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GENERAL TIME SETS 

Introduction 
The aim of this paper is a comparison of two abstract no-

tions of time axis - one used in fl] for the need of the cha-
racterization of machines by means of sets of computation and 
the other usually applied in the theory of dynamic processes 
(cf. [2]). In [1] computations were treated as runs of some 
changes in time and it turned out that to define sets of ma-
chine computations it suffices to consider only few properties 
of the time axis. Namely, it suffices to interprete the time 
axis as a triple (T, < ,8), where T is the set of moments 
< is the order induced upon the set of moments by the rela-
tion "not later than", and 0 defines a family of translations 
owing to which it is possible to compare runs in various time 
intervals. In the theory of dynamic processes the time axis 
is understood as a pair (T,©), where T is the set of mo-
ments and © is "addition" of moments such that (T, © ) is 
a monoid having some properties sufficient for describing dy-
namic processes. 

The main result of this paper is a theorem stating that 
the time set of [2] always generates a generalized time set 
(T, < ,8). Hence having the set of moments and the addition 
of moments one can always introduce a natural order < and 
define a function of translations 6. Also it is shown that 
for every generalized time set (T, < , 8 ) one can define 
a monoid (T, © ) generating (T, < , 9 ) . However, this mo-
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2 I .Nabla lek 

noid (T , 0 ) has, genera l l y speaking, fewer p roper t i e s that 
that used in the theory of dynamic processes. 

1. Monoid of movements 
Let (T , < , 0 ) be a genera l time se t . Let 7 = 0 (T ) and 

l e t o be the composit ion of func t i ons . By 0 we denote the 
f i r s t element of ( T , < ) (see [1] ) . 

T h e o r e m 1.1. The pa i r (T , ° ) i s a semigroup with 
an i d e n t i t y . 

P r o o f . I f <xt fi e T , then a o ft e. T by De f i n i t i on 
1.2 in [1] . Moreover, the i d en t i t y T — T belongs to T 

by Theorem 1.1 in [1] . 
D e f i n i t i o n 1.1. Let a, b € T, a , ft e.T and 

a(O) = a, fi(O) = b. We de f ine an ordering r e l a t i o n < In T 

( 1 . 1 ) ( a (a. < b ) . 

D e f i n i t i o n 1.1 i s c o r r e c t , because by D e f i n i t i o n 1.2 in 
[1] f o r any t e T there e x i s t s exact ly one cp e T such that 
<f(0) = t . 

The ordered set ( T , < ) i s s im i l a r to (T, < ) . The 
funct ion 0 : T T i s a s i m i l a r i t y mapping. 

D e f i n i t i o n 1.2. The t r i p l e (T, ° ,<) i s 
ca l l ed the monoid of movements of a general time set ( T , < , 0 ) 
o r , sho r t l y , a monoid of movements. 

T h e o r e m 1.2. I f (T, o , < ) i s a monoid of move-
ments, then f o r any <x, J3€T we have 

(1.2) (a < ft ) 3 (cLoJ = fi). 
nr 

P r o o f . Let a (O) = a , J3(0) = b. I f a < b , then 
be T and since « . ( T ) = T , there e x i s t s c e T such that 9 8 
a ( c ) = b . Let 7 e T and y (0 ) = c . We have a o y e j , and 
because (a 0 7 ) ( 0 ) = a [fl"(0)] = a ( c ) = b, we obtain a « $ = fl . 
I f a , ft , j eT and a o j = [S , then a = a ( 0 ) < o t ( c ) = 
= (oc°dr) (O) = j3(0) = b, thus a<y8. 

- 468 -



G e n e r a l t i m e s e t s 

R e m a r k . S i n c e ( a < fi ) i f f y 3 ( T ) c < * ( T ) , t h e 

c o m p o s i t i o n a " 1 o fi i s d e t e r m i n e d i f f a . < f i . H e n c e , i f 

< * ° f = fi t h e n j r = a " 1 o fi . 

T h e o r e m 1 . 3 . I f ( X , ° , < ) i s a m o n o i d o f m o -

v e m e n t s , t h e n f o r a n j a . , fi t T w e h a v e 

( 1 . 3 ) ( a < >3) ( a _ 1 o / ? ) e T . 

P r o o f i s o b v i o u s . 

T h e o r e m 1 . 4 . T h e i d e n t i t y i i s t h e f i r s t e l e m e n t 

of (T,<). 
P r o o f i s o b v i o u s . 

T h e o r e m 1 . 5 . I f { T , ° , < ) i s a m o n o i d o f m o v e -

m e n t s , t h e n f o r a n y a , fi , j eT w e h a v e 

( 1 . 4 ) a < a o fi 

( 1 . 5 ) (oi<.fl)*— 

( 1 . 6 ) (1 <a<fi ) • ( f 1 . a < fi). 

P r o o f . L e t a ( 0 ) = a , fi{ 0 ) = b , g - ( O ) = c . B e -

c a u s e a ( o ) < a - ( b ) ( a s T — T „ i s a s i m i l a r i t y m a p p i n g ) a n d 
a 

( a o > 8 ) ( 0 ) = < x ( b ) , w e h a v e a < a o / 3 . T h u s w e h a v e p r o v e d 

( 1 . 4 ) . I f a . ° f i , t h e n a < b a n d . j ( a ) < j ( b ) ( y : T — T Q 

i s a s i m i l a r i t y m a p p i n g ) . B e c a u s e ( y ° a ) ( 0 ) = y ( a ) a n d 

( y ° / i ) ( 0 ) = j f ( b ) , w e g e t y o < x < y > j i . I f j ° a < j ° f i , t h e n 

j ( a ) < y ( b ) . H e n c e a < b a n d a < fi . We h a v e p r o v e d ( 1 . 5 ) . 

I f j < a < f i f t h e n f I a 6 i a n d fi e T b y T h e o r e m 1 . 3 . 

T h e r e l a t i o n a < b i m p l i e s , J " " 1 ( a ) < fl"~1(b) ( J - 1 : T Q — T 

I s a s i m i l a r i t y m a p p i n g ) a n d i j " 1 o a ) ( o ) = j r " 1 ( a ) , ( j " 1 ° fi ) ( 0 ) = 

= j r " 1 ( b ) . H e n c e a < fi . i f j -~ 1
0 a < fi , t h e n 

y ~ o a £ J a n d fieT, t h u s j<a a n d -gi.fi b y T h e o r e m 1 . 3 . — 1 —1 —1 —1 
M o r e o v e r , i f y o a < j o f i , t h e n % ( a ) < JT ( b ) , t h u s 

a < b a n d a < y 3 . H e n c e j<<x<fi. We h a v e p r o v e d ( 1 . 6 ) . 
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T h e o r e m 1.6. Let (T t o , <•) be a monoid of mo-
vements. For any a. , ft , $ e T i f •j<y3<c- then 

( 1 . 7 ) ( f " 1 o fi) o ( f U ) = j " 1 o a . 

P r o o f . I f a , fl, jfeT and j<fi<oL , then a l l 
the compositions in (1.7) are determined and belong to T . 
I f a (0 ) = a and /T1 (a) = d, then [(T~1° fi ) ° ( j3~1oa^(0) = 
= ( T " 1 ° jB)(d) = f~ 1 (a ) = ( f " 1 o a ) ( 0 ) . We have proved ( 1 . 7 ) . 

2. Time monoid 
Let (T, o , < ) be the monoid of movements of a general 

time set ( T , < , 8 ) . 
D e f i n i t i o n 2.1. Let a,b,c e T, a , fi , j e T 

and a (0 ) = a, j0(O) = b, f ( 0 ) = c. We define an operation 
© in the set T as fol lows: 

(2.1) (a © b = c) (aoj8 = f ) . 

T h e o r e m 2.1. I f ( T , < , 0 ) is a general time 
set, then the monoid of movements ( 7 , » , < ) and the tr ip le 
(T, © , < ) are isomorphic with respect to © and <• . 

P r o o f . By (2.1) and (1.1) the function 0 : T —- 7" 
sat is f ies the conditions 

(2.2) V [®(a © - 0(a) • 0 ( b ) ] , 
a,beT 

(2.3) y [(a < b ) ^ 0 ( a ) < 0(b)] . 
a ,beT 

Thus 6 is an isomorphism with respect to © and < . 
D e f i n i t i o n 2.2. The t r ip le (T, © , <.) 

is called a time monoid. 
T h e o r e m 2.2. I f (T, © , < ) is a time monoid, 

then for any a ,beT 
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Genera l t ime s e t s 5 

( 2 . 4 ) (a < b) 3 (a © c = b ) . 
C 6 T 

Proof i s o b v i o u s . 
T h e o r e m 2 . 3 . The f i r s t e lement 0 of ( T , < ) 

i s t he i d e n t i t y of t h e t ime monoid (T, © , ) . 
Proof i s o b v i o u s . 
T h e o r e m 2 . 4 . I f (T, © , < ) i s a t ime monoid, 

t h e n f o r any a , b £ T t h e r e e x i s t s e x a c t l y one e lement c e T 
such t h a t a © c = b i f f a < b . 

P r o o f . Let a , Ji , jeT and a (O) = a , J3( 0) = b , 
J"(0) = c . We have a © c = b i f f a°J = J3. The e q u a l i t y 
a o f = fi i s s a t i s f i e d i f f j = a " 1 o Ji ( s e e the Remark a f t e r 
Theorem 1 . 2 ) . Hence t h e e lement c d e f i n e d by ( a " 1 o >3)(0) = c 
i s t he un ique element such t h a t a © c = b . 

D e f i n i t i o n 2 . 3 . Let (T, © , < ) i s a t ime 
monoid and a , b , c T. We d e f i n e an o p e r a t i o n © a s f o l l o w s : 

( 2 . 5 ) (a © b = c ) < — » ( a © c = b ) . 

T h e o r e m 2 . 5 . I f a , b , c 6 T, a , Ji, jeT and 
<*(0) = a , /3(0) = b , y (0 ) = c , t h e n 

( 2 . 6 ) (a © b = c ) * - * ( a " 1 o Ji = J ) . 

Proof i s o b v i o u s . 
T h e o r e m 2 . 6 . I f a , b , c t TJ and c < b c a , then 

( 2 . 7 ) (c © b) © (b © a ) = c © a . 

Proof i s obvious by Theorem 1.6 and Theorem 2 . 5 . 
T h e o r e m 2 . 7 . I f a , b , c T and a © b c , 

t hen 

( 2 . 8 ) (a © b) © c = b © (a © c ) . 

- 471 -



6 I.Nabiaietc 

P r o o f . Let a, fi , j , <Te 7" and a(O) = a, ¿(0) = b, 
y(O) = c, <5"(0) = d. If (a © b) © c = d, then by The-

orem 2.5 we have {a- ô 3)"1o j'=<$". Hence <5" = (j3"1o a~1)oy = 
Thus d=b © (a © c) and we have 

(2.8). 
T h e o r e m 2.8. If a,b,ceT and c <i a © b, 

then 

(2.9) c © (a © b) = (c © a) © b. 

P r o o f . Let a t fl , j, 6eT and a( 0) = a, /(0) = b, 
j(0) = o, 5(0) = d. If c © (a © b) = d, then 

' ° (a o fi) = 5 by Theorem 2.5. Hence <f= (/~1o a 
consequently d = (c © a) © b, thus we have (2.9). 

T h e o r e m 2.9. If (T, © , < ) Is a time monoid, 
then for any a,b,c e T we have 

(2.10) a < a © b, 

(2.11) (a < b) (c © a < c © b), 

(2.12) (c < a < b) (c © a < c © b). 

Proof is obvious by Theorem 1.5 and Theorem 2.1. 

3. Generators of general time sets 
T h e o r e m 3.1. If (T, © , <) is a time monoid, 

then (T, © ) is a monoid such that 

(3.1) \/ (c © a = c © b) =Ma = b), 
a ,b,ceT 

(3.2) \/ (a © b) = 0 =£> (b = 0), 
a ,btT 

(3.3) V 3 (a © c = b) v (b © c = a). 
a,b£T c € T 
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General tine sets 7 

P r o o f . If o © a = c © b, then o < c © a, 
c < c © b by (2.10) and c @ (o © a) = a, 
c © (c © b) - b by Theorem 2.8 and Theorem 2.5. Thus we 
hare (3.1). If a © b = 0, then a < 0, and because 0 is 
the first element of (T,<), we get a • 0. Moreover, 
0 © b = b. Hence we have (3.2). If a,b t T, then a < b 
or b < a, thus there exists c e T such that a © c = b 
or b © c = a by Theorem 2.2. We have proved (3.3). 

D e f i n i t i o n 3.1. A semigroup (T, © ) is 
called a generator of a general time set (T, < , 0 ) iff the-
re exists in T an ordering relation < such that the triple 

© » is a time monoid isomorphic with respect to © 
and < to the monoid of movements (x, o , < ) of the general 
time set (T,<, 8). 

D e f i n i t i o n 3.2. A semigroup (T, © ) is call-
ed a time generating iff there exists a general time set 
(T, < , 9) such that (T, © ) is a generator of (T,<, 0). 

T h e o r e m 3.2. A semigroup (T, © ) is a time 
generating iff (T, © ) satisfies the conditions (3.1), (3.2) 
and (3.3). 

P r o o f . Let (T, © ) be a monoid such that the con-
ditions (3.1), (3.2) and (3.3) are satisfied. We define in T 
a relation < as follows: 

(3.4) (a < b) 3 (a © a - b). 
0 € T 

The relation < is reflexive because a © 0 = a for any 
a e T (0 is an identity of (T, © )). If a < b and b < a, 
then there exist o^Cj « T such that a © c1 = b and 
b © c2 = a, thus (a © c ^ © c2 = a. Hence a © (c1©c2)= 
= a © 0 and c1 © c 2 = 0 by (3.1). Thus o 2 * 0 by 
(3.2) and because b © c 2 = a, we have b = a. The rela-
tion < is antisymmetric. If a < b and b < c, then there 
exist d^.dgCT such that a © d1 = b and b © d2 = o. 
Hence (a © d.) © dp = c, so that a © (d1 © d?) = c, 
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consequently a < o. The Delation is transitive. For an; 
a,b t T we have a < b or b < a by (3.3). The ueHatlon 
is connective. Henoe the relation < is a linear ordering re-
lation in T. For any at T let <x_ be a mapping a. t T — T 8 8 
such that 

(3.5) V a a ( t ) = a © t. 
t e T 

Let T - j o t : a = cta A a t t} and let 0 be a function 8: T — 7 
such that 

(3.6) y 0(a) = aa. 
a e T 

Let Tfl = [t t T t a < tj. Because t < a © t, we have 
<*(T) = T . Any mapping a e T is 1-1, because if a © x = 
= a © x', then i = x' by (3.1). Any mapping a e f is a, 
similarity mapping, because if x x' then there exists 
ce T such that x © c = x' , thus a © (x © c) = a © x', 
consequently a © x C a © x' . The function 0 satisfies 
the condition 

(3.7) y {[0(a) = [»(0) = a]} 
a t T 

by (3.5). Moreover, if a, fieT and ot(O) = a, fi(0) = b, 
then for any t e T , a(t) = a © t and ^(|t) = b © t, so 
that (aojJ)(t) = a(b © t) = a © (b © t) = (a © b ) © t 
and hence 

(3.8) y y (ao/3)(t) = (a © b) © t. 
*,fleT teT 

Thus, if a, JSeT, then a o p e T. Let < be an ordering re-
lation in T such that 
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General tine sets 9 

(3.9) y {(okjS) [(a<b)* (oi(0) - .a) a (ot(0) -bfl}. 

The monoid (T, @ , < ) is isomorphic to the monoid of move-
ments (T, o , c) because by (3.8) we have 

(3.10) y 0(a © b) = 6(a) » 0(b), 
a,b £ T 

and since for any a,b,t e T, we have a < b iff a © t « 
< b ® t, we obtain 

(3.11) y [(a < b) 0(a) < 0(b)] . 
a,b e T 

Henoe, if a monoid (T, © ) satisfies conditions (3.1), 
13.2) and (3.3), then (T, © ) is a time generating. If 
a semigroup (T, © ) is a time generating, then conditions 
(3.1), (3.2) and (3.3) are satisfied by Theorem 3.1. 

4. Examples of general time sets 
I. Let N be the set of all nonnegative integers, let < 

be the natural ordering of N and let T be the ordinary 
addition of integers. The semigroup (N,+) is a generator of 
the general time set 0), where for any k e N, 5(k) = 
= and for any n£N, ^ ( n ) = k + n. 

II. Let R+ be the set of all nonnegative real numbers, 
let < be natural ordering of R+ and let + be the ordi-
nary addition of real numbers. The semigroup (R+,+) is a ge-
nerator of the general time set (R +,<, 0), where for any 
a e R , 9(a) = a_ and for any xe R, , a ( x ) = a + x. T 9 + fl 

III. Let N be the set of all nonnegative integers and 
let for any leN, be an ordered set similar to 
(N,<). We write = [x : x = n e n} and < m(1) 

iff n < m. Let T = U and let if 1 < k, then 
1 £ N 

n ^ < m ^ for any n,m e N. The ordered set (T,<) is not 
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similar to ( N, •£ ). Let for any n ( l ) e T , be a 
( k ) such that for any m t T, 

(4.1) 
( n+m ) (1) for k = 0 

for k > 0. 

It can be shown, that S is a function of movements in 
(T,<). If for any n.m.l.keN, n ^ © = (n + m)( 

and n ( 1 ) © = m'1+ic5 for any k > 0, then (T, © ) 
is a generator of the general time set (T,«i, S). The semi-
group (T, © ) is not commutative, because 2 ^ © = 

3 ( 1 ) and ,(0) @ 2<1) = ? d ) ( 

IV. Let H+ be the set of all nonnegative real numbers 
and let < be natural ordering of R+. Let for any a e R + t 

0'(a) be <x suoh that for any t e R 

(4.2) i(t) 
(1- £ai•t + a, for 0 < t < 1 

t+E(a) for t > 1, 

where t_ = a - B(a) and E(a) is an entier of a. 
9 

One can show, that 9' is a function of movements in 
(R+, <). If for any a,b€ R+ 

(4.3) b © a = 
b+a-a'ijj, for 0 < a < 1 

b+a-£^, for a ? 1 

then (R+» © ) is a generator of the general time set 
( R +, < , 8' ). The semigroup (R+, + ) and ( R + , © ) are not 
isomorphic, because is not commutative. 
The examples III and IV would not be possible if a time set 
were defined similarly as in Definition 1.4.1 in [2], because 
then by Theorem 1.4.2 in [2] a commutâtivity condition wouild 
be satisfied. 
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