DEMONSTRATIO MATHEMATICA
vol. X No 2 197

Ireneusz Nabiatek

GENERAL TIME SETS

Introduction

The aim of this paper is a comparison of two abstract no-
tions of time sxis - one used in [1] for the need of the cha-
racterization of machines by means of sets of computation and
the other usually applied in the theory of dynamic processes
(ef. [2]). In [1] computations were treated as runs of some
changes in time and it turned out that to define sets of ma-
chine computations it suffices to conaider only few properties
of the time axis. Namely, it suffices to interprete the time
axis as a triple (T, < ,8), where T 1is the set of moments
< 1s the order induced upon the set of moments by the rela-
tion "not later than', and 8 defines a family of translations
owing to which it is possible to compare runs in various time
intervals. In the theory of dynamic processes the time axis
i1s understood as a pair (T,¥), where T i3 the set of mo-
ments and (&) 1s "addition" of moments such that (T, ® ) is
a monoid having some properties sufficient for describing dy-
namic¢ processes,

The main result of this paper is a theorem stating that
the time set of [2] always generates a generalized time set
(r,< ,8). Hence having the set of moments and the addition
of moments one can always introduce a natural order < and
define a function of translations 6. Also it is shown that
for every generalized time set (T, < ,8) one can define
a monoid (T, (¥ ) generating (T, < , 8). However, this mo~-
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2 I.Nablatek

noid (T, ® ) has, generally speaking, fewer properties that
that used in the theory of dynamlic processes.

1. Monoid of movements

Let (T, < ,0) be a general time set. Let T = 8(T) and
let o be the composition of functions. By O we denote the
first element of (T, <) (see [1]).

Theorem 1.1. The pair (T, o) is a semigroup with
an identity.

Proof., If a, BeT , then aopfeT by Definition
1.2 in [1]. Moreover, the identity +1: T— T belongs to T
by Theorem 1.1 in [1].

Definition 1.1. Let a, beT, a, feT and
a(0) = a, B(0) = b, We define an ordering relation < in T

(1.1) (o <f)e>(a <b).

Definition 1.1 is correct, because by Definition 1.2 in
(1] for sny teT there exists exactly one ¢ €T such that
9(0) = t.

The ordered set (T,<) 1is similar to (7,<). The
function 8: T—~—7 1is a similarity mapping.

Definition 1.2, The triple (T,0,<) |is
called the monoid of movements of a general time set (7,<,8)
or, shortly, a monoid of movements.

Theorem 1.2. If (7,0 ,<) 1is a monoid of move-
ments, then for any «, f€7 we have

(1.2) (0 <fB)e> I (aoy=4).
TeT

Proof. Let a(0) = a, pB(0) =b. If a<b, then
beT and since a(T) = T,» there exists ceT such that
afc) =b. Let FeT and 3(0) = c. We have awoye7T , and
because (ao7)(0) = o [7(0)] = alc) = b, we obtain ey =8,
If a, f,7€T and aoy =pf, then a = a(0) < alc) =
= (aeg) (0) = B(0) = b, thus a<}B.
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Remark. Since (a<p) iff p(T)< «(T), the
composition <1'1o/3 is determined iff a<f. Hence, if
aef =4 then 7=a lof.

Theorem 1.3. If (T, ,<) 1is a monoid of mo-
vements, then for any o, BeT we have

(1.3) (a < f) &> (Vo f)eT.

Proof is obvious.

Theorem 1.4, The identity 1 is the first element
of (T,<).

Proof is obvious.

Theorem 1.5, If (T,0o,<) 1is a monoid of move-
ments, then for any a, g, €7 we have

(1.4) a<oof
(1.5) (0L~<ﬂ)€==->([oa<a‘°ﬂ)
(1.6) (1<a<p) e (77 loa < 771 A).

Proof . Let a(0) =a, pg(0)=>b, 7(0) =c. Be-
cause a(0)< a(b) (a: T—=T, 1s a similarity mapping) and
(ate B)(0) = a(b), we have a<ao . Thus we have proved
(1.4). If aof, then a< b and g7(a) < g(b) {(7: T—T,
is a similarity mapping).Because (yea)(0) = y(a) and
(7°8) (0) = y(b), we get yoa<y:f. If Foa< yoB, then
j(a) < 7(b). Hence a < b and a <f . We have proved (1.5).
If 7€a<f, then z'1oae T and 7r'1o B €T by Theorem 1.3,
The relation a < b implies § '(a) <77 '(b) (§ ' : T —=1T
1s a similarity mapping) and (7 o )(0) = 3—1(a), (r7% 8)0-=
= 7_1(b). Hence 3'1 o< I'L,ﬂ . If I—l a < U'L A, then
¥ o aeTl and 7'1 BeT, thus y<a and y<f by Theorem 1.3,
Moreover, if 7 4 a < ;'1ﬁ , then 7 '(a)< 77 '(b), thus
a <b and a<f. Hence y<a<fB. We have proved (1.6).
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4 I.Nabiatek

Theorenm 1.6, Let (7,0 ,<) be & monoid of mo-
vements. For any o, f, y¢7 1f Fg<fca then

(1.7) (7% p)e B o) =70 a.

Proof., If a,pB,7€T and F<pB<a , then all
the compositions in (1.7) are determined and belong to T .
If a(0) =a and B~ '(a) = d, then [(77% B) o (g % ako)-
= (7% )(a) = ;"a) = (7% a)(0). We have proved (1.7).

2. Time monoid

Let (7,0 ,<) be the monoid of movements of a general
time set (T7,<, 8).

Definition 2.1, Let a,b,ceT, a,B,7€e7T
and «(0) = a, g(0) = b, 7F(0) = c. We define an operation
@ 4in the set T as follows:

(2.1) (a @ b=cle> (aof=7).

Theorem 2.1, If (T1,<,8) 1is a general time
set, then the monoid of movements (7,¢ ,<) and the triple
(T, ®,<) are isomorphic with respect to @ and <.

Proof ., By (2.1) and (1.1) the function 8: T—7T
satisfies the conditions

(2.2) Vv [8(a ® b) = 68(a) e 8(v)],
a,beT

(2.3) v la<v)ea(a) < 8(n)].
a,beT

Thus 6 is an isomorphism with respect to (H and <.
Definition 2.2. The triple (T, ® ,<)
is called a time monoid,
Theorem 2,2, If (7 ® ,<) 1is a time monoid,
then for any a,bef®T
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(2.4) (a<b)e=>7] (a8 ® c=h)
ceT

Proof is obvious,

Theorem 2.3. The first element 0O of (T, <)
is the identity of the time monoid (T, @ ,<).

Proof is obvious.

Theorem 2.4, If (T, ®,<) 1is a time monoid,
then for any a,bé T there exists exactly one element cé&T
such that a ® c =b iff a < b,

Proof. Let o, B, 7eT and a(0) = a, }S(0) = b,
7(0) = c, We have a ® ¢ =b Iff aoy =pf. The eguality
a@dofy=p 1is satisfied iff g =a" /i (see the Remark after
Theorem 1.2), Hence the element ¢ deflned by O B)(0)=c
is the unique element such that a ® c¢ = b,

Definition 2.3, Let (Ty ®,<) 1is a time
monoid and a,b,c T. We define an operation (& as follows:

(2.5) (8 ©@ b=c)e>(a @ c =b).

Theorem 2.5, If a,b,ceT, a, B, 77 and
a(0) = a, A(0) = b, 7(0) =c, then

(2.6) (a @ b=cle>(ato g =7).

Proof 1is obvious.
Theorem 2.6, If a,b,ceT and ¢ < b < a, then

(2.7) (c ©b) ® (b ® a)=c © a.

Proof is obvious by Theorem 1.6 and Theorem 2.5.
Theorem 2aTe If a,b,c T and a ® b c,
then

(2.8) (a ® b) © ¢c=b @ (a ® c).
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6 I.Nabiatek

Proof, let ¢, 8,7,06€eT and o«(0) = a, A(O)=0,
7(0) = ¢, 6(0) =4, If (a ® b) © ¢ =d, then by The-
crem 2.5 we have (axo8) o 7 =¢&. Hence 6= ("o a”)oy-
=p"1 o (@ o 7)« Thus d =b @ (a2 ®© c¢) and we have
(2.8).

Theorem 2.8, If a,b,ceT and c<a @ b,
then

(2.9) c © (a8 ® b) =(c © 8) @ b.

Proof. Let o,8,7,6e67 8ad a(0) = a, B(0) = b,
7(0) = ¢, 6(0)=d., If ¢ ® (a ® b) =4d, then
770 (x0of) =4 by Theorem 2.5. Hence & = (7-10 a )of,
consequently d = (¢ ® a) @ b, thus we have (2.9).
Theorem 2,9. If (T, ® ,<) 1s a time monoid,
then for any a,b,ce T we have

(2.10) a<a ® b,
(2.11) (a<b)e>(c ® a<c ® b),

(2.12) (c<agcb)e>(c © a<c O b).
Proof is obvious by Theorem 1.5 and Theorem 2.1.
3. Generators of general time sets

Theorem 3.1, If (T, ® ,<) 1is a time monoid,
then (T, ® ) 1is a monoid such that

{(3.1) \v4 (¢ ® a=¢c @ b)==>(a =b),
a,b,ceT
(3.2) VY (8 ® b) =0=>(b=0),
a,bel
(3.3) \V/ 3 (a ® ¢c=b)v (b @ c=a),
a,beT ceT
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Prooft, If o ® a=¢c @ b, then o< c @ a,
c<c @ b by (2.10) and ¢ © (¢ @ a) = s,
¢ ® (¢ @ b) =b by Theorem 2,8 and Theorem 2.5. Thus we
have (3.1). If a ® b =0, then a <O, and because 0 1is
the first element of (T,<), we get & = O, Moreover,

0 @ b ="b. Hence we have (3.2), If a,beT, then ac< b
or b < a, thus there exists c¢eT such that a ® ¢ =b
or b @ c = a by Theorem 2.2. We have proved (3.3).

Definition 3.1. A semigroup (7, @) is
called a generator of a general time set (T, < ,8) iff the~-
re exists in T an ordering relation < such that the triple
('y ®, <) 1is a time monoid isomorphic with respect to @
and < to the monoid of movements (7,0, <) of the general
time set (T,<, 8).

Definition 3.2, A semigroup (T, @) is call-
ed a time generating 1ff there exists a general time set
(ty<, 8) such that (T, ® ) is a generator of (T,<, 8),

Theorem 3.2. A semigroup (T, ® ) 1is a time
generating 1ff (T, @ ) satisfies the conditionms (3.1), (3.2)
and (3.3).

Proof. Let (T, @ ) be a monoid such that the con-
ditions (3.1), (3.2) and (3.3) are satisfied. We define in T
a relation « as follows:

(3.4) (a<b) e ] (a ® ¢ =Db)
ceTl

The relation « is reflexive because a ® O = a for any

aeT (0 1s an identity of (T, ®)). If a<b and b < a,
then there exist c¢,,c,eT such that a @ ¢y =b and

b ® c, =a, thus (a ® c,) ® c, = a. Hence a @(c1®c2)=
=a ® 0 and ¢, @ c, =0 by (3.1). Thus 0, = 0 by

(3.2) and because b @ ¢, = a, we have b = a. The rela-
tion € is sntisymmetric., If a < b and b << c, then there
exist d,,d, €T such that a ® d; = b and b @ 4
Hence (a @ d1) ® d, =c, 8o that a @ (d1 @

Ce

2 -
dy) = ¢,
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8 I.Hablatek

consequently a < o. The nelation is transitive. For any
a,becT we have a < b or b<a by (3.3). The nelation

is connective. Hence the relation <« is a linear ordering re-
lation in T. Por any aeT let xg be a mapping g T—T
such that

(3.5) V a,(t) =a @ t.
telT

Let T = {aL: o= GBABCT} and let 8 be a function §: T—7T
such that

(3.6) v 0(a) = a_.

Let T, = {te’l‘: a<t}. Because t <a ® t, we have

o(T) = T,. Any mapping ae7T 1is 1-1, because if a @ x =
=a ® x', then x =x' by (3.1). Any mapping ae7 1is 8,
similarity mapping, because if x < x' then there exists

ceT such that x ® ¢ =x', thus a ® (x ® ¢c) =a @ 1,
consequently 8 ® x< a @ x'. The funotion 8 satisfies
the condition

(3.7) v {# =)= a0 - a])

aefT
by (3.5). Moreover, if o, BeJ and «(0) = a, fB(0) = b,
then for any teT, a(t) =a @ t and ﬂqt) =b @ t, so
that (@ofB)(t) =a(d @® t) =23 @ (b @ t)=(a @ b»)® ¢

and hence

(3.8) vV oV (@of)(t) =(a ® b) @ t.
a,fel t el

Thus, if o, feT, then aofe]. Let < Dbe an ordering re-
lation in T such that
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Generasl time sets 8

(3.9) v {(a<p) > [(a<b)a(x(0) = &)1 (x(0) bS]}
o, BeT

The monoid (T, (¥ ,<) 1s isomorphic to the monoid of move-
mepts (7,¢, <) because by (3.8) we have

(3.10) vy 6(a ® b) =68(a) o 6(b),
a,beT

and since for any a,b,t€¢ T, we have a < b iff a @® t <
<b ® t, we obtain

(3.11) v (e <b) e 6) < 8(b).
a,beT

Hence, if a monoid (T, (¥ ) satisfies conditions (3.1),
(3.2) and (3.3), then (T, ) ) 1is a time generating. If

a semigroup (T, (® ) 1is a time generating, then conditions
(3.1), (3.2) and (3.3) are satisfied by Theorem 3.1.

4, Examples of general time sets

I, Let N be the set of all nonnegative integers, let <
be the natural ordering of N and let T be the ordinary
addition of integers. The semigroup {(¥,+) 1is a generator of
the general time set (N,<, 8), where for any keN, 8(k)=
=, and for any neW, o, (n) =k + n.

II. Let R+ be the set of all nonnegative real numbers,
let < be natural ordering of R+ and let + be the ordi-
nary asddition of real numbers. The semigroup (R+,+) is a ge-
nerator of the general time set (R+, <, 8), where for any
aeR,, 8(a) = ag and for any xe€R,, aa(x) = a + X.

III. Let N Dbe the set of all nonregative integers and
let for any le N, éN(l),s) be an ordered set similar to
(N, <). We write X 1) {x 1 X = n(l)A neN} and n(l)< m(l)
iff n<m. Let T = U N(l) and let if 1 < k, then

leN
n(l)< m(k) for any n,me N. The ordered set (T,<) is not

- 475 -



10 I.Nablalek

similar to (N, <). Let for any n(l)eT, G(n(l)) be a
such that for any m(k) eT,

(n+m)(1), for k =0
(4.1) a(nt®)) =

m\l+k)'

It can be shown, that 8 is a function of movements in
(r,<). If for any n,m,l,keN, n(l) ® mt°) - (n + m)(l)
and n(l) ® m(k) =m 1+k5 for any k > O, then (T, ®)
is a generator of the general time set (T,<,8 ). The semi-
group (T, @ ) is not commutative, because 2 ) ® 1(0)
= 301 apa 10 ® 21 _ 01

IV. Let R+ be the set of all nonnegative real numbers
and let < be natural ordering of R+. Let for any aeR+,

6(a) be o such that for any teR,

(1- £g)°t + 8, for O0<t <1
(4.2) a(t) L
t+E(a) for t > 1,

where ¢, = a - B(a) and E(a) is an entier of a.
One can show, that 6 is a functipon of movements in

(R,, <). 1If for any a,beR

b+a-ao£b, for O<a<1
(403) b @ a =

b+a-£b, for a>1

then (R+, ® ) 1is a generator of the general time set
(R+,<, 8'). The semigroup (R, ,+) and (R,y ®) are not
isomorphic, because ({} is not commutative,

The examples III and IV would not be possible if a time set
were defined similarly as in Definition 1.4.1 in [2], because
then by Theorem 1.4.2 in (2] a commutativity condition would
be satisfied.
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