

K. D. Singh, Rakeshwar Singh

SOME $f(3, \epsilon)$ STRUCTURE MANIFOLDSIntroduction

The idea of an f structure on a differentiable manifold was initiated and developed by K. Yano [5]. Later Singh and Srivastava [4] studied few special structures on f structure manifolds with torsion. They established an inclusion relation between them and studied conformal diffeomorphisms between two such structures.

Present paper is a study of certain structures on a C^∞ real differentiable manifold equipped with $(1,1)$ tensor field f satisfying $f^3 = \epsilon f$, $\epsilon = \pm 1$. We have defined some special structures on this manifold and established an inclusion relation between them.

1. Preliminaries

Let M^n be a C^∞ real differentiable manifold, $\mathcal{F}(M^n)$ be the ring of C^∞ real functions on it and $\mathcal{X}(M^n)$ be the $\mathcal{F}(M)$ -module of vector fields on M^n .

An $f(3, \epsilon)$ manifold M^n is a differentiable manifold equipped with a C^∞ - $(1,1)$ tensor field f of constant rank r which satisfies

$$(1.1) \quad f^3 = \epsilon f, \quad \epsilon = \pm 1.$$

If we put [6]

$$(1.2) \quad l \stackrel{\text{def}}{=} \epsilon f^2, \quad m \stackrel{\text{def}}{=} 1 - \epsilon f^2,$$

then

$$(1.3) \quad \begin{cases} l + m = 1, \quad lm = ml = 0, \\ l^2 = 1, \quad m^2 = m, \\ lf = fl = f, \quad mf = fm = 0, \\ f^2l = \epsilon l, \quad mf^2 = f^2m = 0. \end{cases}$$

Thus l and m are complementary projection operators which determine two complementary distributions L and M .

It is known that M^n always admits a positive definite Riemannian metric g [2] such that

$$(1.4) \quad g(X, Y) = g(fX, fY) + g(mX, Y).$$

A 2-co-tensor field F defined by [5]

$$(1.5) \quad F(X, Y) = g(fX, Y)$$

always satisfies

$$(1.6) \quad F(X, Y) = \epsilon F(Y, X).$$

Moreover

$$(1.7) \quad g(fX, Y) = g(f^2X, fY).$$

Let ∇_X be the Riemannian connection corresponding to the metric g on M^n . Thus

$$(1.8) \quad X(g(Y, Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z),$$

$$(1.9) \quad [X, Y] = \nabla_X Y - \nabla_Y X.$$

The Nijenhuis tensor N of type $(1,2)$ is given by [5]

$$(1.10) \quad N(X, Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^2[X, Y].$$

The derivatives of f and F are given by

$$(1.11) \quad \nabla_X(f)(Y) = \nabla_X(fY) - f\nabla_X Y,$$

$$(1.12) \quad \nabla_X(F)(Y, Z) = g(\nabla_X(f)(Y), Z).$$

2. Some theorems involving the structure tensor

We require the formula for the derivative of 2-co-tensor F [1] i.e.

$$(2.1) \quad dS(X, Y, Z) \stackrel{\text{def}}{=} \tau_{X, Y, Z} \nabla_X(F)(Y, Z),$$

where τ denotes the cyclic sum over X, Y, Z . We have the following

Theorem 2.1. The following relations hold:

$$(2.2) \quad \nabla_X(F)(f^2 Y, fZ) = -\epsilon \nabla_X(F)(fY, f^2 Z),$$

$$(2.3) \quad dS(fX, fY, fZ) - dS(fX, f^2 Y, f^2 Z) + g(fX, N(fY, f^2 Z)) = \\ = 2 \nabla_{fX}(F)(fY, fZ) + (1+\epsilon) [\nabla_{fY}(F)(fZ, fX) + \nabla_{f^2 Z}(F)(fY, f^2 X)],$$

$$(2.4) \quad dS(fX, fY, fZ) - dS(fX, f^2 Y, f^2 Z) + dS(fY, f^2 Z, f^2 X) + \\ + dS(fZ, f^2 X, f^2 Y) = 2 \nabla_{fX}(F)(fY, fZ) + (1-\epsilon) \nabla_{f^2 Z}(F)(f^2 Y, fZ) + \\ + (1+\epsilon) [\nabla_{f^2 Y}(F)(fZ, f^2 X) - \nabla_{f^2 Z}(F)(fX, f^2 Y)],$$

$$\begin{aligned}
 (2.5) \quad & g(N(fX, f^2Y), fZ) - g(N(fX, fZ), f^2Y) - g(N(f^2Y, fZ) = \\
 & = (1-\epsilon) \nabla_{f^2X}(F)(f^2Y, fZ) + 2\epsilon \nabla_{fX}(F)(fY, fZ) + \\
 & + (1+\epsilon) \left[\nabla_{f^2Z}(F)(f^2Y, fX) - \nabla_{fY}(F)(fZ, fX) \right].
 \end{aligned}$$

3. Special $f(3, \epsilon)$ structures and their inclusion relation

Definitions. We shall call an $f(3, \epsilon)$ structure manifold an fK manifold iff

$$\nabla_{fX}(f) = 0,$$

an fAK -manifold iff

$$dS(fX, fY, fZ) = 0,$$

fNK -manifold iff

$$\nabla_{fX}(F)(fY, fZ) - \epsilon \nabla_{fY}(F)(fX, fZ) = 0,$$

fQK -manifold iff

$$\begin{aligned}
 & 2 \nabla_{fX}(F)(fY, fZ) + (1-\epsilon) \nabla_{f^2X}(F)(f^2Y, fZ) = \\
 & = (1+\epsilon) \left[\nabla_{f^2Z}(F)(fX, f^2Y) - \nabla_{f^2Y}(F)(fZ, f^2X) \right],
 \end{aligned}$$

fH -manifold iff

$$N(fX, fY) = 0$$

for any $X, Y, Z \in \mathcal{X}(M)$.

An inclusion relation between these special structures is given by the following theorem.

Theorem 3.1. The following inclusions hold:

$$\begin{aligned} &\subseteq fAK \\ fK &\subseteq fQK \quad \text{and} \quad fK \subseteq fH \\ &\subseteq fNK \end{aligned}$$

Proof. $fK \subseteq fH$: proof follows from (1.9) and (1.10),
 $fK \subseteq fAK$: proof follows from (1.12) and the definitions
of fAK .

$fAK \subseteq fQK$: If a manifold is fAK then $dS(fX, fY, fZ) = 0$
consequently the left hand side of (2.4) vanishes and therefore the manifold is fQK .

$fK \subseteq fNK$: Proof follows from the definitions.

$fNK \subseteq fQK$: If the manifold is fNK then

$$\nabla_{fX}(F)(fY, fZ) = \epsilon \nabla_{fY}(F)(fX, fZ).$$

Consequently from (2.1)

$$dS(fX, fY, fZ) = 3 \nabla_{fX}(F)(fY, fZ),$$

and thus

$$\begin{aligned} dS(fX, fY, fZ) &- dS(fX, f^2Y, f^2Z) + \\ &+ dS(fY, f^2Z, f^2X) + dS(fZ, f^2X, f^2Y) = \\ &= 3 \nabla_{fX}(F)(fY, fZ) - 3 \nabla_{fX}(F)(f^2Y, f^2Z) + \\ &+ 3 \nabla_{fY}(F)(f^2Z, f^2X) + 3 \nabla_{fZ}(F)(f^2X, f^2Y) = 0 \end{aligned}$$

in view of (1.6), (2.2) and definition of fNK and thus

$$\begin{aligned} 2 \nabla_{fX}(F)(fY, fZ) + (1-\epsilon) \nabla_{f^2X}(F)(f^2Y, fZ) &= \\ &= (1+\epsilon) \left[\nabla_{f^2Z}(F)(fX, f^2Y) - \nabla_{f^2Y}(F)(fZ, f^2X) \right], \end{aligned}$$

i.e. the manifold is fQK .

Now we shall deal with different cases of such structures.

Case I: Let the structure tensor f satisfy

$$(3.1) \quad \nabla_{fX}(f)(fY) = f \nabla_X(f)(fY).$$

Theorem 3.2. An $f(3, \epsilon)$ structure manifold satisfying (3.1) is always an fH manifold.

Proof. The proof easily follows from definition of fH and (1.9).

Theorem 3.3. An $f(3, \epsilon)$ structure manifold satisfying (3.1) and

$$(3.2) \quad \tau_{Y,Z} \nabla_Z(f)(f^2Y) = 0$$

is an fQK manifold iff

$$f^2 \nabla_X(f)(fY) = 0.$$

Proof. Using (2.2) and (1.12) we have

$$\begin{aligned} & 2 \nabla_{fX}(f)(fY, fZ) + (1-\epsilon) \nabla_{f^2X}(f)(f^2Y, fZ) - \\ & - (1+\epsilon) \left[\nabla_{f^2Z}(f)(fX, f^2Y) - \nabla_{f^2Y}(f)(fZ, f^2X) \right] = \\ & = 2g(f \nabla_X(f)(fY), fZ) + (1-\epsilon)g(f^2 \nabla_X(f)(fY), f^2Z) + \\ & + (1+\epsilon) \left[g(f^2 \nabla_Z(f)(fY), X) + g(f^2 \nabla_Y(f)(fZ), X) \right] = \\ & = (3\epsilon - 1)g(f^2 \nabla_X(f)(fY), Z) + (1+\epsilon)g(f^2 \tau_{Y,Z} \nabla_Z(f)(f^2Y), X) = \\ & = (3\epsilon - 1)g(f^2 \nabla_X(f)(fY), Z), \end{aligned}$$

and consequently the proof follows in view of the definition of fQK .

Case II. In this case the structure tensor f of $f(3,\epsilon)$ manifold satisfies

$$(3.3) \quad \nabla_{fX}(f)(fY) = \epsilon f \nabla_X(f)(fY).$$

Theorem 3.4. An $f(3,\epsilon)$ structure manifold satisfying (3.2) and (3.3) is an fQK manifold if

$$f^2 \nabla_X(f)(fY) = 0.$$

In this case

$$N(fX, fY) = (\epsilon - 1) \ell \left[\nabla_X(f)(fY) - \nabla_Y(f)(fX) \right].$$

The converse also holds in the particular case when $\epsilon = -1$.

P r o o f .

$$\begin{aligned} & 2 \nabla_{fX}(f)(fY, fZ) + (1-\epsilon) \nabla_{f^2X}(f)(f^2Y, fZ) + \\ & + (1+\epsilon) \left[\nabla_{f^2Y}(f)(fZ, f^2X) - \nabla_{f^2Z}(f)(fX, f^2Y) \right] = \\ & = (1+\epsilon) g(f^2 \nabla_X(f)(fY), Z) + g(f^2 \underset{Y, Z}{\tau} \nabla_Z(f)(f^2Y), X) = 0, \end{aligned}$$

and

$$\begin{aligned} N(fX, fY) &= f^2 \nabla_X(f)(fY) - f^2 \nabla_Y(f)(fX) - \\ & - \epsilon f^2 \nabla_X(f)(fY) + f^2 \nabla_Y(f)(fX) = \\ & = \ell \left[(\epsilon - 1) \nabla_X(f)(fY) - \nabla_Y(f)(fX) \right]. \end{aligned}$$

Theorem 3.5. An $f(3,\epsilon)$ structure manifold satisfying (3.3) is an fH manifold if

$$\ell \nabla_X(f)(fY) - \ell \nabla_Y(f)(fX) = 0.$$

Proof. If

$$f\nabla_X(fY) - f\nabla_Y(fX) = 0,$$

then using Theorem 3.4 manifold is fH. Conversely if the manifolds is fH then

$$N(fX, fY) = 0.$$

Case III. Lastly we consider the case when the structure tensor f satisfies

$$(3.4) \quad \nabla_{fX}(f)(fY) = f\nabla_X(f)(Y).$$

Theorem 3.6. An $f(3, \epsilon)$ structure manifold satisfying (3.4) and

$$(3.5) \quad f\nabla_X(f)(Y) = 0$$

is an fQK manifold.

Proof. By virtue of (2.4) we have

$$\begin{aligned} & 2\nabla_{fX}(f)(fY, fZ) + (1-\epsilon)\nabla_{f^2X}(f)(f^2Y, fZ) + \\ & + (1+\epsilon)\left[\nabla_{f^2X}(f)(f^2Y, fZ) - \nabla_{f^2Z}(f)(fX, f^2Y)\right] = \\ & = 2\epsilon g(f\nabla_X(f)(Y), fZ) - (1-\epsilon)g(f^2\nabla_X(f)(Y), fZ) + \\ & + (1+\epsilon)\left[g(f\nabla_X(f)(Y), fZ) + \epsilon g(f^2\nabla_Z(f)(X), fY)\right] = \\ & = (3\epsilon-1)g(f\nabla_X(f)(Y), Z) + (1+\epsilon)g(f\nabla_X(f)(Y), Z) + \\ & + g(f\nabla_Z(f)(X), Y) = 0. \end{aligned}$$

REFERENCES

- [1] N.J. Hicks : Notes on differential geometry. Princeton, New Jersey 1964.
- [2] K. Yano, S. Ishihara : Structures defined by f satisfying $f^3 + f = 0$. Proc. of U.S. Japan Seminar in Diff. Geometry, Kyoto, Japan (1965) 153-166.
- [3] K. Yano : Differential geometry on complex and almost complex spaces. New York 1965.
- [4] K.D. Singh, Nilima Srivastava : On some f structure manifolds with torsion. Thesis. Dep. of Math. Lucknow University (1976).
- [5] K. Yano : On a structure defined by tensor field f of type $(1,1)$ satisfying $f^3 + f = 0$. Tensor 14 (1963) 99-109.
- [6] K.D. Singh, R.K. Vohra : $(\epsilon f_{(1)}, \epsilon f_{(2)})$ manifolds. Thesis submitted to the Dep. of Math. Lucknow University (1974).

DEPARTMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY,
LUCKNOW, INDIA

Received July 25, 1976.

