i e d and since by (2.6) wh i s pa-
r a l l e l with respect to V , Hence our theorem i s proved. 

4. On RicciJ symmetric surfaces 
T h e o r e m 4.1 . le t Mm (m > 2 ) be a Ricci] symme-

t r i c connected surface immersed in a manifold M admitting 
L. Q 

a special concircular vector f i e l d v , such that everywhere 
v g v a jé 0. I f T g b s a t i s f i e s the condition (3.17) then M 
i s an Einstein manifold. 

P r o o f . Substituting (3.17) in (2.8) we obtain 

- V a W 8 c - C A c - ( m ~ l ) V a V b C C 

whence 

- V e a « 6 o - V a c = ^ V b V a V 

These equations, together with (3.17) and the Ricci ident i ty , 
yield 

" CaSbc + M a c - - i - l i C . 5 % 1 » -
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Oft some su r f ace s immersed in a manifold 15 

Mult iplying t h i s by vd and using (2 .25) , (2 .9) and (3 .17 ) , 
we f ind 

C d [ - va*bc + V a c - <®-1>(c
aSbo " 0 b « a c ) ] = 0 

so t r ansvec t ing t h i s with v av d and using (2.10) we have 

(4 .1) v d C d [ - v a v a R b c - ( ^ D v a C a g b c - ( VcT - V e T e
c ) ] = 0 . 

But from (3.17) i t fo l lows t ha t V T - V»Te„ = 0, thus c e c ' 

(4 .1) give 

(4 .2) v d C d [ - v a v a R t c - U - D v a C a g b c ] = 0 . 

Contract ing (4.2) with g b c , we obta in 

v a I ] • v dc d ( m - D v ac a . 

Subs t i t u t i ng thi|s in (4 .2) we obtain 
v d ° d ! X c - i «bo] -

Hence, in view of Lemma 1 and (1.8) we get (1 .7) which com-
p l e t e s the proof . 

T h e o r e m 4.2 . Let Mm (m > 2 ) be a Ricci |aymme-
t r i c , connected sur face immersed in a manifold M„ admit t ing 

h 
a spec ia l conc i rcu la r vector f i e l d v such t ha t everywhere 
v g v a t 0. I f T a b s a t i s f i e s (2.11) and the vector f i e l d t 
defined by (2.13) i s non-zero, then Mffl i s an E ins te in mani-
f o l d . 

P r o o f . Transvecting (2.12) with g b o we obtain 

V } ^ = u - D v a t a t d . 

Subs t i t u t i ng t h i s in to (2 .12) we get 

t d f b c - T » b o ] " 
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16 R.Deszcz 

Since td is non-zero and the condition (1.8) holds the last 
equation gives (1.7). Our theorem is thus proved. 

Theorem 4.2, Lemma 4, Remark and Lemma 5 imply together 
the following corollary. 

C o r o l l a r y . Let M m (m > 2) be a Ricci symme-
tric, not Ricci flat, connected surface Immersed in a mani-
fold Mfl admitting a special concircular vector field v*1 
such that everywhere vgva ^ 0. If one of the conditions 
(2.18), (2.19), (2.20) is satisfied, then Mffl is an Einstein 
manifold. 
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