

Ryszard Deszcz

**ON SOME SURFACES IMMersed IN A MANIFOLD
ADMITTING A SPECIAL CONCIRCULAR VECTOR FIELD**

1. Introduction

Let M_n be an n -dimensional Riemannian manifold of class C^∞ covered by a system of coordinate neighbourhoods $\{U; x^h\}$ and let $g_{ji}, \{^h_{ji}\}$, ∇_i denote the metric tensor, the Christoffel symbols formed with g_{ji} and the operator of covariant differentiation, respectively.

Let M_m ($1 < m < n$) be an m -dimensional Riemannian manifold of class C^∞ covered by a system of coordinate neighbourhoods $\{V; y^a\}$, immersed in M_n , and let $x^h = x^h(y^a)$ be the local expression of the manifold M_m in M_n .

The indices h, i, j run over the range $\{1, 2, \dots, n\}$ and the indices a, b, c, d, e over the range $\{1, 2, \dots, m\}$.

If we put $B_a^h = \partial_a x^h$, where $\partial_a = \partial/\partial y^a$, then the fundamental metric tensor of M_m is given by

$$g_{ba} = g_{ji} B_a^j B_b^i.$$

We denote by

$$(1.1) \quad \left\{^a_{c b}\right\} = (\partial_c B_b^h + \left\{^h_{ji}\right\} B_c^j B_b^i) B_d^k g^{da} g_{hk}$$

the Christoffel symbols determined by g_{ba} , by ∇_a the corresponding operator of covariant differentiation.

Let \bar{R}_{abcd} , \bar{R}_{ad} and \bar{R} denote the curvature tensor, Ricci tensor and the scalar curvature of M_m , respectively. Since the van der Waerden-Bortolotti covariant derivative of B_a^h is given by

$$\nabla_b B_a^h = \partial_b B_a^h + \left\{ \begin{matrix} h \\ j \quad i \end{matrix} \right\} B_b^j B_a^i - B_c^h \left\{ \begin{matrix} c \\ b \quad a \end{matrix} \right\},$$

from (1.1) it follows that

$$g_{ji} (\nabla_b B_a^j) B_c^i = 0,$$

which states that $\nabla_b B_a^j$, viewed as a vector of M_n is orthogonal to M_m [4].

If we choose $n-m$ mutually orthogonal unit vectors N_x^h which are normal to M_m ($x, y = m+1, m+2, \dots, n$), then we have

$$(1.2) \quad \left\{ \begin{array}{l} g_{ji} B_a^j N_x^i = 0, \\ g_{ji} N_x^j N_y^i = \delta_{xy} e_x \end{array} \right.$$

and

$$(1.3) \quad g^{ab} B_a^i B_b^j = g^{ij} - \sum_x e_x N_x^i N_x^j,$$

where e_x is the indicator of N_x^i .

Now $\nabla_b B_a^h$ can be expressed in the form

$$(1.4) \quad \nabla_b B_a^h = \sum_x e_x H_{bax} N_x^h,$$

i.e. in the form of the Gauss equations, where H_{bax} are the second fundamental tensors with respect to the directions N_x^j . The covariant derivative of the vectors N_x^h can be written in the form

$$(1.5) \quad \nabla_a N_x^h = - H_{ba} g^{bc} B_c^h + \sum_y e_y L_{axy} N_y^h,$$

where

$$L_{axy} = (\nabla_a N_x^i) N_y^j g_{ji}.$$

The equations (1.5) are the Weingarten equations for the surface M_m .

If Schouten's curvature tensor $H_{ba}^h = \nabla_b B_a^h$ of the manifold M_m [3] vanishes, then M_m is called a totally geodesic surface.

We consider now the normal bundle $N(M_m)$ of M_m . For $w^h \in N(M_m)$, we define a connection $\overset{*}{\nabla}$ on $N(M_m)$ as follows

$$\overset{*}{\nabla}_a w^h = (\nabla_a w^h)^N,$$

where $(\nabla_a w^h)^N$ denotes the normal component of $\nabla_a w^h = B_a^j \nabla_j w^h$ ([3], p. 254). When $\overset{*}{\nabla}_a w^h$ vanishes identically along M_m , we say that w^h is parallel with respect to the connection of the normal bundle $N(M_m)$ [2].

We say that the connection $\overset{*}{\nabla}$ of the normal bundle of M_m is trivial [2], if there exist vector fields N_x^h satisfying the equation

$$(1.6) \quad L_{axy} = 0.$$

An m -dimensional Riemannian manifold M_m ($m > 2$) is said to be the Einstein manifold, if its Ricci tensor satisfies the condition

$$(1.7) \quad \bar{R}_{ba} = \frac{\bar{R}}{m} g_{ba}.$$

An m -dimensional Riemannian manifold M_m ($m > 2$) characterized by

$$(1.8) \quad \nabla_c \bar{R}_{ba} = 0$$

will be called Ricci symmetric.

Thus each Einstein manifold ($m > 2$) is Ricci symmetric, but not conversely. If the condition $\bar{R}_{ba} = 0$ holds, then M_m is called Ricci flat.

The purpose of this paper is to obtain some results on surfaces immersed in M_n admitting a special concircular vector field v^h .

A vector field v^h is called special concircular [3], if its covariant derivative is of the form

$$(1.9) \quad \nabla_i v^h = C \delta_i^h,$$

where C is some non-constant function.

We denote by $v_a = v_h B_a^h$ the projection of $v_h = g_{jh} v^j$ onto M_m . The covariant derivative of v_a , in view of (1.9) and the equation

$$\nabla_b v_a = (\nabla_b v_h) B_a^h + v_h H_{ba}^h,$$

is given by

$$(1.10) \quad \nabla_b v_a = C g_{ba} + T_{ba},$$

where ([3], p.254)

$$\nabla_b v_h = B_b^j \nabla_j v_h \quad \text{and} \quad T_{ba} = v_h H_{ba}^h.$$

2. Preliminary results

L e m m a 1. Let M_m be a connected surface immersed in a manifold M_n admitting a special concircular vector field v^h . If the scalar function $v^a v_a$ is everywhere non-

zero, then the function $v^a C_a$ cannot vanishes identically, where $C_a = \nabla_a C = B_a^j C_j$ and $C_j = \nabla_j C$.

P r o o f . For every manifold M_n admitting a special concircular vector field v^h we have [1]

$$(2.1) \quad C_j v_h = C_h v_j.$$

Transvecting this with $B_a^j v^a$, we obtain $v^a C_a v_h = C_h v_a v^a$. Suppose now that $v^a C_a \equiv 0$. Then the last equation yields $v_a v^a C_h = 0$. Since by assumption $v_a v^a \neq 0$ everywhere, $C_h = 0$ i.e. C is constant - a contradiction. Our lemma is thus proved.

L e m m a 2. Let M_m be a surface immersed in a manifold M_n admitting a special concircular vector field v^h . Then the vector field $w^h \in N(M_m)$ given by

$$(2.2) \quad w^h = \sum_x e_x v_j N_x^j N_x^h,$$

is parallel with respect to the connection $\overset{*}{\nabla}$ if and only if

$$(2.3) \quad v^b H_{bax} = 0$$

holds. Moreover, if the connection $\overset{*}{\nabla}$ is trivial and w^h is parallel with respect to it, then

$$(2.4) \quad \nabla_c (v_j N_x^j) = 0.$$

P r o o f . Transvecting (1.3) with v_i and using the definition of w^h and v_a , we find $w^j = v^j - v^b B_b^j$. Differentiating this covariantly and applying (1.9), (1.10), (1.4) and the equation

$$(2.5) \quad \nabla_a v^j = B_a^i \nabla_i v^j,$$

we obtain

$$(2.6) \quad \nabla_a w^j = -T^b_a B_b^j - v^b \sum_x e_x H_{bcx} N_x^j,$$

where $T^b_c = g^{ba} T_{ac}$.

But (2.6) by the definition of $\overset{*}{\nabla}$, gives

$$\overset{*}{\nabla}_a w^j = - \sum_x e_x v^b H_{bax} N_x^j,$$

hence by assumption that w^h is parallel with respect to $\overset{*}{\nabla}$ it follows (2.3), which completes the proof of the first part of our lemma.

If the connection $\overset{*}{\nabla}$ is trivial, then the equations (1.5) and (1.6) yield

$$(2.7) \quad \nabla_c N_x^j = -H_{cdx} g^{bd} B_b^j.$$

Differentiating now $v_j N_x^j$ covariantly and using (1.9), (2.5), (2.7), (1.2) and (2.3) we obtain (2.4), as desired.

Lemma 3. Let M_m ($m > 2$) be a Ricci symmetric surface immersed in a manifold M_n admitting a special con-circular vector field v^h . Then the relation

$$(2.8) \quad -C_a \bar{R}_{bc} - \nabla_a T^e_b \bar{R}_{ec} = (m-1) \nabla_a \nabla_b C_c + \nabla_a \nabla_b (\nabla_c T - \nabla_e T^e_c)$$

holds, where $T = T_{ba} g^{ba}$.

P r o o f . Differentiating (1.10) covariantly, we have $\nabla_c \nabla_b v_a = C_c g_{ba} + \nabla_c T_{ba}$, so in view of the Ricci identity, it follows that

$$(2.9) \quad -v_e \bar{R}^e_{abc} = C_c g_{ab} - C_b g_{ac} + \nabla_c T_{ab} - \nabla_b T_{ac}.$$

This by contraction with g^{ab} gives

$$(2.10) \quad -v_e \bar{R}^e_c = (m-1)C_c + \nabla_c T - \nabla_e T^e_c$$

which by covariant differentiation together with (1.8), (1.10) implies that

$$-C\bar{R}_{bc} - T^e_b \bar{R}_{ec} = (m-1) \nabla_b C_c + \nabla_b (\nabla_c T - \nabla_e T^e_c).$$

But the last equation gives (2.8), which completes the proof.

Lemma 4. Let M_m ($m > 2$) be a Ricci symmetric surface immersed in a manifold M_n admitting a special con-circular vector field v^h . If T_{ab} satisfies the equation

$$(2.11) \quad \nabla_c T_{ab} - \nabla_b T_{ac} = p_c g_{ab} - p_b g_{ac}$$

for some vector p_c , then the condition

$$(2.12) \quad t_d [v_a v^b \bar{R}_{bc} + (m-1)v^b t_a g_{bc}] = 0$$

holds, where

$$(2.13) \quad t_c = C_c + p_c.$$

P r o o f . Substituting (2.11) in (2.9) we have

$$(2.14) \quad -v_e \bar{R}^e_{abc} = t_c g_{ab} - t_b g_{ac},$$

whence by contraction with g^{ab} and transvection with v^a , we obtain

$$(2.15) \quad -v_e \bar{R}^e_c = (m-1)t_c$$

and

$$(2.16) \quad t_c v_b = t_b v_c,$$

respectively. Substituting now (2.11) in (2.8) we get

$$(2.17) \quad - C_a \bar{R}_{bc} - \nabla_a T^e_b \bar{R}_{ec} = (m-1) \nabla_a \nabla_b t_c,$$

and consequently

$$\begin{aligned} - C_a \bar{R}_{bc} + C_b \bar{R}_{ac} - \nabla_a T^e_b \bar{R}_{ec} + \nabla_b T^e_a \bar{R}_{ec} = \\ = (m-1)(\nabla_a \nabla_b t_c - \nabla_b \nabla_a t_c). \end{aligned}$$

This, in view of (2.11), (2.13) and the Ricci identity yields

$$- t_a \bar{R}_{bc} + t_b \bar{R}_{ac} = - (m-1) t_e \bar{R}^e_{cba}.$$

Multiplying the last equation by v_d and using (2.16) and (2.14), we find

$$t_d [- v_a \bar{R}_{bc} + v_b \bar{R}_{ac} - (m-1) (t_a g_{bc} - t_b g_{ac})] = 0,$$

from which the condition (2.12) follows by transvection with v^a and on account of (2.15). Our lemma is thus proved.

Since the tensor T_{ab} is symmetric, we have the following

Remark. If M_m satisfies either of the following conditions

$$(2.18) \quad \nabla_a T_{bc} + \nabla_b T_{ac} = K_c g_{ab},$$

$$(2.19) \quad \nabla_a T_{bc} + \nabla_b T_{ac} = 2u_c g_{ab} - u_a g_{bc} - u_b g_{ac},$$

$$(2.20) \quad \nabla_c T_{ab} = \frac{1}{m} T_c g_{ba},$$

then the equation (2.11) holds, where $p_b = -K_b$, $p_b = -3u_b$ and $p_c = \frac{1}{m} T_c$, $T_c = \nabla_c T$, respectively.

L e m m a 5. Let M_m ($m > 2$) be a Ricci symmetric, connected surface, immersed in a manifold M_n admitting a special concircular vector field v^h . If the condition (2.18) or (2.19) is satisfied, $v_a v^a \neq 0$ everywhere and $t_d \equiv 0$, then M_m is Ricci flat.

P r o o f . Since $t_d \equiv 0$ the conditions (2.15) and (2.17) give

$$(2.21) \quad v_e \bar{R}^e_c = 0$$

and

$$- C_a \bar{R}_{bc} + \nabla_a T^e_b \bar{R}_{ec} = 0,$$

whence

$$- C_b \bar{R}_{ac} + \nabla_b T^e_a \bar{R}_{ec} = 0,$$

and consequently

$$(2.22) \quad - C_a \bar{R}_{bc} - C_b \bar{R}_{ac} + (\nabla_a T^e_b + \nabla_b T^e_a) \bar{R}_{ec} = 0.$$

In the first case, if $C_a = K_a$, the equation (2.22) yields

$$(2.23) \quad - C_a \bar{R}_{bc} - C_b \bar{R}_{ac} + z_{ab} C_e \bar{R}^e_c = 0.$$

Transvecting (2.23) with v^a and using (2.21) we have

$$(2.24) \quad v^a C_a \bar{R}_{bc} + v_b C_e \bar{R}^e_c = 0.$$

and transvecting (2.1) with $B_a^j B_b^h$ we obtain

$$(2.25) \quad C_a v_b = C_b v_a.$$

Thus from (2.24) and (2.21) we have $v^a C_a \bar{R}_{bc} = 0$, whence, in view of Lemma 1 and the assumption that the Ricci tensor is parallel, it follows that M_m is Ricci flat.

In the remaining case, if $C_a = 3u_a$, the equation (2.22) yields (2.23), from which, in the same way as in the first case, it follows, that M_m is Ricci flat. Our lemma is thus proved.

3. On totally geodesic surfaces

Theorem 3.1. Let M_m be a connected surface immersed in a manifold M_n admitting a special concircular vector field v^h . Moreover, let the connection $\tilde{\nabla}$ be trivial and $v_a v^a \neq 0$ everywhere. Then M_m is totally geodesic if and only if the vector field w^h defined by (2.2) is parallel with respect to the connection $\tilde{\nabla}$ and the condition

$$(3.1) \quad \nabla_c H_{abx} = 0$$

holds.

Proof. From (1.4), (2.4) and (3.1) it follows that

$$(3.2) \quad \nabla_c T_{ab} = 0.$$

Differentiating (2.3) covariantly and using (1.10) we get

$$(3.3) \quad CH_{acx} + T^d_c H_{dax} + v^d \nabla_c H_{dax} = 0,$$

hence

$$CH_{acx} + T^d_c H_{dbx} = 0.$$

Differentiating this covariantly and applying (3.1) and (3.2), we find $C_e H_{acx} = 0$, whence

$$(3.4) \quad v^e C_e H_{acx} = 0.$$

But from the last equation in view of Lemma 1 and (3.1) it follows that M_m is totally geodesic.

Conversely, if M_m is totally geodesic, then obviously the condition (3.1) is satisfied, and from (2.6) it follows that w^h is parallel with respect to the connection $\tilde{\nabla}$. Our theorem is proved.

Theorem 3.2. Let M_m be a connected surface immersed in a manifold M_n admitting a special concircular vector field v^h . Moreover, let the connection $\tilde{\nabla}$ be trivial and $v_a v^a \neq 0$ everywhere. Then M_m is totally geodesic if and only if the vector field w^h is parallel with respect to $\tilde{\nabla}$ and the condition

$$(3.5) \quad \nabla_c H_{abx} = \varrho_{xc} g_{ab}$$

holds, where

$$\varrho_{xc} = \nabla_c \varrho_x, \quad \varrho_x = \frac{1}{m} g^{ab} H_{abx}.$$

Proof. Substituting (3.5) in (3.3) we get $CH_{acx} + T^d_c H_{dex} + v_a \varrho_{xc} = 0$, from which, by transvection with v^a and by (2.3), we obtain $v_a v^a \varrho_{xc} = 0$. Thus the condition (3.5) reduces to (3.1) which in view of Theorem 3.1 completes the proof of the theorem.

Theorem 3.3. Let M_m be a connected surface immersed in a manifold M_n admitting a special concircular vector field v^h . Moreover, let the connection $\tilde{\nabla}$ be trivial and let $v_a v^a \neq 0$ everywhere. Then M_m is totally geodesic if and only if the vector field w^h is parallel with respect to $\tilde{\nabla}$ and the condition

$$(3.6) \quad \nabla_c H_{abx} + \nabla_b H_{acx} = K_{xa} g_{bc}$$

holds for some vector fields K_{xa} .

Proof. Transvecting (3.6) with v^a and v^c we obtain

$$(3.7) \quad v^a \nabla_c H_{abx} + v^a \nabla_b H_{acx} = v^a K_{xa} g_{bc},$$

and

$$(3.8) \quad v^c \nabla_c H_{a0x} + v^c \nabla_b H_{a0x} = K_{xa} v_b,$$

respectively. Multiplying both sides of (3.3) by $e_x v_j N_x^j$, summing over x and using (2.4) and the definition of T_{ab} , we get

$$(3.9) \quad CT_{ab} + T_{da} T^d_b + v^d \nabla_b T_{da} = 0,$$

whence

$$(3.10) \quad v^d \nabla_b T_{da} = v^d \nabla_a T_{db}.$$

In the same way, the conditions (3.7) and (3.8) give

$$(3.11) \quad v^d \nabla_c T_{bd} + v^d \nabla_b T_{dc} = v^d K_d g_{bc}$$

and

$$(3.12) \quad v^d \nabla_d T_{bc} + v^d \nabla_b T_{cd} = K_c v_b$$

respectively, where

$$K_c = \sum_x e_x v_j N_x^j K_{xc}.$$

From (3.10) and (3.12) it follows that

$$(3.13) \quad K_a v_b = K_b v_a.$$

Applying (3.10) in (3.11) we find

$$v^d \nabla_c T_{bd} = \frac{1}{2} v^d K_d g_{bc}.$$

Substituting now the last equation in (3.9) we obtain

$$(3.14) \quad CT_{ab} + T_{ea} T^e_b + \frac{1}{2} v^e K_e g_{ab} = 0,$$

whence by transvection with v^b and in virtue of (2.3) and (3.13) we have $v_a v^a K_b = 0$ and consequently $K_b = 0$. Thus multiplying (3.6) by $v_x^e v_j^N_x$, summing over x and using the definition of K_b we get

$$\nabla_c T_{ab} + \nabla_b T_{ac} = 0,$$

whence

$$(3.15) \quad \nabla_c T_{ab} = 0.$$

Differentiating now (3.14) covariantly and substituting (3.15) and $K_b = 0$ we obtain $C_e T_{ab} = 0$ hence transvecting this with v^e we find $v^e C_e T_{ab} = 0$. From Lemma 1 and (3.15) we conclude that $T_{ab} = 0$. Thus the equation (3.3) is reduced to $C H_{acx} + v^d \nabla_c H_{dax} = 0$. But from the last relation and (3.7) it follows that $2C H_{acx} + v^d K_{xd} g_{ac} = 0$, from which $-2C \rho_x = v^d K_{xd}$, and, consequently, $H_{acx} = \rho_x g_{ac}$. Differentiating this covariantly we obtain (3.5) which in view of Theorem 2 completes the proof.

Theorem 3.4. Let M_m be a connected surface immersed in a manifold M_n admitting a special concircular vector field v^h such that $v^a C_a \neq 0$ everywhere. Then M_m is totally geodesic if and only if the vector field w^h is parallel with respect to the connection ∇ and the following conditions

$$(3.16) \quad \nabla_d \nabla_c H_{abx} - \nabla_c \nabla_d H_{abx} = 0,$$

$$(3.17) \quad \nabla_b T_{ad} = \nabla_d T_{ab}$$

hold.

Proof. In view of the Ricci identity, the equation (3.16) yields

$$H_{ebx} \bar{R}^e_{acd} + H_{aex} \bar{R}^e_{bcd} = 0,$$

whence by transvection with v^c we obtain

$$(3.18) \quad H_{bx}^e v^c \bar{R}_{cdea} + H_{ax}^e v^c \bar{R}_{cdeb} = 0.$$

On the other hand substituting (3.17) in (2.9), we have
 $-v_e \bar{R}_{abc}^e = C_c g_{ab} - C_b g_{ac}$. The last equation together with
(3.18) gives

$$C_a H_{dbx} - g_{ad} C_e H_{bx}^e + C_b H_{dax} - g_{bd} C_e H_{ax}^e = 0.$$

Transvecting this relation with v^a and using (2.25) and
(2.3) we get (3.4), from which it follows that M_m is totally
geodesic.

Conversely if M_m is totally geodesic then the conditions
(3.16) and (3.17) are satisfied and since by (2.6) w^h is pa-
rallel with respect to ∇ . Hence our theorem is proved.

4. On Ricci symmetric surfaces

Theorem 4.1. Let M_m ($m > 2$) be a Ricci symmetric connected surface immersed in a manifold M_n admitting a special concircular vector field v^h , such that everywhere $v_a v^a \neq 0$. If T_{ab} satisfies the condition (3.17) then M_m is an Einstein manifold.

Proof. Substituting (3.17) in (2.8) we obtain

$$- \nabla_a T_{eb} \bar{R}_c^e - C_a \bar{R}_{bc} = (m-1) \nabla_a \nabla_b C_c,$$

whence

$$- \nabla_b T_{ea} \bar{R}_c^e - C_b \bar{R}_{ac} = (m-1) \nabla_b \nabla_a C_c.$$

These equations, together with (3.17) and the Ricci identity, yield

$$- C_a \bar{R}_{bc} + C_b \bar{R}_{ac} = -(m-1) C_e \bar{R}_{cba}^e.$$

Multiplying this by v_d and using (2.25), (2.9) and (3.17), we find

$$C_d \left[-v_a \bar{R}_{bc} + v_b \bar{R}_{ac} - (m-1)(C_a g_{bc} - C_b g_{ac}) \right] = 0$$

so transvecting this with $v^a v^d$ and using (2.10) we have

$$(4.1) \quad v^d C_d \left[-v_a v^a \bar{R}_{bc} - (m-1)v^a C_a g_{bc} - (\nabla_c T - \nabla_e T^e_c) \right] = 0.$$

But from (3.17) it follows that $\nabla_c T - \nabla_e T^e_c = 0$, thus (4.1) give

$$(4.2) \quad v^d C_d \left[-v_a v^a \bar{R}_{bc} - (m-1)v^a C_a g_{bc} \right] = 0.$$

Contracting (4.2) with g^{bc} , we obtain

$$v^d C_d \left[-v_a v^a \frac{\bar{R}}{m} \right] = v^d C_d (m-1)v^a C_a.$$

Substituting this in (4.2) we obtain

$$v^d C_d \left[\bar{R}_{bc} - \frac{\bar{R}}{m} g_{bc} \right] = 0.$$

Hence, in view of Lemma 1 and (1.8) we get (1.7) which completes the proof.

Theorem 4.2. Let M_m ($m > 2$) be a Ricci symmetric, connected surface immersed in a manifold M_n admitting a special concircular vector field v^h such that everywhere $v_a v^a \neq 0$. If T_{ab} satisfies (2.11) and the vector field t_c defined by (2.13) is non-zero, then M_m is an Einstein manifold.

Proof. Transvecting (2.12) with g_{bc} we obtain

$$-v_a v^a \frac{\bar{R}}{m} t_d = (m-1)v^a t_a t_d.$$

Substituting this into (2.12) we get

$$t_d \left[\bar{R}_{bc} - \frac{\bar{R}}{m} g_{bc} \right] = 0.$$

Since t_d is non-zero and the condition (1.8) holds the last equation gives (1.7). Our theorem is thus proved.

Theorem 4.2, Lemma 4, Remark and Lemma 5 imply together the following corollary.

Corollary. Let M_m ($m > 2$) be a Ricci symmetric, not Ricci flat, connected surface immersed in a manifold M_n admitting a special concircular vector field v^h such that everywhere $v_a v^a \neq 0$. If one of the conditions (2.18), (2.19), (2.20) is satisfied, then M_m is an Einstein manifold.

REFERENCES

- [1] R. Deszcz : On some Riemannian manifolds admitting a concircular vector field, *Demonstratio Math.* 9(1976) 487-495.
- [2] M. Morohashi : Certain properties of a submanifolds in a sphere, *Hokkaido Math. J.* 2(1973) 40-52.
- [3] J.A. Schouten : *Ricci-Calculus*. Berlin 1954.
- [4] K. Yano : Notes on submanifolds in a Riemannian manifold, *Kōdai Math. Sem. Rep.* 21(1969) 496-509.

INSTITUTE OF GEODESY AND APPLIED MATHEMATICS, ACADEMY OF AGRICULTURE, WROCŁAW

Received July 29, 1976.