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THEOREME DES AIRES DANS.LA THEORIE
DES FONCTIONS UNIVALENTES BORNEES, II

Dans la présente note nous continuons les recherches sur
la méthode des alres dans la theorie des fonotions univalen-
tes bornédes, [6]. Nous rappelerons les notations admises
dans [6]:

S1 - la classe des fonoctlons f holomorphes et univalen~-
tes dans U ={ 2y jz| < ‘I}, de la forme f(z) =b 2z + b2 22 +
+ oeo et remplisdant la condition | f£(z)| < 1;

8,(b) - la sous-olasse de S,, oi be) 0,1]- est fixd;
pour f € S‘:1

(1) pf(z,g) = -~ loghb ?%;) ?;‘ff)' f_(z;_:_g_(ﬂg Z amnzmg.n -
m,n=1
BZ Am(r) Zm,
n=4

(2) qplz,8) = - log(1 - £(D)2(z)) = > b, «"F 2.

m,n=1
- Z B ({) 2%

m=1

pour f,(z) = Ve (22 , ou f e 8qs
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2 J.$1ladkowska

(3) pfz(z,g) = -;_ aéuzl) 7y o =Z a, (02",
m,n=1 m=1

(4) g, (2:8) = D o2 2R =D vy
m,n=1 m=1

Bolt ¢ =1r ei?, arbitraire dans U, et fg chague fon~-
ction implicite, déterminee par 1'équation

(5) Rp(fe(2)) + ¢ = { (K, (2) +C),

ou K(z) = %—+ e 2?5, ot c=lc|le?, |c| <2 arbi-

traire; fy désigne chaque fonction implicite, déterminde
par 1’équation

(6) Lygeic (£ (2)) = §1,(2),

ot L, (2) = a % TE::EEE et o est un nombre arbitralre suf-
fisamment proche de ¢ .

Dans [6] nous avons obtenu les propriétés générales des
suites (4 (¢)), (B ({)), ag(?)), (b (£}). Ici nous ferons
usage de ces proprietes pour estimer certaines fonctlionnelles
définies dans S1. Comme prémiére application nous donnons
un certain théoreme sur la déformation.

Theoreme 1, Pour toute fonction f € S 1(),
tout 8 € [0,2x et tout £ ¢ U on a l’estimation exacte

suivante

(7)

2/
log<b —g((71>+ e log(1 - lf(§)|2)l < log 1“"2.
1 -
La signe de 1’eégalité dans (7), pour ¢ fixe daps U, est
réalisé par la fonction £, de (5), lorsque 6 = O et par la

fonction ft de (6), 1lorsque § =1,
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Théoreme des aires

Pour ¢ arbitrairement fixé dans U, tous les points
du segment

1 1 :
g ———5 S |w| &L log ———% imw =0
oeje <1 1 -g]2 "

présentent les valeurs de la fonotionnelle

Qg(f) =

log<b __Q%EL>+ e"” log(1 - If(Z)Iz)

Demonstration. De (1) et (2), ol nous
posons z =¢, ona

2
log <b 5—f§(—§§-’—)+ ol6 10g(1 - |£(2)]2) -

-Z (a,(2) + o6 B,(£)) ¢°,

m=1

d'oi, en vertu de l’inégalité de Schwarz et du théoreme 2
de [6], nous avons

2
(8) 103( —e’——é—(Q) ® 10g(1- lf(;’)lz),

(&)

00

< Z |8,8) + o2® B ()] | g|R &

n=1

é( i a4, (D) + o1 B,(P)]2 Z Lilzn)vz <

n=1 n=1

<- log(1 -|2z]2).
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4 J.S:adkowska

Pour démontrer que 1'inégalité (7) est exacte il faut et
il suffit de trouver une fonction f e S1(b) pour lagquelle
(8) dévient 1’égalité triple. Il est facile a voir que cette
propri€té ne subsiste que pour la fonction f e S4(b) véri-
fiant le systeme des equations

is 7 i
A, (%) + e B (Z) = e T

%—fn, B = 1,2,00e,
pour certain T 6.[0,23{; Mais, l'’existence d’une telle
fonction pour T = 8 résulte du théoreme 12 de [6]. En vertu
des theéoremes 7 et 8 de [6], pour 8§ =0 et 8 =2 c’est
bien la fonction %z de (5) et %t de (6), respectivement.

Pour démontrer la deuxieéme partie de la these, remarquons
que toute fonction F holomorphe et univalente dans le disgue
K(O,R), ou R > 1, de la forme F(z) =b z + ..., b >0,
et remplissant la condition |F(z)| < 1 pour z e K(O,R),
appartient & la classe S,(b). En vertu du lemme de Schwarz,
11 est evident que bR < 1. Soit Ss(b) la classe de fomc~-
tions F mentionnées ci-dessus. I1 est facile a voir que si
Fe S?(b), alors f(z) = F(Rz) e 8,(bR) et inversement, si
£ es,(bR), alors F(z) = £(zR"") e 85(b).

Soit fR(z) = bR 2 + «u.. € S,(bR) une fonction pour
laquelle la fonctionnelle @KR_1 atfeint sa valeur la plus

grande dans la classe S1(bR) et soit ﬁR(z) = fh(zR'1).

I1 est évident que
¢® ’72 F e
log(g R )+

F2(zr™")

=12 X
- log(1 -|gR7'| €) = ¢§R'1(1R) =

2 B
+ el log(1 -l ?R(CR—1)|2)| =I log<b E—:EBEEE—)+

Fp(Z)

+ otf log (1 -I ﬁR(()lz)l = QE(ﬁt).



Théoreme des aires 5

Mais, - log(1 - |§R'1|2) rend toutes les valeurs de 1’in-
tervalle [~ log(1 - bzlgl )y = log(1 - L§|2)J, lorsque R
varie dans |1, Bl cgfd.

Conclusion: Si fe 81(b), alors pour ? ar-
bitraire dans U on a 1'inégalité

{1 - ltlal‘lf(t)l‘? < b £ ()] & |f(t)|2 1 - If(f)lal
) 1212 (1 - [2@)1?) | 2 1212 (1 - 1¢13)

Soit ¢ fixé dans U, L’égalité dans (9) entre premier
et second membre n*a lieu que pour fg de (%), et entre se-
cond et troisieme membre - uniquement pour fz de (6).

Théoreme 2. St f ¢S,(b), alors pour y ar-
bitraire dans U nous avons

(o) 5l 1=l < [spd] < 1olgel 1alel

(1) —2r s ee2 < et « —2L e
(1122 " 20| S GTRE J

1 =lel (L 123 .. 14zl (1 - lel)?
(12) bﬁlﬁ'(__&%_)“-lle élf(c)|4b1_m Ty e

Soit ¢ f£ixé dans U et soit £ définie par la formule

Yy
1|+

(13) f(Z) =D Z' .
(1+ e 1P £(2))° (1 + ™¥3z)°

ou ¢=argy. Le signe d"inégalité dans (10) - (12) entre

premiers et seconds membres (resp. entre seconds et troisie-
mes membres) devient celui d’égalité, si f est donnée par

(13) avec "+" (resp., "-") aux dénominateurs.
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Demons tration, Pour etablir (10) remarquons
tout d’abord que, en vertu de (5), (6) et d’imparite de
£,(z), on obttent

£,(z) + £,(¢) 14+ £,(2)E,(2)
z2 -z "2 2 i 2 2 -
los(z ¥ Tplz) - 5, >+ P 1 P

= 2 Z (a5, 4020 + elf bzn_1(f)) z2n=1,

n=1

Posant dans cette relation 2z = ¢, on a

£,(7) 14+ |£,(2)]2 = |
2 ie 2
log A + e-" log — lfz(l')lz =2 "2” (ag,.4(0) +

+ eie bzn-“(z)) ¢ 2n-1,

d’oli, selon 1’inégalité de Schwarz et le théoreme 5 de [|6]
pour 6= O, nous obtenons

£,(2) 1+ |2,(0)]2 2
IlOSﬁg'('g‘)'+eielog + | £(0)] Islogj_+_|_{l_

1= 12,(0)12 1 =gl

2z f. (Z) 2 [ 2y -
Bn tenant compte que fg(z) = f(z2) et fZ%z) =2 fj(', gj )
z

et remplaqant ;2 par ¢, nous avons

(14) Ilog%+eielog]tlgcllél‘og}t]lc .

Or étant 8 arbitraire, de (14) résulte 1’inégalite

| 108 721 | 4103(—§—} t::: L=t llg g;) ,

qui nous ramene a (10).
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Théromeme des aires T

Passons & l’inégalité (11). Il est & observer que pour
fe S1 la fonction

£ (E%5) - 200)

1-¢2 (L) ]

1+Tz

g(z) = T e U,

appartient également a la classe S1 et on a

g (-z) _ tb(1 - | £(2) 12 (
- = R =t) = =f(T).
gl -t £(t) (1 -1¢f®) ©r ©

En substituant g(-t) dans (10) et y posant t= 2z, on re-
trouve 1%inégalité (11). Multipliant enfin (10) et (11) membre
par.membre, nous arrivons a 1’inégalité (12).

Théoréme 3. Pour toute fonction f € S 1(0),
tout zeU et tout 8 ¢ [o 21r[ on a 1'inégalité

T
(15)  |{2(¢), ¢}- 6 618 127 (2)] < 6,
l{ ¢ S’} e 1 - |f('C)|2)2| (1 _|Z|2)2

od {£(z), £} est 1l'opérateur de Schwarz

£ (2) £'(2) )
{ete), ¢} - (f m) (f 13

L*indgalite (15) est exacte dans la classe 84(b).

Démonstration. Soit fe S4(b). Pormons
les fonctions pf(z,:) et qf(z,f); alors, en profitant de
(1) et (2), nous avons

' (z) £ (%)
(£(z) - £(2))2

1 16 £ (2) £(z) -
i A . (;) £(2))2

z =)
=D ) + e B () (B, = eu
n=1
- 553 -
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Fosant ensuite dans (16) z =p¢, ona

()] 2 >
(17) {£(2), g}~ 6 o'f 5 l-fli(’fg)ilz)"’ <6 > (A () 4

n=1
8 o (3 -1
B, (%)) nz "',

ce qul donne, en vertu de 1'inégalite de Schwarz et du thé-
orveme 2 de [6] pour 1 = 1,

C e le@lf? >
(18) I{f(;’),;} 6 e o If(lf)|2)2 I < 6; 'An(l,’) +

+ eie B;(E)I nlcln—1

o0 o0 l
2
< 6<Z n|&,(2) + o' B (2)] 2.21 nltlz(n'1)>
n=1 n=
D WL
n=1 l?-fl )

Pour que (15), avec ¢ fixé dans U, devienne une éga-
1ite, i1 €aut et 11 suffit que tous les membres de (18) soient
égaux et il s’ensuit qu’il faut et qu’il suffit que

! i6 o (3 1 >n=1
(19) A(5) + e Bn(l,‘)=3—e Tazgh1,  pe1,2,...,

pour un certaln T € [O, aJr[. Nous démontrerons 1’existence
d’une au moins fonction f € 81(‘0), telle que les relations
(19) soient remplies pour chaque A = 1, 2, «e. 6t T =8.
Prenons dans ce but la suite des nombres complexes X, =
=ne®', n=1,2,... . Cette suite remplit la condition

suivante
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Théoreme des aires

o0

Tig (22 1 <o,
2_wlnl® -y

donc, en vertu du théoréme 11 de [6],

fe S1(b) telle que

(200 > (ag"" a(a) + e a5 () -

n=1
is .
E 1,.3h=1 _n
= e E n; z .,
n=1
En dérivant (20) par rapport & =z, nous avons
0 @ -
(21) E (ng?1 A (z) + el® ngh B,(2)) = ewZn
n=1 n=1
et profitant ensuite des relattons
(22) Pf(zvc) = Pf(fv z), qf(z,i) = Qf(tv Z),
on a
“ .
(23) E (ng B~ 4, (z) + el nZ a-1 B,(2)) =
n=1
- -4

=> @+ 6t B (2) a

n=1

Donc de (21) et (23) nous obtenons

:E::(Ah(t) + o8 B,(Z)) n 221

n=1

- 555 =~

3

i1 existe une fonction

n-1 znr1’



10 J.Sladkowska

d'ol il vient

, 1

An(c) + e B (C) = E n: » n= 1,2,0.. .
De cette fagon nous avons démontre que pour tout 2 e U et
tout 6 € [O 2JT[ il existe dans la classe S (b) une fonc~

tion pour laquelle 1’inégalité (15) devient une égalite,
Conoclusion. B8i fes(b) et ¢eU, alors

)

, 2
(24) £(0), 2t < 6 sl l )
I{ }I (1 -]2]92 (1 - |2()]?)?

L'égalite dans (24) a lieu pour la fonction f% de (5),
oh p= argz.

Déemonstration. Ltinégalite (24) découle
facilement de (15) pour 6 arbitraire. Soit a présent ¢ =
=r el? ¢ U, En vertu du théoréme 7 de [6], le systéme
des équations

n

(25) A, (t58) + B (t38) = %- , D= 1,2,00s ,

ou te]0,1, n’est rempli que par les fonctions f defi-
nies par la formule K (f )+ C= TT(K (z) + C), ou C eat
une constante réelle arbitraire et |C| £ 2, Posant f =f
dans (25) et derivant par rapport @8 + les relations ainsi
obtenues, nous avons

o]

(26) £t £) + Bty £) = L (4%, n=1,2,... .

En multipliant par 2 respectivement les égalités (26)
et ajoutant on a, d’aprées (17), la relation

O Lrestimation (24) a été obtenu par Alenioyn, [ 2]
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Théoreme des aires 11

{#,(6),t}) -6 £ (0)]° = -6 in g2la=1) o g1,
or" (1-1%,(0)[??2 -~ (1-12)2

d'ca reésulte la suivante

| £ (6)]?
3 75
(1 -] £,(0)]?)

(21)  [{£,(8),8}] = € o :2)2 -

Soit ensuite §C une fonction arbitraire donnde par (5), .
ol p=argz. On remarque facilement que £ (2) = eiwfo(ze'mﬁ
pour la constante C conformément choisie dans (5). En outre

Pf:(z’c) = Pfo(z e-i?” te-i?),

d'ou 11 résulte que

A n =21 7,
{808} = -6 53 pylg10) = 6 2P g, (2,0) -

- 029 {} (r),1],

donc, en profitant de (27), nous avons

; ) | 24212
e
] | % (%)]?

6 - A ]
(1 -]2]%)°2 (1-]%@)]%2

ce qui termine la démonstration.
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Passons au theéoréme qui généralise le précédent.
Theoreme 4. Pour toute fonction f e S (),
tout z e U et tout 8 e [0 Qx[ on a 1'inegalité

N
a[.l."\) ie - a’“"’ -
(28) | E (%, x, PRV Pe(242) =gt % % az"a?qf(z’;) =g ) |€
Hy0=0
N

<~ x J?——af:i-log('l-fz) N2C,
= ZO A YPTY z=y’

paV=

ou L) Xqs ...,'xN sont des nombres complexes, arbitraires,
L*inégalite (28) est exacte dans la classe s,(b).

Deém o nstration, Soit f eS (b), rel,
Soit (x )n o unm systeéme des nombres complexes ne s*annulant
pas a la fois, Nous obtenons de (1) et (2) par dérivation

N

n+y
@) D xmvtsaytann) - E w0 A <
;(,0:0 n=1
00 N
SIS WAL
n=1\v=0
N
(30) E X, xp Qf( -t,') = E Xy xgz (9)(?)(2 (,‘)
Hev=0 pe¥=0 n_1
0 N N
S a3 s @),
n=1 v =0 p=0
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Théoreme des aires 13

En ajoutant (29) et (30) on obtient, d’aprés 1’'inégalite
de Schwarz et le théoréme 3 de [6],

N
Z a,uv is Y S _ -
o l v 0(",‘ o az“atfpf(z'g) S 2z* 9" () z=!)
BV =

)I<
z=g

N N
<Z (5, 0) + o2 5, BE) pr(zn)w
#=0

n=1 ‘v=0
oo N
<<Zn D xy &%) + o 5, )2 x
n=1 n=
oo N o N ()
("
"Z%Z"#(zn) ) SZlZ‘# 2=y =
n=1 p=0 n=1 u=0
N
ZE:: Tkl -
= - x, ¥, ———1log (1 ~ z§) .
439=0 S L T =3

Pour que (28) dewienne une égalité, il faut et il suffit
que pour tout n = 1,2,... alent llieu les relations

N
(32) Z(x, z) + o 5, #%2)) = 1D 7, 1 (B

v =0

n=1,2,-¢09

ou t est un certain nombre de [O 2x[ Nous demontrerons
gu il existe au moins une fonction f € S {(b) remplissant
toutes les egalites (32) pour =28, Prenons dans ce but
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n™
la suite (yn)§=1 des nombres y, = E x, (2 Ay
0

volt facilement que

S i) 3D n @] [<
n= n=1 v =0 z=g
> X Q) 12
sZ(Z[x,[ZZﬂ(“) e
n=1 v =0 e -

levlz ZZ a(a-1)2 ... (@ - v+ 1) |;;|2(“"V) < oo,

v=0 n=1

En vertu du théoreme 11 de [6], 11 existe donc une fonction
fe S1(b) telle que les suites (4, (z)) et (B (2)) con-
struites pour f satisfassent a la relation

N
(33) ;[( xv(z ) l A a(2) + eie(; %, (2 )(v) f)Bn(_i)J .
1 = 3 = n ()
= e enzﬂ:—:;(é x,(z ’ z=2>zn.

Vu (22), 1'inégalité (33) prend la forme

0 N
Z1<Z (xv A(:)(C) + eie il} BN)(C))) 16 Z(Z p( )(” -)% zn’
n=1 v =0 n=1 V=0
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Théoréme des alres 15

d'ou, en vertu de l’unicite du développement, 1l résulte
(32) pour T=6. L’estimation (28) est donc justifide.

Conclusion. Pourtoute f e S,(b) ety
arbitraire dans U on a 1’inégalité

(34) ' [——f—-——azl pel2s Z)]
221 3zt z=Z=¢

[ 221 q.(z, Z)J
321 971 | zez=z

L'egalité dans (34) n’est réalisée que par les fonctions %k
de (5), ou ¢= arge.,

Demonstration. Bnposant N = 1, x, =
= eso = Xy _, =0, x; =1, dans 1’inégalité (22), nous ob-
tenons la suivante

£ -

2 log( Z z)
- ogll - Z 2z -
'bzl 3Zl z=72=y

’ [321 pi(z, z):l . 618[321 Q£(z’ Z)j,
Z=2=y z=7=¢

<
2z 2zl 921 27t

221 _
?fffiigf log(1 - 2 3z)
2

5 -

- I d 2 1 -
dfou, ayant @ reéel arbitraire et [5~i§5:i‘qf(z, Z)]
' YA

z zw2=2
réel, on obtient 1'inégalité (34). Elle ne devient une ega=-

1iteé, drapres (32), que si

Ax(ll)(t;f) + 18 Bl(ll) (t;£) = % ei? (zn)(l) n=1,2, «oe

z=%

Soit & présent £= r e'f € U. En vertu du théoréme 7 de [6],
le systeme
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(35) A (t58) + B (38) = 17, ne1,2,...,

n’est verifié pour tout t ;]0, 1[ que par les fonctions fo
donnees par la formule

K, (3) + ¢ =L (k (2) + 0,

oi C est une constante réelle arbitraire, |C|<2. Posant
f = fo dans (35) et dérivant les relations obtenues 1 fois
par rapport a t, nous avons

36) alVs, 2+ 3P, 2 = 1MW), parge,..,

En multipliant a présent (36) par (tn)(l),

ajoutant on a, vu (1) et (2),

n=1,2,..-, et

3% 3 (2, 2) 2% a3 (z, 2)
(37) 10 l + lo _1 =
9z~ 92 z=Z=%t 9z" 02 z=Z=%
222 _ 1og(1 - 2 2)
= = — 0g - VA
bzl 02 z=Z=t,

d’ot, prenant en consideération que la seconde expression au
premier membre de (37) est positive, nous déduisons

2?1 pz (z, 2) J21 i
l Q l = ™= __I__:I 108(1 -~ Z z) L
9z~ 0Z z=Z=% 0z~ 0Z z=7=%
! oz (2, D)
(*) .
2zt 2zt z=2=1
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Théoreme des aires 17

Soit maintenant fg une fonction arbitraire donnee par
(5), ol ¢= argy + On voit facilement que fk(z) =
= et? fo(z e *?) pour le constante C conformément choisie

dans (5), et que

-

K p; (2, 2) 22t p$ (z, 2)
4 o] e-211¢
’
L 9zt a2zt Jz=2= 221 3zt |2=2=r
- K 9
321 q%k(z, Z) 321 9 (2, 2)
o
N 221 a7l Jz=2= ?zt 3zt _z=Z=r’

8z1 321 =Z=r

P621 log(1 - Z z) -
i 2z 97+ 2=Z=¢

221 log(1 - Z zﬂ
V4

d'ou Fl résulte que pour toute fonction f& 1'inégalite

(34) devient une egalité. L'inégalité (34) est un correlatif
dans la classe S1(b) de 1'inégalite analogue obtenue par
Aharonov [1] dans la classe S. Aucas 1 =1 elle est iden-
tique avec 1'inégalité (24), au cas 1 = 2 elle prend la
forme .

1421212
(1 - [¢]?)?

) 5 ———————§I- £°(2)

+ 2 re[

£, g} - {20, ¢}"| <60

- 60

1 - |£(g)]?

£(2) £°(7) )
£ 2(y) . J ]
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Passons maintenant & l*investigation des fonctionnelles
dépendant de plusieurs points du cercle U,

Théoreme 5, Pour des nombres complexes arbli-
traires X et Yier k = 1,¢¢e4N, pour des points arbitraires
2z, 4 €Uy k=1,...,N, et pour la fonction f ¢ S1(b)
quelconque on a l’inégalité

N
(38)' E (x# yv pf(z#' {v) + eiexﬂ 'y‘v qf(Z#, Zv)) l é

He¥=1
N N 1
4(2 log(1 - Z, z,) Xy ’—‘v‘z 108(1'5,;29) Y 37“)2.
Hov =1 Py =1

En particulier, lorsque X = ¥y et Z = s k = 1,e00,N,
1'inégalite (38) prend la forme

N
(39) I E ' (y}l yv pf( CF’ cv) + eie y# yp Qf( r/_(’ 2\)) ) l <
BV =1

N
<-> 101 -3,3) Y F -
PV =t

L'ineégalité (39) est exacte dans chagque classe 8,(b) et 3
preésente un correlatif de 1’inégalité de Goflousin [3], vraie
dans la classe S. L'inegalité plus générale (38) est ana-
logue & celle obtenue par Lebedev, [4]. Tous les points

de 1’intervalle fermé

N N
[— E log(1 - b2 Lo 5) W § o4 - E log(1 -, &) 9, .‘7,]

He¥ =1 MoV =1
présentent les valeurs de la fonctionnelle

N
E (7,_,, 3, pf(?.',,. Zy) + eiO Ju ?v q(KF’ E\,))
pov=1

(40) q?§f) =

K
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Démonstration. Soit fe_S.I(b). Posons

N
(41) (P(Z) = E (yp Pf(Z,C\,) + eie y\) Qf(Z,EV))o
vy =1

Compte tenu de (1) et (2), 11 vient

¢(z) =i( ZN: (3, 8,(g,) + olf ) Bn(fv)) zn),
n=1 v=1

ou la série au second membre est convergente presque unifor-

mément dans U.
Considérons maintenant 1*expression

N 0 N N
Z x,¢(z,) =Z( (v, 4,(%,) + elf ¥ B,(E, )))(Z Xy zn)
H=1 n=1 v=1 g=1

et €valuons son module, en tenant compte de 1’inégalité de
Schwarz et du théoréme 4 de [6] pour 1 =0, On a

N oo N N
@2)| > %90z sZI(Z (v 2053 + 02 5, 3. )OO xadl
=1 n=1 v=1 H=1
- N oo N 1
< ( Z n Z (3, An(t;v )+eia'y'v Bn(gv))l Z.Z %’Z xM:&;‘1 2)2 <
n=1 V=1 n=1 p=1
o N a2 X 5
OB DITTDIDIS-E
n=1 v=1 n=1 u=1
N N %
=<Z log(1 -fv(”) Yy ?w.z log(1 - Z, z") X, J—!v) .
Me¥ =1 pv =1
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D*autre part, vu (41), on a

N N
Z xﬂy(zﬂ) = E (x,1 Y Pelzy,g,) + o18 X % aplzy, 2,)),
u=1 BV =1

d'ou, et de (42), résulte 1’inégalité (38).
Prouvons maintenant que l’estimation (39) est exacte.
Supposons que

(43) ilogﬁ 520 W 5 =i %[ZN: yp.;:‘|2> 0,

Hqe¥ =1 n=1 V=1

sinon 1’inégalité (39) devient une égalité pour toute fonction
de la classe S1(b). Si les nombres /yk, k=1, ..oy N,

ne s’annulent pas simultaneément et les points zk, k =

=1, «ve, N, sont distincts et différents de zéro, alors

la condition (43) est évidemment satisfaite. Dans ce cas pour
que (39) soit une égalité il est nécessaire et suffisant

qu’il en soit de meme avec toutes les inégalités (42) et pour
cela 11 faut et 11 suffit que

N N
(4) D (3 a0z +e¥ 5 B = LT 5, g8,
V=1 V=1

TE [O,Zm[, D= 1,2, eoe o

N
s n
Considerons la suite X, = 311 y“fb' n=1,2, ¢«es, satisfai-

sant evidemment a la condition % |xn|2<ww . En vertu
n=1

du théoreme 11 de [6] il existe une fonction £ e S4(b) pour
laquelle est vemifide 1’egalité
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5 S it o - 3 1))
n=1 V=1 V=1

o0 N
= eie; %(;% f?)zn.

Mais, en vertu de (22), on a les formules

ZAn(c) P Z a,(z) ¢®, ZBH(ZJ 2 = Z B,(2) 2%
n=1 n=1 n=1 n=1
la relation (45) devient donc
S5t e+ o 5 e) - 05 A 5
n=1 v=1 n=1 v=1

d*oua, et de 1'unicite du développement, on obtient pour la
fonction f et pour © =6 les égalités (44),

Passons maintenant a la seconde partie de la these du
théoréme 5. Soit f une fonction pour laquelle la fonctionnel-
le ¢(Zkk*) , 1€R Sw%-, atteint sa valeur maximale dans
la classe S1(bR), done

N
(46) (F) = - E 3, log(1 - Z,R™ Mz, R71).
é(ckR_,) 2 Y I, log LR -5,

st #z) = F(zr™1), alors F es,(b) et &, (F) =
1 @)

= Q(C Rq)(f). Mais, le premier membre de (46) pour R e[}, %]
k

prend toutes les valeurs de 1l’intervalle
N _ N _ -
[-Z v, 5 log(1 -v%Z,z), -3_y, § log(d -C,,C,)].
HeV =1 BV =1
cqfd.
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En poursuivant la procédure appliquée dans les démonstra~-
tion des theoremes 3, 4 et 5, on peut démontrer le théoreéme
suivant.

"Theoreme 6, 8Si fe 84(b)y Xy, Fps k= 1,000,N,
sont des nombres complexes quelconques et Zps Sps k=1e0.,N,
des points quelcongques du disque U, alors on a 1’inégalité

N
(a7) | E (x, 3, Ulzysg) + otf x, §, v(z“,gv))l <

BV =1

> S L
é( Xy Xy _ 2 Y ¥ ‘—“—_2>
: #’v=1 (1 - Zv ZF) F'\’=1 (1 - tvrﬁ)

Pour =x.=y, et 2, =, k= 1,...,8, nous obtenons 1%iné-
galite

N

< E );‘?p (1 'Ev(lu)-z.

F..v=1

N .
(48)| > " (%05 5) ¢ o*® 5, 5,V(¢, 7))

Ha9=1

qul est exacte dans chaque classe S1(b). Tous les points

N N
de 1l’intervalle [E ¥, ¥, (1- bzf‘,c“)'z. E AR -E.z,fa]

Hev=1 Hy¥=1
présentent les valeurs de la fonctionnelle

N .
By (T = | D % Wgz) v ety 5, Vg, g)]
P,v=1
pour f € S1(b).
L'inégalité (48) a été obtenue par Singh [5] a 1%aide de
la méthode de 1’intégration sur le contour. Singh en a deduit
les inégalités (10) - (12) de notre travail.
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