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THÉORÈME DES AIRES DANS.LA THÉORIE 

DES FONCTIONS UNIVALENTES BORNÉES, II 

Dans l a présente note nous continuons l e s recherohes sur 
l a méthode des a i r e s dans la t h é o r i e des fonot ions univa len-
t e s bornées, [ 6 ] . Nous rappelerons l e s no ta t ions admises 
dans [ôj j 

S1 - l a c l a s se des fono t ions f holomorphes et un iva len-f "Ï ? t e s dans U = V zi | z | < de la forme f ( z ) • b z + bg z + 
+ . . . et remplissant l a condi t ion | f ( z ) | < 1; 

S^ib) - l a sous-o lasse de S ^ où b t ] 0 , l ] e s t f i x é ; 
pour f e S1 

(1) P f ( . f ç > - - log b fa f f a X ^ a » -
a,na1 

Z w 
os _ 

m s n 

a=1 

(2) = - l o g d - f ( f ) f ( z ) ) - 2 — bmn z 

m,n=1 

= X > m ^ A 
m=1 

pour f 2 ( z ) = V f ( z 2 ) » où f e S 1 , 
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2 J.&ladkowska 

(3) pf <«fÇ) .<J> am(Ç)Zm, 
m,n=1 m=1 

(4) q^Cz.f) - X bmn} n = X 
m,n=1 m=1 

Soit Ç = r arbitraire dans U, et f̂  chaque fon-
ction implicite, déterminée par l'équation 

(5) Kp ( f̂  ( z ) ) + C = £ (K^Cz) + C), 

où K(z) = 1 + e"21<? z et C = |c| e'1^, | c | < 2 arbi-
traire; ff désigne chaque fonction implicite, déterminée 
par l'équation -

(6) Lj^u* (ff (z)) =. £ Lç(z), 

où ^(z) = u z iZ-"âUz 01 ea-fc u n Qombre arbitraire suf-
fisamment proche de y . 

Dans [6] nous avons obtenu les propriétés générales des 
suites Um(ç)), (B^Ç)), am(£)), C!bm(f)). Ici nous ferons 
usage de ces propriétés pour estimer certaines fonctionnelles 
définies dans S^. Comme prémière application nous donnons 
un certain théorème sur la déformation. 

T h é o r è m e 1. Pour toute fonction f e. S^b), 
tout 8 e [©,2jr[ et tout Ç e U on a l'estimation exacte 
suivante 

(7) l o g U ¿pu) \ t2(i) / + eifl logd - |f(?)|2) 4 log 
f*(?) ' 1 - | Ç. 

La signe de l'égalité dans (7), pour ç fixé dajis U, est * * A 

réalisé par la fonction f^ de (5), lorsque S = 0 et par la 
fonction ff de (6), lorsque 8 =Jr. 
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Theorems des a i res 

Pour £ arbitrairement f i x é dans U, tous les points 
du segment 

l o g A , .2 4 I w I 4 l o g T~T2 ' im w = 0 1 - 1 - | ç r 

présentent les valeurs de la fonotionnelle 

Îç(i) l o g ( b e i ô logd -|f ( f>| 2 

D é m o n s t r a t i o n . De (1) et (2), où nous 
posons z = ç , on a 

oo 

• - X > n ( ? > + * l f l Bn(?)) 
B=1 

d'où, en vertu de l ' i n é g a l i t é de Schwarz et du théorème 2 
de [6 ] , nous avons 

(8) l o g ( b ! f - ! ^ ! ) + e " l og ( l - | f (o| 2 ) 

* X L i v f > + • l f l v ? , N * i 1 1 4 

n=1 

4 - îogd -|<|2). 
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4 J.^ladkowaka 

Pour démontrer que l ' i n é g a l i t é (7) est exacte i l faut et 
i l s u f f i t de trouver une fonction f £ S^b ) pour laque l le 
(8) dévient l ' é g a l i t é t r i p l e . I l est f a c i l e à voir que cet te 
propriété ne subsiste que pour l a fonction f £ v é r i -
f i an t le système des équations 

+ ® i 8 = ® i r n " 1 « 2 

pour certa in r £ [ O , 2 J T [ . Mais, l ' ex i s t ence d'une t e l l e 
fonction pour f = S résul te du théorème 12 de [6 ] , En vertu 
des théorèmes 7 et 8 de [ é ] , pour 6 = 0 et 6 = jr c ' e s t 

V 

bien la fonction fj. de (5) et fj» de (6) , respectivement. 
Pour démontrer la deuxième part ie de l a thèse, remarquons 

que toute fonction F holomorphe et univalente dans l e disque 
K(0,R), où R > î , de l a forme F(z) = b z + b > 0, 
et remplissant la condition |p(z)| < 1 pour z eK(0 ,R) , 
appartient à la c lasse S.,(b). En vertu du lemme de Schwarz, , R 
i l est evident que bR < 1. Soit S^Cb) la c lasse de fonc-
t ions F mentionnées c i -dessus . I l est f a c i l e à voir que s i 
P e S^(b), a lors f ( z ) = F(Rz) e S^bR) et inversement, s i 
f £ S^bRJ , a lors F(z) = f(zR"1) e S^(b). 

Soit = bR z + . . . £ S^bR) une fonction pour 
l aque l l e la fonctionnelle <5 .. a t t e in t sa valeur l a plus ~ - î grande dans la c lasse S^CbR) et soit = 
I l est évident que 

>-1i 2 log ( 1 -|<R-V) = 
Ç2 R"2 ?^(CR-1) 

loglb R ^ =— 
V f|(ÇR' 1 ) 

e 1 9 l o g d -I fR(ÇR"1)| 2)| = I logfb * 

+ e i 0 l o g d - j P r(Ç)|2)| = $ 
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Théçrème des airea 

"1 i o 
Mais, - log( l - |ÇR I ) prend toutes les valeurs de l ' i n -
tervalle [ - l ogd - b 2 | ç | * ) , - log( l -|_g| 2 ) ] , lorsque R 
varie dans [ l , ç-J, oqfd. 

C o n c l u s i o n : Si f e S ^ b ) , alors pour ç ar-
bitraire dans U on a l ' inégal i té 

( 9 ) <1 4 [ b f . ( ? ) , 4 i w i 2 (1 - | f ( o i 2 ? 
k l 2 d - I ? (_? ) ! ) iç i 2 d -1 ¡ r i 2 ) 

Soit ç f ixé dans U. L 'égalité dans (9) entre premier 
A 

et second membre n'a lieu que pour f - de (5 ) , et entre se-
* / 

cond et troisième membre - uniquement pour ff de (6 ) . 
T h é o r è m e 2. Si f e S ^ b ) , alors pour ç ar -

bitraire dans U nous avons 

(10) 1 + I f ( Q l 1 - I f 
t ç Ï Ï 1 +! 1 - 7 f U ) l 1 +LTI zCLî 

fTr) 
Ï L < 1 - l f ( Q l 1 t k l 
) 1 + | f ( f ) l 1 —ICI ' 

d + k l r (1 - [s\r 

Soit ç fixe dans U et soit f définie par la formule 

(13) f ( 2 ) 
(1 ± e - ^ f ( z ) ) 2 = b (1 ± e ^ z ) 2 ' 

où <p = a r g ç . Le signe ¿"inégalité dans (10) - (12) entre 
premiers et seconds membres (resp. entre seconds et troisiè-
mes membres) devient oelui d'égalité, si f est donnée par 
(13) avec "+" (resp. " - " ) aux dénominateurs. 
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6 J.éladkowska 

D e m o n s t r a t i o n . Four établir (10) remarquons 
tout d'abord que, en vertu de (5), (6) et d'Imparité de 
f2(z), on obtient 

/_ _ f9(z) + f„(ç) \ 1 + fTû)fo(z) 
S H f 4 M - 4 « > ) + >ie ^ T T ^ û t -

oo 
- 2 Z , («2n-iC« + e i 8 *2n-1i?)) z2n"1-n = 1 

Posant dans cette relation z » ç, on a 

f 2 ( r ) l f l i + | f 2 ( ç ) | 2 

d'où, selon l'inégalité de Schwarz et le theoreme 5 de [|6] 
pour 0 • 0, nous obtenons 

f 2(0 l e 1 + |f2(Ç)|2 log 1 + M 2 

1 - id2 • 

? p z fp(z) 2 (_2\ 
En tenant oompte que f«(z) = f(z ) et ~ f \ = — — X 

2 * r2 v z ; f(z ) 
et remplaçant ç par ç , nous avons 

(14) 1„„ f(C) ^ aie , 1 + log + e log -y-— fill! ftttî < log 1 

Or étant S arbitraire, de (14) résulte l'inégalité 

qui nous ramène à (10). 
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Théromème des aires 7 

Passons à l'inégalité (11). Il est à observer que pour 
f e S1 la fonction 

V e U, 

appartient également a la classe S^ et on a 

S K" t } f(t) ( 1 - |r|2) 

En substituant g(-r) dans (10) et y posant r= z, on re-
trouve l'inégalité (11). Multipliant enfin (10) et (11) membre 
par.membre, nous arrivons à l'inégalité (12). 

T h é o r è m e 3. Pour toute fonction f e S^b), 
tout Ç e U et tout B e [O,2JT[ on a l'inégalité 

11 W (1 - |f(<)|2)2 1 (1-I?I 2) 2 

où {f(<), Ç } est l'opérateur de Schwarz 

L'inégalité (15) est exacte dans la classe S^b). 
D é m o n s t r a t i o n . Soit f e. S^b). Formons 

les fonctions pf(z,ç) et qf(z,ç); alors, en profitant de 
(1) et (2), nous avons 

1 + 0ie f (g)f'(z) 
(z - r)2 (1 - f(ç) f(z))2 " 
es 

= 5 1 + ei® Bn (* } ) (zû)' » z t U -n=1 
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8 J.&Ladkonska 

Iosant ensuite dans (16) z = Ç, on a 

2 ° ° 
(17) {f<Ç), ç}- 6 . " — U l l g L ^ . -6 X (A'nCÇ) + 

+ e 1 0 B^ç)) n Ç n - 1 , 

ce qui donne, en vertu de l'inégalité de Schwarz et du the-
orème 2 de [6] pour 1 = 1 , 

+ e 1 0 B' aw\ n|<|û-1 4 

4 n | 1 ; « ) + e i 0 B ^ l 2. £ n | ç ,2(0.1))^ * 

« ¿ . K l « - ' - ^ . 

Pour que (15), avec ç fixe dans U, devienne une éga-
lit 

e, il <aut et il suffit que tous les membres de (18) soient 
égaux et il s'ensuit qu'il faut et qu'il suffit que 

(19) Ân(ç) + e 1 6 Bfl(ç) = | e i T n ç n ' 1 , n-1,2 

pour un certain ? e [ 0 , 2 j t[. Nous démontrerons l'existenoe 
d'une au moins fonction f e S^(b), telle que les relations 
(19) soient remplies pour chaque n = 1, 2, ... et r = 6. 
Prenons dans ce but la suite des nombres complexes x Q s 
= nç6"'', n « 1,2,... . Cette suite remplit la condition 
suivante 
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Theoreme des aires 9 

• - k l ' 

donc, en vertu du théorème 11 de [6], il existe une fonction 
f e S.j(b) telle que 

w 
(20) ̂ T (n Ç n" 1 An(z) + e i S n ^ n - 1 bJI)) = 

n=1 

• ° 1 9 £ i » ? n - 1 

n=1 

En dérivant (20) par rapport à z, nous avons 

OO «X» • 
(21) ̂  (nç n~ 1 A'Q(Z) + e i e n ç n - 1 ¡[(F)) = e i 9 ^ T nf" 1 

n=1 n=1 
et profitant ensuite des relations 

( 2 2 ) P f ( z , ç ) = p f ( < , z ) , q f ( z , ç ) = q f ( Ç , Z ) , 

on a 

(23) (a«?0"1 + e i S H ^ B k ( 2 ) ) = 
n=1 

OO 

= (An(Ç) + e i ô B ^ ) ) A Zn~\ 
n=1 

Donc de (21) et (23) nous obtenons 

<*> oo 
+ e " û z Q" 1 - e i S Z z D" 1' 

n=1 n=1 
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10 J.âladkonska 

d'où il vient 

A G ( Î ) + ei0 B ^ Ç ) = ¿ e 1 0 n = 1 , 2 

De cette façop nous avons démontré que pour tout ç e U et 
tout 6 €. [ 0 , 2 Jr|_ il existe dans la classe Si(b) une fonc-
tion pour laquelle l'inégalité (15) devient une égalité. 

C o n c l u s i o n . Si f iS^b) et ç e U, alors 

(24) |{f r n r r -
11 Jl (1 - | d 2 ) 2 (1 - |f«)|2)2 

L'égalité dans (24) a lieu pour la fonction fç de (5), 
où f = arg ç . 

D é m o n s t r a t i o n . L'inégalité (24) déooule 
facilement de (15) pour S arbitraire. Soit à présent Ç = 
= r e**" e U. En vertu du théorème 7 de [6], le système 
des équations 

(25) AQ(t;f) + Bn(t;f) = 1 tû, n = 1,2 

où t e.]o,l[, n'est rempli quie par les fonctions fQ défi-
nies par la formule K

0(^0) + c • "Ç" (K
0(z) + c)» C est 

une constante réelle arbitraire et | C | 4 2. Posant f = fQ 
dans (25) et dérivant par rapport à t les relations ainsi 
obtenues, nous avons 

(26) An(t$ f0) + B^tj f0) = 1 (tQ)' , n = 1,2,... . 

En multipliant par tn respectivement les égalités (26) 
et ajoutant on a, d'après (17), la relation 

^L'estimation (24) a été obtenu par Alenicyn, {VJ» 
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Theoreme des a i r e s 11 

{ } o ( t ) , t } - 6 , - 6 — V p ' 
1 0 J ( 1 - I * 0 ( t ) l 2 ) 2 ( 1 - t 2 ) 2 

d'oiù r e s u i t e la suivante 

A 

So i t ensuite f ç une fonct ion a r b i t r a i r e donnée par ( 5 ) , 
où <p= arg ç . On remarque facilement que f ç ( z ) = e ^ f (z e" i ?) 
pour l a constante C conformément cho i s i e dans ( 5 ) . En outre 

Pf ( s » ç ) = P£ (z e ~ i î \ , 
S o 

d'où i l r é s u l t e que 

{ ? , ( ? ) , < } = -6 P f { 2 | j ( ç , ç ) > -6 e " 2 i P p ^ ^ i r . r ) = 

donc, en p r o f i t a n t de (27 ) , nous avons 

l % « ) | 2 
- 6 

(1 - | Ç | 2 ) 2 (1 - I 2 ) 2 ' 

ce qui termine l a démonstration. 
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12 J.^ladlcowalca 

Passons au theorème qui generalise le precedent. 
T h e o r è m e 4. Pour toute fonction f e S^b), 

tout ç 6. U et tout e e [o,2jt[, on a l'inégalité 

(28) 
N 

" V — * -zil+v ifl a*11, / \ 

fl, l>=0 * 
N 

dV 

z=ç 

¿ - s . v 108(1 N>0' 
ou x^ x̂ . sont des nombres complexes, arbitraires. 
L'inégalité (28) est exacte dans la classe S^b). 

D e m o n s t r a t i o n . Soit f e S1(b), ç e U. 
Soit (x

Q)n-o u û système des nombres complexes ne s'annulant 
pas à la fois. Nous obtenons de (1) et (2) par derivation 

N N oo 
( 29) x i x*x'7tt* = 

fi,ï=0 Ç n=1 

n=1 \ \> =0 /i=0 

(3o) ZI xx - ZI^Z8?^"'0 0 
/¿,\>=0 Z /t,»=0 n=1 

^(¿-.«¡"wî-,!.'/"). 
n=1 tf =0 >i =0 
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Théorème des aires 13 

En ajoutant (29) et (30) on obtient, d'après l'inégalité 
de Sohwarz et le théorème 3 de [6], 

(31) ±0 a z^d? 
ifl _ 8M+» 

+ « xi> ^ 

fi=o 

CfO 

n=1 x V =0 
» N 

n=1 >i=0. 

z=ç 

+ i B^))| 2 x n 

oo N « Eîir v 
n=1 ^=0 

,CC> 

2=Ç 

1 
2^2 

n=1 ft =0 

ÎM> 
z=Ç 

ri -x: 
f!,i= 0 

9z" 9?v z=ç 

Pour que (28) devienne une égalité, il faut et il suffit 
que pour tout n = 1,2,... aient lieu les relations 

i>=0 V =0 z=ç 

n=1,2,..., 

où r est un certain nombre de [O,2JT[. Nous démontrerons 
qu'il existe au moins une fonction f e S ^ b ) remplissant 
toutes les égalités (32) pour t = 0. Prenons dans ce but 
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14 J.&Ladkcmska 

la sulte (y^n-i d e s nombres y Q = ^ xv (zQ/*> On 
voit facilement que 

oo co « 

n=1 ns1 tf 30 

<*> . N N , 

n=1 i> =0 =0 s 

i x » ( - u 2 - - • + 1 > 2 1 <i2(n-v) * °° • 
\) =0 tf =0 n=1 

En vertu du théorème 11 de [6], il existe donc une fonction 
f e S^(b) telle que les suites (Afl(z)) et (Bq(z)) con-
struites pour f satisfassent à la relation 

(33) £ [ £ ^f'i k < > ) * - I 6 ( É • 

n=1 S=0 

Vu (22), 1»inégalité (33) prend la forme 

£ ( Z («, £ « > * * ft«))-» - I )1 an, n=1 #=0 n=1 \> =0 lz=r 
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Theoreme des aires 15 

d'où, en vertu de l'unicité du développement, il résulte 
(32) pour Z=6. l'estimation (28) est donc justifiée. 

C o n c l u s i o n . Pour toute f e S^l) et < 
arbitraire dans U on a l'inégalité 

(34) 
V 1 pf(z, z) 

3 z1 dZ1 Z = Z= Ç 

a 2 1 
< %—=r log(l - Z z) 

3z1 3Z z=Z=Ç 

9 2 1 qf(z, Z) 
3z1 3 Z1 z=Z=< 

L'égalité dans (34) n'est réalisée que par les fonctions fç 
de (5), où <f> = arg £ . 

D é m o n s t r a t i o n . En posant N = 1, = 
= ... = xl_1 =0, x.̂  = 1, dans l'inégalité (22), nous ob-
tenons la suivante 

a 2 1
 Pf(z, Z) 

3z1 3z1 + e 16 
z=Z=Ç 

d21 qf(z, Z) 
3z1 3Z1 z=Z=Ç 

3 21 < î—rr logd - z z) 3z1 3z z=Z=< 

d'où, ayant ô réel arbitraire et 
.21 

zv,z=r réel, on obtient l'inégalité (34). Elle ne devient une éga-
lité, d'après (32), que si 

A^itjf) + e16 4 1 » (t;f) (zn)(l) 
z=t 

f HS1 y 2 | • • • • 

Soit à présent ç = r e1*" e U. En vertu du théorème 7 de [6], 
le système 
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16 J.&laâkowska 

(35) A Q(t ;f) + B n(t»f) = J-t", n=1,2 

n*est vérifie pour tout ti]o, l[ que par les fonctions fQ 
données par la formule 

Ko + 0 = F ( K o ( z ) + C )' 

où C est une constante réelle arbitraire, |c|42. Posant A j 

f = f dans (35) et dérivant les relations obtenues 1 fois 
par rapport à t, nous avons 

(36) f Q) + B ^ ( t f fQ) - 1 ( t V 1 * , n=1,2,..., 

En multipliant à présent (36) par (tn)^ , 
ajoutant on a, vu (1) et (2), 

(37) 
3 2 1 Pî (z, z) io 

3Z1 3Z1 z=Z=t 

3 2 1 qj (z, Z) 

dz1 3Z1 z=Z=t 

.21 
— ? — r î o g d - Z a ) 
az1 BZ1 z=Z=t 

d'où, prenant en considération que la seconde expression au 
premier membre de (37) est positive, nous déduisons 

3 2 1 p* (z, Z) 
10 

3 a1 3Z1 

,21 

z=Z=t 
— ^ — T logd - z z) 
3z 3ZX z=Z=t 

3 2 1 qS (z, Z) 
0 

dz1 Bz1 z=Z=t 
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Theoreme des a i r e s 17 

Soit maintenant une fonc t ion a r b i t r a i r e donnée par 
(5) , où f = a r g £ , On voi t faci lement que f c ( z ) = 

i<p  A / — i®* * - e e / pour la constante C conformément chois ie 
dans (5) , et que 

9 2 1 (z f Z) 

3z 1 3Z1 z=Z=if 

a 2 1 p j (z , z) 
0 

3 z 1 a z 1 
, -21i <p 

z=Z=r 

3 2 1 qî. (z , Z) 

3z1 3Z1 z=Z=£ 

3 2 1 q£ (z, z) 
0 

3 z 1 3z 1 z=Z=r 

d 2 1 î o g d 
3 z 1 3Z1 

Z z) 
z=Z-£ 

d 2 1 log( l - Z z) 
3z 1 3Z1 z=Z=r 

d'où ji.1 r é s u l t e que pour toute fonct ion f ç l ' i n é g a l i t é 
(34) devient une é g a l i t é . L ' i n é g a l i t é (34) est un c o r r é l a t i f 
dans la c lasse S ^ b ) de l ' i n é g a l i t é analogue obtenue par 
Aharonov [ l ] dans la c l asse S. Au cas 1 = 1 e l l e est iden-
t ique avec l ' i n é g a l i t é (24), au cas 1 = 2 e l l e prend la 
forme 

I j f U M H w . c n ^ o i f - L l i i L -

- « 7 T ^ W ° * 2 | f ( n | 2 • Î I F ^ l ™ ' 2 + 

+ 2 re ' 1 - l f ( g ) l 2 

f ' 2 ( ç ) 
f ( 0 f " U ) 
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18 J.éladkowska 

Passons maintenant à l ' i n v e s t i g a t i o n des fonc t ionne l l e s 
dépendant de p lus ieurs poin ts du ce rc l e U. 

T h é o r è m e 5. Pour des nombres complexes a r b i -
t r a i r e s x^ et y^, k = 1 t , . . , H , pour des poin ts a r b i t r a i r e s 
V e U, k = 1 , . . . , N , et pour la fonc t ion f e S ^ b ) 
quelconque on a l ' i n é g a l i t é 

N 
(38) | y Up y„ p f(zM tÇvJ + e % M 2 / " ^ 

¿1,0=1 

/ N N v l 
4 ( y ^ 108(1 - Zv) xM x ^ . y l o g d - f y ç , ) yM y t f J 2 . 

En p a r t i c u l i e r , lorsque xk = et = r k , k = 1 , . . . , N , 
l ' i n é g a l i t é (38) prend la forme 

(39) | ^ T ^ (y^ yv p f ( fy, ç„) + e i S ŷ  ^ q f ( fy, ) | ^ 

N i 

l 0 g ( 1 " Ç/I f»5 yM * • 

L ' i n é g a l i t é (39) es t exacte dans chaque c lasse S ^ b ) et y 
présente un c o r r é l a t i f de l ' i n é g a l i t é de Glodousin [ 3 ] , v r a i e 
dans la c lasse S. L ' i n é g a l i t é plus générale (38) es t ana-
logue à c e l l e obtenue par Lebedev, [4 ] . Tous l e s po in ts 
de l ' i n t e r v a l l e fermé 

l o g d - b ^ f v ) ^ y, , - log(1 % 
f L , ' ) - 1 

présentent l e s va leurs de la fonc t ionne l l e 

(40) ë ( f ) = 
N 
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Theoreme des aires 19 

D e m o n s t r a t i o n . Soit f £ S^t). Posons 
N 

( 4 1 ) cp(z) = ^ pf(ztç„) + ei6 

V =1 

Compte tenu de (1) et (2), il vient 

CO N 

n=1 V =1 
où la serie au second membre est convergente presque unifor-
mément dans U. 

Considérons maintenant l'expression 
N oo N N Z =L(X V^ + eis * V 

/i =1 n=1 V =1 =1 

et évaluons son module, en tenant compte de l'inégalité de 
Schwarz et du théorème 4 de [6] pour 1 = 0 . On a 

M IL Xf hLKE <* An«tf ) * eie y, •)))(£ V î ) 
ft=1 n=1 i)=1 ¿¿=1 

é 

n=1 V=1 n=l fi= 1 

2 oo N 52, N__ i (EîlẐ I ZîlÊ I?-
n=1 \>s1 n=1 

N N 1 =(XLiog(i - w*M iog(1 ~z» 'm5 xf *») • 
,M=1 >M=1 
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D'autre part, vu (41), on a 

y. = yv + el8 x/i y« q f i v » ^ ^ » 

d'où, et de (42), re'sulte l ' i n é g a l i t é (38). 
Prouvons maintenant que l 'est imation (39) est exacte. 

Supposons que 

(43) 2 Z , l o g ( l - Ç , ^ ) Jfl y, > 0 , 
=1 n=1 tf =1 

sinon l ' i n é g a l i t é (39) devient une éga l i té pour toute fonction 
de la classe S ^ b ) . Si les nombres y k , k = 1, . . . , N, 
ne s'annulent pas simultanément et l e s points k = 
= 1, . N , sont d is t incts et différents de zéro, a lors 
la condition (43) est évidemment s a t i s f a i t e . Dans ce cas pour 
que (39) soit une éga l i t é i l est nécessaire et suff isant 
qu ' i l en soit de même avec toutes l e s inéga l i tés (42) et pour 
cela i l faut et LJ su f f i t que 

N t N 

(44) W + h B n ( ^ ) } = ïï e i T X î* 

\> =1 V =1 

T £ [o,2jt[, n = 1,2, ... . 

N Considérons la suite x = fy l«* û = 1»2> •••» s a t i s f a i -i =1 » 
sant évidemment à l a condition 

n=1 " 1 

du théorème 11 de C^J i l existe une fonction f e. S^b) pour 
laquel le est vétfifiée l ' é g a l i t é 

/ . r I x_| 2< oo . En vertu 
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45) £ ( ( £ AaU) + e i 0 ( £ B n ( z ) ) = 
n=1 \> =1 $ =1 

n=1 \ \)=1 

Mais, en ver tu de (22) , on a l e s formules 

¿ A n ( Ç ) z» = £ An(Z) Z» - £ Bf l(z) 
n=1 n=1 n=1 n=1 

la r e l a t i o n (45) devient donc 

Î X È . V * > - 5. B B ( i t » ) s" . S, 
n=1 D=1 n=1 \)=1 

d 'où , et de l ' u n i c i t é du développement, on obt ient pour la 
fonc t ion f et pour t = S l e s é g a l i t é s (44) . 

Passons maintenant à la seconde p a r t i e de la thèse du 
théorème 5. Soit f une fonc t ion pour l aque l l e la fonc t ionne l -
l e , a t t e i n t sa valeur maximale dans 
la c l a s se S ^ b R ) , donc 

rt 
(46) $ ( f ) = - fy y„ log(1 - R" 1 ) . 

Si P(z) = f ( z R ' 1 ) , a l o r s F e S ^ b ) et § ^ (F) = 

= y M a i s » l e premier membre de (46) pour R ç j 

prend t o u t e s l e s va leurs de l ' i n t e r v a l l e 
r N o N 1 
- 5 — Ju % i °g( 1 - b c , ? J , - Z H y„ % i o g d . 

L/i,Î=i * >»,«=1 r j 

cqfd . 
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En poursuivant la procédure appliquée dans les démonstra-
tion des théorèmes 3, 4 et 5, on peut démontrer le théorème 
suivant. 

T h é o r è m e 6. Si f e S^Cb), xk, k = 
sont des nombres complexes quelconques et z^, Ç̂ .» k = 1,...fH, 
des points quelconques du disque U, alors on a l'inégalité 

(47) | ̂ ^ ( ^ yv 0 < V + eifl V(z M,y) 4 

N N , \ 

, „ ^ ci z j 2 ç , -V * d - ^ ç j 2 

Pour x̂ affjj. et z k = k = 1,...,N, nous obtenons l'iné-
galité 

^ s xu ** - — 3" 7 y„ y, 

(48) I ty yv V + ^ y, V(CM. C,)) < * ( 1 V " 2 ' 

qui est exacte dans chaque classe S1(b), Tous les points 
N H 

de l'intervalle ^ y# ( 1 - b 2 ^ ) " 2 . ¿ Z yM ( 1 " W * ] 

présentent les valeurs de la fonctionnelle 

%)(f) = I ¿(* U( W + ^ ^ ^ 
¿t,tf=1 

pour f €. S^b). 
L'inégalité (48) a été obtenue par Singh [5] à l'aide de 

la méthode de l'intégration sur le contour. Singh en a déduit 
les inégalités (10) - (12) de notre travail. 
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