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ON SOME SURFACES IMMERSED IN A MANIFOLD
ADMITTING A SPECIAL CONCIRCULAR VECTOR FIELD

1. Introduction

Let Mn be an n-dimensional Riemannian manifold of class
C™ covered by a system of coordinate neighbourhoods {U;xh
and let gji’{jhi}’ V& denote the metric tensor, the Chris-
toffel symbols formed with gji and the operator of covariant
differentiation, respectively.

Let Mm (1< m <n) be an m-dimensional Riemannian ma-
nifold of class C*° covered by a system of coordinate neigh-
bourhoods {V;ya}, immersed in M , and let < = xh(ya)
be the local expression of the manifold Mo in M.

The indices h,i,} run over the range {1,2,...,n} and
the indices a,b,c,d,e over the range {1,2,...,m}.

If we put Bah = aaxh, where aa = a/aya, then the fun-
damental metric tensor of Mm is given by

- J gt
8pa = gji Ba Bb ¢

We denote by

a - h h 3 i k _da
(1.1) {c b}—(acBb +{j i}Bc B,") By & &
the Chrigtoffel symbols determined by gba,by Vé the corres-
ponding operator of covariant differentiation.
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2 R.Deszoz

Let ﬁabcd’ ﬁéd and R denote the curvature tensor,
Ricci tepsor and the scalar curvature of Mm’ respectively.
Since the van der Waerden-Bortolotti covariant derivative of

Bah is given by

h_agh, fhlpigl_ghfc
ViBy = 3B, +{j 1} By® Bg” - B {b a}’

from (1.1) 1t follows that

J i,
g41 (V%Ba ) B,~ = 0,
which states that V%Baj, viewed as a vector of qn is
orthogonal to M [4].
If we choose n-m mutually orthogonal unit vectors Nxh

which are normal to Mm (x,y = m+1,m+2,...,0), then we have

R Jd gl
&y4 B,Y N~ = 0,
(1.2)
Jy i
€44 N, N~ = d;y ey
and
ab 1L o 3§ _ i} R
(1.3) 8" By~ ByY =g - Ex e, N.© NI,

where ey is the indicator of in.

Now VsBah can be expressed in the form

h h
(1.4) ViBg = E ey Hpax Vg o
X

i.e. in the form of the Gauss equations, where Hbax are the
second fundamental tensors with respect to the directions
ij. The covarlant derivatjve of the vectors Nxh can be
written in the form
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On some surfaces immersed in a manifold 3

W b bc , h h
(1.5) V%“x = - Hoax g Bc + E €y Laxy Ny .
y
where

s wnd) g
Laxy = (Valg ) W0 gy

The equations (1.5) are the Weingarten equations for the sur-
face M_ .

.. ‘ h o h

If Schouten's curvature tensor g = §7b By of the
manifold Mm [3] vanishes, then Mm is called a totally geo~
desic surface,

We consider now the normal bundle, N(Mm) of M. PFor
wh € N(Mmf, we define a connection V on N(Mm) as follows

*

vawh = (Vawh)N'

where (V_ w)¥  genotes the normal component of V, wh =
= Baj Y7 wh ([3] p. 254), When ‘7 w vanishes identically
along M we say that wh is parallel with respect to the
connection of the normal bundle N M ) [2]

We say that the connection V7 of the normal bundle of M,
is trivial [2] if there exist vector fields Nxh satisfying

the equatlon[

\106) Lan = Oo

An m~-dimensional Riemannian manifold Mm (m >2) 1is satd
to be the kinstein manifold, if its Ricci tensor satisfies
the condition

- _ R
(107) Rba - Egbac

An m-dimensional Riemannian manifold Mm (m > 2) characte~
rized by '
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4 R.Deszcz

(1.8) VeRpg = 0

will be called Ricci symmetric,

Thus each Einstein manifold (m > 2) is Ricci symmetric,
but not conversely., If the condition Ry, = O holds, then
M 1is called Ricci flat.

The purpose of this paper is to obtain some results on
surfaces immersed in Mn admitting a special concircular
vector field vh.

A vector field v is called special concircular [3],

if its covariant derivative is of the form
(109) vivh = Cé‘h ?

where C 1 some non~-constant function., .

We denote by Vg = vhBab the projection of V= gjhvJ
onto Mm. The covariant derivative of Vas in view of (1.9)
and the equation

h h
vaa = (vah)Ba + VpHpg

is given by

(1.10) vaa = C gyg + Tyas

where ([3], p.254)
h
Vevp = By’ Vyvy and m, = v R

2, Preliminary results
Lemma 1. Let Mm be a connected surface immersed

in a manifold Mn admitting a special concircular vector

field vh. If the scalar function vava is everywhere non-
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On some surfaces immersed in a manifold 5

zero, then the function vaca cannot vanishes identically,

- =B Y =
where Cq = V€ = B, Cj and Cj = VBC.
Proof. For every manifold Mn admitting a special
concircular vector field vB we have [1]

Transvecting this with Badva, we obtain vaca vy = Cp v ve,
Suppose now that vaca = 0, Then the last equation yields
vavﬁ'ch = 0., Since oy assumption vava;& 0 everywherq,ch =0
i.e« C 1is constant - a contradition, Our lemma is thus prov=-
ed,

Lemma 2. Let Mm be a surface immersed in a ma=~
nifold Mn admitting a special concircular vector field vh.
Then the vector field wl e N(Mm) given by

h _ J h
(2.2) W o= E exvij N,
X
»*
is parallel with respect to the connection V if and only if

b
(2.3) VHpae = 0

*
holds. Moreover, if the connection V is trivial and w

parallel with respect to it, then

h is

(2.4) vg(vjnxj) = 0.

Proof, Transvecting (1.3) with v, and using the
definiftion of wh and Vgr We find wj = v% - vbBbj. Dif~
ferentiating this covariantly and applying (1.9), (1.10),
(1.4) and the equation

i
(2.5) AZIEE: ILAvATH
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6 R.Deszcz

we obtain
- - J . bE
(2.6) VW - T Bb v €x bcx x ’
b _ _ba
where T c =8 Tac' "

But (2.6) by the definition of V , gives

*
J-_E b J
V;w = ox’ HbaxNx ’

X

hence by assumption that wh 1s parallel with respect to i}
it follows (2.3), which completes the proof of the first part
of our lemma. .

If the connection V is trivial, then the equations (1.5)
and (1.6) yield

bd
(207) VchJ = “Hcdxg Bbjc

Differentiating now vJij covariantly and using (1.9),
(2.5), (2.7), (1.2) and (2.3) we obtain (2.4), as desired.

Lemma 3. Let My (m > 2) be a Ricci symmetric
surface immersed in a manifold Mn admitting a special con-
circular vector field vh. Then the relation

= e 5 e
(2.8) =C Ry = V,T° R, = (m=1) Vg BC.+ V, Vi (V T- V1" )
holds, where T = Tbagba

Proof ., Differentiating (1.10) covariantly, we have
V% V%va = chba + Vcha’ s0 in view of the Ricci identity,
it follows that

K€ _ - -
(209) - veR abe © chah cbgac + VcTab VbTac
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Ch some surfaces immersed in a manifold T

b

This by contraction with ga glives

( e _ _ e
{2.10) - VR, = (m 1)Cc + V;T VLT c

which by covariant differentiation together with (1.8), (1.10)
implies that

5 € 5 -]
- CRbC -7 bReC = (m-1) Vch + Vb( VCT - VGT G).

But the last equation gives (2.8), which completes the proof.
lemma 4, Let MW, (m > 2) be a Ricci symmetric

surface immersed in a manifold Mn admitting a special con~-
circular vector field vh. If Tab satisfies the equation

(2.11) Velap - Volac = PeBab =~ Pplac
for some vector Pgs then the condition

; a 1 a
12.12) tylvay Hbc + (m=1)v tagbc] =0

holds, where

(2.13) t, = Cy + Pye

Proof .« Substituting (2.11) in (2.9) we have

. —e _ -
(2.14) " VeRabc = tcBah = tpBgcs

whence by contraction with gab and transvection with va,
xe obtain

. —e _ . -

(2.15) - veR c = (m 1)tc
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8 R.Deszcz

and
(2.16) bV = bV,
respectively. Substituting now (2.11) in (2.8) we get
- e =
(2.17) = CaBpe = Vgl pRee = (m=1) V, Vit ,
and conseqguently
— — l'e -

= (m=1)( Va Vbtc - Vb V.t.)e
This, in view of (2.11), (2.13) and the Ricci identity yields
= = e
= taRp, + tyRy, = - (mm1)E R ..

Multiplying the last equation by vy and using (2.16) and
(2.14), we find

td[; Vahoe * VbRae = (m=1) (B8, - tbgac)] =0,

from which the condition (2.12) follows by transvection
with v® and on account of (2.15). Our lemma is thus proved.
Since the tensor Tab is symmetric, we have the follow=-
ing
Remark., If Mm satisfies either of the following
conditions

(2.18) VaToe + VoTac = Kc8abr
(2.19) V;Tbc'+ v,bTac = 2UcBap " YaBpe ~ YpBact
1
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On some surface immersed in a manifold

then the egquation (2.11) holds, where Py = Kp» Pp = -3

and P, = 1o T = VZT, respectively.

m ¢’ c
Lemma 5. Let M im > 2) bve a Ricci symmetric,

connected surface, immersed in a manifold Mn admitting a
h

special concircular vector field v . If the conditicn (2.18)

or (2.19) is satisfied, vava # 0 everywhere and td = 0,
then Mm is Ricci flat.

Proof . Since ty3= 0 the conditions (2.15) and
(2.17) give

se
(2.21) VeR°, = 0
and
_ e 5 _
= CgRpe + V;T pRec = 99
whence
_ e =
= CyRge + V4T aRec = 0»

and consequently

=y =Y e e 5
(2.22) = CaRye = CpRgy + ( VT + VT alReg = Os

In the first case, if C, =K the equation (2.22) yields

a,

(2.23) - CaRye = CpRae + 2CeR%, = O.
Transvecting (2.23) with v® and using (2.21) we have
(2.24) va0, Ry, + VpCR%, = O.

and transvecting (2.1) with B B " we obtain

(2.25) Ca¥p = CpVar
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10 Re.Deszcz

Thus from (2.24) and (2.21) we have vacaﬁbc = 0, whence,
in view of Lemma 1 and the assumption that the Riceci tensor
is parallel, it follows that Mm is Ricci flat,

In the remaining case, if C, = 3u,, the equation (2,22)
yields (2.23), from which, in the same way as in the first
case, it follows, that Mm_ is Ricci flat., Our lemma is thus
proved.

3. On totally geodesic surfaces

Theorem 3.1, Let Mm be a connected surface
immersed in a manifold Mn admitting a special cyncircular
vector field vh. Moreover, let the conmection V be trivial
and vava # 0 everywhere., Then Mm is totally geodesic if
and only if the vector field wh* defined by (2.2) is parallel
with respect to the connection V and the condition

(3.1) VeH px = O

abx

holds,
Proof . TFrom (1.4}, (2.4) and (3.1) it follows that

Differentiating (2.3) covariantly and using (1.10) we get

(3.3) CHy oy + T Hyar + V& Vg, = O,

acx ¢ dax dax

hence

cH. . + 1

acx cHapx = O¢

Differentiating this covariantly and applying (3.1) and (3.2},
we find CeHacx = 0, whence

(3.4) vec H

elacx = O°

But from the last equation in view of Lemma 1 and (3,1) it
follows that Mm is totally geodesic,
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On some surfsce immersed in a manifold 11

Conversely, if M, is totally geodesic, then obviously
the condition (3.1) is satisfied, and from (2.6) it follows
that wh is psraliel with respect to the connection V .

Cur theorem is proved,.

Theorem 3.2. Let Mm be a connectea surface
immersed in a manifold Mn- admitting a special qpncircular
vector field vh. foreover, let the connection V be trivial
and vava # 0 everywhere. Then Mm is totally geodesic if
and Pnly if the vector field wh is parallel with respect
to V and the condition

(3.5) VeHabx = Oxc8ab

holds, where

gabH .

abx

gl

Pxc = Veb0x0 0x =

Proof . Substituting (3.5) in (3.3) we get CHgox *+
+ 19 By + Va0y, = O, from which, by trensvection with
v® and by (2.3), we obtain vavagx° = O, Thus the condition
(3.5) reduces to (3.1) which in view of Theorem 3.1 completes
the proof of the theorem.

Theorem 3.3. Let Mm be a connected surface
immersed in a manifold Mn admitting a special concircular
vector field vh. Moreover, let the connection V be trivial
and let vava # 0 everywhere. Then Mm is totally geodesic
if gpd only if the vector field wh is parallel with respect
to V and the condition

(3.6) V.H + Vi H =K

abx acx xa8be

holds for some vector fields Kxa‘

Proof . Transvecting (3.6) with v® and v® we
obtain
, a a a
{3.7) v V;Habx + v V%Hacx = VK, o8por
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12 R.Deszcz

and

c c
(3.8) VeV Hag + V0 VgHgex = Kpg¥ys

reaspectively. Multiplying both sides of (3.3) by exvijj,
summing over x and using (2.4) and the definition of T,
we get

d d
(3.9) Clop + TgaT p * V. VpTga = Os
whence
d d
(3.10) v Vdea =V VaTdbo

In the same way, the conditions (3.7) and (3.8) give

d d d
(3.11) VOV g + V0 VpTae = V Kg8pe
and
d d

respectively, where

«E J
Kc = exdex Kxc’

X

From (3.10) and (3.12) it follows that
(3.13) K. vy = Kpv,e
Applying (3.10) in (3.11) we find
v VeTba = %-vdegbc.
Substituting now the last equation in (3.9) we obtain
(3.14) CTp + ToqT® + & VKoBap = O

- 658 -



On some surfaces immersed in a manifold 13

whence by transvection with vb and in virtue of (2.3) and

(3.13) we have vavaKb = 0 and consequently K, = O. Thus
multiplying (3.6) by evaNxJ, summing over x and using
the definition of Kb we get

VeTap + VpTae = Os
whence
(3.15) chab = 00

Differentiating now (3.14) covariantly and substituting
(3.15) and Xy = O we obtain C,T,, = O hence transvecting
this with v® we find v°C, T, = 0. From Lemma 1 and (3.15)
we conclude that T, = O. Thus the equation (3.3) is reduced
to CHyog + vd VEHdax 0. But from the last relation and

d
(3.7) it follows that 2CH + v°K = 0, from which
-2ng = vded, and, consequently, H = 0x8ac° Differen-

acx xd€ac
acx
tiating this covariantly we 4b¢ain (3.5) which in view of
Theorem 2 completes the proof.

Theorem 3.4. Let My be a connected surface
immersed in a manifold Mn admitting a speclal concircular
vector field vh such that vaCa # 0 everywhere. Then M,
is totally geodesic if and only if the vegtor field wh is

parallel with respect to the connecfion V and the following
conditions

(3.17) VTag = Valap
hold.

Proof. In view of the Riccl identity, the equation
(3.16) yields

=8 =e
Hopx® acd * Haex® bea = O
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whence by transvection with v® we obtain

+ H® _v°R

e cxs
(3.18) H bx"” Rcdea ax cde

b=0.

On the other hand substituting (3.17) in (2.9), we have

- veﬁeabc = C,8ap - CpBac+ The last equation together with
(3.18) gives

Callgox ~ gadCeHebx + CpHgax - gdeeHeax = 0.
Transvecting this relation with v@ and using (2.25) and
(2.3) we get (3.4), from which it follows that M, is totally
geodesic,

Conversely if Mm is totally geodesic then the conditions
(3.16) and (3.17) are satisfied and since by (2.6) wh is pa-
rallel with respect to V ., Hence our theorem is proved.

4, On Riccil] symmetric surfaces

Theorem 4.1. Let M (m > 2) be a Ricci| symme~
tric connected surface immersed in a manifold Mn admitting
a special concircular vector field vh, such that everywhere
vava #0. If T, satisfies the condition (3.17) then N
is an Einstein manifold.

Proof .. Substituting (3.17) in (2.8) we obtain

~g _
-ValebR ¢ = Cafpe = (m=1) Va YCos

whence

se
= VpleaR ¢ = CpRge

These equations, together with (3.17) and the Ricei identity,
yield

(m"1) Vb Vacc.

B Eoy e
- CoRy, + CyRy, = -(m-1)CeR cba®
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On some surfaces ilmmersed in a manifold 15

Multiplying this by vy and using (2.25), (2.9) and (3.17),
we find

Cd[— VaRpe * VpRye - (m—‘))(cagbc - Cbgac)] =0
so transvecting this with vavd  ang using (2.10) we have

d as a ] _
(4.1) v Cd[- VoV Ry, - (m=1)v Co8pe - ( V;T - V;T C)J = 0.

But from (3.17) it follows that VT - V. 1° =0, thus
(4.1) give

d ax a -~
(4.2) v Cd[- Vv Rbc - (m=1)v cagbc] = 0,

be
’

Contracting (4.2) with g we obtain

4 B aR]_ .d _1)08
v bd[ VoV m] = v Cy(m=-1)v Cqe

Substituting thils in (4.2) we obtain

d~ [5 R
v cd,:Rbc 'Egbe] = 0.

Hence, in view of Lemma 1 and (1.8) we get (1.7) which com=-
pletes the proof.

Theorenm 4.2, Let M, (m >2) be a Ricci pymme~
tric, connected surface immersed in a manifold Mn admitting
a special concircular vector field vh such that everywhere
vov® £ 0. If T, satisfies (2.11) and the vector field t,
defined by (2.13) is non-zero, then M, 1is an Einstein mani-
fold.

Proof . Transvecting (2.12) with Bpe W€ obtain

- - a
a oy td = (m=-1)v tatd.

Substituting this into (2.12) we get
_ R _
td[Rbc "'ﬁ'gbc] = 0.
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16 R.Deszcz

Since %, is non-zero .and the condition (1.8) holds the last
equation gives (1.7). Our theorem is thus proved.

Theorem 4.2, Lemma 4, Remark and Lemma 5 imply together
the following corollary.

Corollary. Let M (m > 2) be a Ricci symme=~
tric, not Ricecli flat, connected surface immersed in a mani-
fold Mn admitting a special concircular vector field vh
such that everywhere vava # 0. If one of the conditions
(2.18), (2.19), (2.20) is setisfied, then M 1is an Einstein
manifold,
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