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THÉORÈME DES AIRES DANS LA THÉORIE 
DES FONCTIONS UNIVALENTES BORNÉES, I 

1. Posons: 
3,| - classe des fonctions f, holomorphes et univalentes 

dans le disque uni té U = |z : |z | < 11, de la forme 

C ) f(z) = bz + b 2z 2 + ... , b > 0, 

et satisfaisant à la condition |f(z)| < 1. 
3,,(b) - sous-classe de S^ , avec b établi. 
rr» 0 < r <1,- image de la circonférence Cr = [z: |z| = r| 

par l'application w = f(z). 
dp - domaine borné par la courbe r r et par la circon-

férence dU = {z:|z| = lj. 
Dans [l], [3] on a formulé le théorème générale des aires 

pour les fonctions de la classe S^. Ce théorème est une 
expression analytique du simple fait géométrique que l'aire 
du domaine dr est un nombre positif. 

T h é o r è m e des aires. Soient: f(z) - une fonction 
holomorphe de la forme (1), g(w) - une fonction holomorphe 
dans tout le plan ouvert, sauf peut-être w = 0, et avant 

le développement de Laurent g(w) = c^w®, 0 < |w|<°°. 
-00 

Dans ces condition, on a: 
Pour que la fonction f(z) soit univalente et bornée, il 

faut et il suffit que l'on ait 
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<2> C m l ° J 2 < £ mlCm|2. -oo -oo 
où g(f(z)) = f Cmzm, quelle que soit la fonction g(w). 
3i, en outre, im [g(w)J ou bien rejg(w)J est constamment 
égal à 0 sur 3U, le second membre de (2) s'annule et l'inéga-
lité (2) devient 

(3) L > l C m | 2 < ° i 
-oo 

l'égalité n'ayant lieu que si f(U) est un ensemble de mesure 
superficielle égale à l'aire du disque U, autrement dit à *. 

Dans le texte qui suit, la sous-classe de S^ de fonctions 
satisfaisant à la condition susmentionnée sera désignée par S^ 

2.tPosons Î 

(4, P f u , 5 ) . -ioS ( b fa fa *(•>.: f'V). £ 
m,n=1 

et 

(5) qf(z,/) = -log(1 - f(£)t(z)) = } ' b mï Bî n. 
m,n=1 

Les fonctions des variables respectivement z,£, 
et étant holomorphes dans le bicylindre U x U, leurs 
séries y sont convergeantes. Posons encore 

(6) = H W 1 ' m = 1' 2 

n=1 

n=1 
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Théorème des aires 3 

alors 

es) p.cz.i,, -i„g(6 ^ ^ m^jiiï).£ v o a 
m=1 

(9) qf(z,f) = -log(1 - fCT)f(z)) = V ^ * " ' 
m=1 

D'autre part, si Fm(w), (m = 1,2...,FQ(w) = 1), est le 
m-ième polynôme de Faber pour la fonction 1/f(z), où f e 3. 
alors on a 

z n=1 

Posons encore 

e n ) v 1 ^ = 2 1 v 2 * -
n=0 

Utilisant le développement bien connu 

0 0 log(1. - tf(z)) = - (pm(t) + -T.) zm 

m=1 

dans un entourage du point 0, suffisament petit, où 

n=0 
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on p a r v i e n t aux é g a l i t é s 

< 1 2 > Fm ( f f e r ) + m V z ) ' 

( 13 ) V ^ 5 = m1m + m V z ) -

Les r e l a t i o n s ( 1 0 ) - ' ( 1 3 ) , ( 6 ) e t ( 7 ) e n t r a î n e n t c ^ = 
= mamn» m » n > 1 e t % = m . n > 1 -

Le théorème des a i r e s [1] nous permet t ra d ' o b t e n i r q u e l -
ques p r o p r i é t é s des f o n c t i o n s k ^ l ) e t B m ( £ ) . Posons , en 
p a r t i c u l i e r , dans ce théorème 

N 

m=1 

où es t l e m-ième polynôme ae Faber de l a f o n c t i o n 
1/ f ( z ) , et x ^ , . . . , x - ^ - d|es nombres complexes a r b i t r a i r e s . Cn 
v o i t que im[g(.w)J = 0 sur âU. En ver tu des ( 1 3 ; , ( 6 ) 
c t \1) nous avons 

lJf NI _ 
g l f Ü N - C i ( V m ( f f e i ) + ( X m V ^ W ^ ) 

m=1 m=1 

Kl . x Kl o o / N 
+ n m J r + H X A = H ( I Z ( xmamn+ xmbmn)) z * + 

m=1 z m=1 n=1 \m=1 / 

N I x N 

+ y * il + x J . L m „m Z . m'm 
m=1 z m=1 

En ver tu de ( 3 ) , on p a r v i e n t à l ' i n é g a l i t é 

N 
2 . 1 , x ,2 00 ¡x _ 

(14 ) y n I ^ ' ( x a + i t b J p < . ... / | / m mn m mn' I ^ / ml m 
n=1 m=1 m=1 

e t , comme a ^ ^ a ^ J e t b ^ = b ^ , on a 

ä N N 

( 1 5 ) > ml S (x a m r + xD m T 1 ) | 2 < Y^ -- Ix I 2 , ' i / n mn n mn' I / m I m I ' 
m=1 n=1 m=1 
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Théorème des a i r e s 5 

é tant a r b i t r a i r e s , l ' i n é g a l i t é (15) devient 

oo N N 
(16) £ 2 H H (xnamn + e * n W I E 5 l ^ l 

m=1 n=1 m=1 

où 0 es t un nombre a r b i t r a i r e , r é e l . Remplaçant dans (16 ) 
xn p a r V ^ n ' o n o b t l e n t 

oo » N 

<1?> H I YZ amn + 6 ^ W l 2 < E l x n ! 2 -

m=1 n=1 m=1 

S o i t à présent (x - une su i te a r b i t r a i r e de nombres oo oomplexes, t e l l e que I <oo, Posons encore 
n=1 1 n 1 

C 0 ) A = (V™ W Z n ^ 

(19) B = O/mn b v v mn m,n=1 

Fa i sant tendre N vers l ' i n f i n i dans ( 1 7 ) , on o b t i e n t 
l e théorème suivant . 

T h é o r è m e 1. Soient» x - un vecteur a r b i t r a i r e 
de l a c l a s s e 9 - un nombre a r b i t r a i r e , A,B - l e s ma-
t r i c e s d é f i n i e s par (18) e t ( 1 9 ) , où aTnn e t bmri sont l e s 
c o e f f i c i e n t s des développements des fonct ions resp . P f ( z , 0 
et q ^ ( z , f ) joù f t S ^ Dans ces condit ions , on a 

(20) Iax + e i f l Bx || < || x |; 

désignant l a norme des matr ices . En outre , l ' é g a l i t é 
dans (20) n ' a l i e u que -ê . l a fonct ion f engendrant l e s matri-
ces A e t B e s t une fonc t ion de l a c l a s s e S^. 
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3. Util isant l ' i néga l i t é (20) on déduira successivement 
quelques résultats f ac i l e s , concernant les suites (A^C^)), 
(B m (D ) . 

T h é o r è m e 2. Soit f e S^; alors, quel que soit 
5 £ U, on a 

oc _ N 
( 2 D E > i v » + 

m=1 m=1 

(22) » l A g C O ^ ^ H j c D I ^ C B ( n - 1 ) 2 . . . ( n - l + 1 ) 2 ^ ] 2 ^ - 1 ) 
m=1 n=1 

pour 1 = 1 ,2 , . . . Les inégalités ci-dessus ne deviennent des 
égalités que si f e S^. 

D é m o n s t r a t i o n . Le cas 1 = 0 . De (6) et 
(7 ) , on déduit 

£ « I V " + e i V ô i 2 = 
m=1 

m=1 n=1 n 

= Y Z I C CV£n V Ï D + e i 0 V ^ b ^ 2 = ¡Ax + e i 0Bx|2 , 
m=1 n=1 

où x = (xn)^>_/), xn = n = 1 ,2 . . . Comme la série 
' n 

n=1 ' n 
x I converge, en vertu de (20) on obtient (21). 
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Théorème des aires 7 

Le cas 1 > 0. De (6) et (7) on déduit 

A ^ h o n(n-1)...(n-l+1) a ^ " " 1 , 
n=l 

i 1 } ( 0 = f ^ n(n-1)...(n-
n=l 

1 + 1 ) W 
n-1 

donc 

£ m J ^ C O + e i e B ^ ( i ) | 2 = C I C ^ « m n ^ " ^ ' 
m=1 m=1 n=l 

..(n-l+l)^11"1 + e i 0VmE b^vSXn-1 ) ... (n-1+1 )£ n _ 1 | 2 = 

m=1 n=l 

r o 
où x = (x n) n = 1 et x n -

Comme la série 

n 

pour 
n=1,...1-1, 

Î lXn| " converge, en vertu de (20) on 
n=1' 

obtient (22). 
R e m a r q u e . Les inégalités (21) et (22) correspon-

dent à celles de Milin (voir [ 2 ], p.29) pour les fonctions 

de la classe S. On remarque aisément que les deux inégali-

tés (21) et (22) peuvent être remplacées par une seule de la 

forme 
O O . . (1) 

S I • . " ^ i > c f î i a < C ( é o 
m=1 n=1 
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T h é o r è m e 3. Soit f £ Ŝ  et soient 
des nombres complexes arbitraires; alors pour tout £ e U, 
on a 

( 2 5) £ > i i : < v î b « > • » 1 2 < 

m=1 k=0 

N 

n=1 k=0 

pour £ f i x é (£ 6 U) , l ' é ga l i t é n'ayant l ieu que si f 6 S^. 
D é m o n s t r a t i o n . De (6) et (7 ) f on déduit 

(24) C - l Ê ^ ® . . " ^ ) ) ! 2 

m=1 k=0 

ms1 k=0 n=1 V VVn / 

M v ^ f ^ V ) ^ 

„ ¿ » „ ( ¿ s " ) ® * 
m=1 n=1 x k=0 v v n y 
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Théorème des aires 9 

où x = (xn)~=1 et 

PO 
La série ) | x Q| converge, car on a 

n=1 

n=1 n=1 k=0 v v n y 

N N ^ 2 

k=0 k=0 n=1 l\Vn / I 

donc, en vertu du théorème 1, l'égalité (24) entraîne (23). 

T h é o r è m e 4. Soit f e S^ et soient -

des nombres complexes arbitraires, - des points 

arbitraires dans U. Alors, pour 1 = 0,1,..., 1 étant établi, 

on a 

N 

( 25) L > I C c m î 1 ^ ) + • i f l* k4
1 )<?k»l 2 < 

m=1 k=1 

oo N r -i \ 2 

n=1 k=1 *\Vn Sil=£k « 

l'égalité n'ayant lieu que si fé S^. 

D é m o n s t r a t i o n . De (6) et (7), on déduit 

(26) r > i c < v i i } « k > + = 
m=1 k=1 

N 

k=0 

00 
, n = 1,2, 
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N 

m=1 n=l V k=1 / i = L 

— A k ( v i H n ) -
=1 V V n 

(1) \ 2 
= lAz+e^Bxl, 

où X = (xn);=1 et ^ 
0 

N 

pour n=1,.. .1-", 

^ / 1 n\ 
^ ) pour n=l,1+1,... 

tk=1 \Vn 

La série i e T i I Xn | converge, car on a 
n=1 

n=1 n=l k=1 

(1) 

k=1 k=1 n=l 1 x* n ^ 

par conséquent, en vertu du théorème 1, l'égalité (26) en-
traîne l'inégalité (25). 

it* Remarquons ensuite que si f£ S^ et si l'on pose 
fg(z) = Vf(z^), on a f 2 t S^, fg étant impaire, et inverse-
ment, si t^C S^, f2 étant impaire et si l'on pose f(z) = 

= (f2(Vz))
2, on a f e s r 
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Cer."raison;: :.oui- lu fonction f 2 des suites c.naloques 

à celles qu'on a construites dans (6) et (7)» Soit 

/ ¿ f (z) - f ({)\ ^ _ 
( 27) -iog (y/b ^ j y 2 ) = 

(28) -log \ 1 - f 2(i)f 2(z)) b m ( O z
m . 

m=i 

où a m ( 0 resp. b (£) sont des fonctions holomorphes dans 

le disque U. Remplaçons £ par - £ et z par -z. La fonction 

f2 étant impaire, on aura 

C29) - l « s ( V > ^ ^ M > V - f > ' . 
m=1 

(30) -log(1 - f 2(£)f 2(z)) = ( - l A j C - O z ® . 

m=1 

Les coéfficients de z m, dans les seconds membres des 

formules (27), (29) et (28)j (30) étant égaux, on parviendra 

aux relations 

(52) = - b ^ i O , ^ ( - i ) = b ^ ) . 
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U t i l i s a n t ( 2 7 ) e t ( 2 8 ) , on aura 

( 3 3 ) - l o g A, - 4 
V f ( 0 f ( P ) z 2 - ¿ 2 J 

f i T i y 

z ç f 2 ( z ) + f 2 ( Q 
- l 0 6 (Vb O Ï 5 f ^ n r r r 

m=1 m=1 

( 3 4 ) - l o g l ( - f ( i 2 ) f ( z 2 ) ) = 

= - l o g ( l - f ^ ( Ô f 2 ( z ) ) - l o g ( l + f ^ ( T ) f 2 ( z ) j = 

m=1 m=1 m=1 

Cependent, d ' a u t r e p a r t , on a 

( 3 5 ) - l o g ( * 4 r Î i ^ j ^ î y . f ; V £ 
V f e z 2 ) f ( n z 2 - ¿ 2 y ^ ^ 

( 3 6 ) " l o g ^ l - f ( ^ 2 ) f ( z 2 ) ) = B m ( £ 2 ) z 2 m . 

2)z 2 m, 

m=1 
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Les coéfficients de zm, dans les seconds membres des 
formules (33), (35) et (34)» (36) étant égaux, on parviendra 
aux relations 

(37) V ^ = 2 a 2 m ^ ' 

(38) Bm(i2) = 2 b 2 m(0. 

Si l'on pose 

\ * * / m f n = 1 

(40) -ioS(i - t^of2cz)) = 
m,n=1 

alors les relations (37). (38) entraînent ai?) = 0 et / mn 
b^^ = 0, pourvu que l'un des indices m,n soit impair, 
l'autre restant pair. On en déduit aisément le théorème sui-
vant . T h é o r è m e 5. Soit f^ € S1 une fonction impaire. 
On a 

<41, £ ( ^ - D l ^ U i o ^ S ^ i ô l ^ C 5irl(i2k-1)" | 2. 
k-1 k=1 

<«) £ - .""¿«jî C:è i2 
k=1 k=1 

pour ^ = 0,1,..., l'égalité n'ayant lieu que si fg^S^. 
D é m o n s t r a t i o n . En vertu de (27), (39), (28), 

(40) on obtient 

- 299 -



14 J. oladkov/ska 

(45) ^ (2k-1 ) |a 2 k
(^(0 + e i 0b 2 k^(f)| 2 = 

k=1 

£ I Q ^ s ^ r , Î21-1 f * 
k=1 1=1 \ v^-i / 

• e V( 2k-1 ) ( 21-1 ) b g ^ ^ ^ i 1 > 2 1 - 1 U) 

- | a ^ x + ei0B<2>x|2, 

(?) (2) 
Av ' et B^ J désignant resp. les matrices A et B, engen-
drées par la fonction f^t tandis que x = 

xn = < (V) 

pour n = 21, 

pour n = 21-1. 

En vertu de l'inégalité (20), utilisant le théorème 1, 
on voit que la formule (45) entraîne (41) cqfd. 

De façon analogue, on aura 

£ 4.««>. .̂ «cdi» -CiQsiiî 4«, (J. 
k=1 k=1 1=1 

VViî 
1 ^ l<2>* + ei8B<2>5c|2, 
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où x = (xn)1 et x n = 
pour n = 21-1, 

1 ,n\M t \ pour n = 21. 

En vertu de l'inégalité (20), utilisant le théorème 1, 
on voit que la formule (4-4) entraîne (42). 

Rappelons encore les relations 

E L 2k-1 
k=1 

2k-1 

a 2 Y j i o 6 

k=1 aiz"af 
z=i 

Les inégalités (41) et (42) peuvent donc s'écrire 

£ a,« « ) • . " » ¿ ^ ( i ) < a 
k=1 az'ar' z=£ 

C ** | . £ « ) • e ^ ( f ) | 2 < 1 0 g 1 - ^ ) 
k=1 dz^dZ* dz 

T h é o r è m e 6» Soit f2^ S^ une fonction impaire 
et soient d«s nombres complexes arbitraires; 
alors, pour tout £ e U, on a 
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N 
(45) £ (2m-1 ) ^ ( V S Î 1 C O + ^ V i Î - l « » 2 < 

oo 

k=0 

(46) £ > £ ( j l ^ C S ) + e « X k b g ) ( J ) ) 
m=1 k=0 m=1 

2 < 

t, étant établ i , l ' é g a l i t é dans (45) et (46) n'a l ieu que si 

V V 
D é m o n s t r a t i o n est analogue à ce l le du théo-

rème 5. 
T h é o r è m e 7« Soit f g 6 Ŝ  et soient A ^ , . . . ^ 

des nombres complexes établ is, d 'a i l leurs quelconques, 
des points arbitraires du disque U. Alors, quel 

que soit 1 f i x é , 1 = 0 ,1 . . . , on a les Inégal ités 

N 
£ ( 2 - 1 ) ¡ H ( * k 4 £ l « k > + e iB V a l - i ^ ) 2 < 

m=1 k=1 
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Théorème des aires 17 

ce) £ 2* | ¿ + 
m=1 k=1 

m=1 

N 
1 £ 2 » A ( 1 ) 

Les inégalités (47) et (48) deviennent des égalités pour 
f^ impaire, fgt Ŝ  et uniquement dans ce cas. 

D é m o n s t r a t i o n reste analogue à celle du 
théorème 4. 

5» Dans la suite, on examinera ces fonctions f pour les-
quelles les suites (A^É }f)) »(Bn(fjf )) vérifient respective-
ment las relations 

(49) J^Ci ff) + Bn(£;f) = n = 1,2,..., 

(50) A
n
( ^ f ) " Bn(Î'f) = n=1»2 

On démontrera les théorèmes suivants. 
T h é o r è m e 8. Pour qu'une fonction f 6 S^b) 

soit une solution du système (49) pour un £ = relĉ  fixé 
dans U, il faut et il suffit qu'elle satisfasse à l'équation 
fonctionnelle 

<»> fa • «»> - (ïfo • m) -i (i * h) -
Les seules solutions de cette équation sont les fonotions 

A f telles que 
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(52) K^CfCz)) + C = ^ ( K ^ z ) + G), 

où 

(52 ' ) K f ( z ) = \ + e-2 i<P« f 

C étant une constante arbitraire dont l'argument est égal 
à - q> et |C | < 2. 

T h é o r è m e 9. Pour qu'une fonction f e S^Cb) 
so i t une solution du système (50) pour un £ = re1^ f i xé dans 
U, i l faut et i l su f f i t qu'el le satisfasse à l 'équation fon-
ctionnelle 

( 5 3 ) 1 1 f ( z ) - f U ) , 1 1 1 z - f 

Les seules solutions de o«t te équation sont les fonctions 
£ t e l l e s que 

(5<0 L^icc ( f ( z ) ) = £ L^ (z ) , 

où 

a étant un nombre rée l arbitraire, suffisamment proche de j . 
D é m o n s t r a t i o n du théorème 8. Multiplions 

(49) par z11, n=1,2, . . . Les égalités ainsi obtenues sommées, 
en vertu de (8 ) , (9 ) , on obtiendra 

(55) log (b - ¡ f a f f a * l es (1 - f ( I ) f ( a ) ) = 

= log(1 - £z ) , 

d'où i l résulte (51). 
A 

Supposons à présent qu ' i l existe une fonction f £ Ŝ  sa-
t is fa isant à l ' é ga l i t é (51)» Cette équation se peut écrire x 
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Théorème des aires 19 

(56) Ke(f(z)) + C = £ (K?(z) + 0), 

o ù 0 = a r g f ( O , C = ^ + " (j + O ) -
La fonction K^z) représente d'une façon conforme le 

disque U en tout le plan ouvert, sauf le segment aux extré-
mités -2e-1(P et 2e~1(?. Il en résulte que G = (f , arg C = 
= - (f et | C | < 2. La fonction f vérifiant (52) représente 
le disque U en le même disque, sauf deux segments d'origines 
resp. -elc? et elcf dont chacun est contenu en entier dans 
un diamètre du disque U. Si C = 2e-1^, les deux segments 

y* 

se reduisent en un seul et la fonction f, donnée par (52), 
devient la bien connue fonction borne'e de Koebe définie par la 
formule 

(57) 2 = b !i(P 2 . (1 + e lcf f(z))2 (1 + e ^z) 

Inversement, on voit aisément que toute fonction donnée 
par (52) vérifie l'équation (51)« En effet, on constate d'abord 

A 

qu'il doit être arg f(£) = cp et ensuite, par changement de 
z en £ dans (52) on voit que 

et l'équation (51) en résulte aussitôt. 
D é m o n s t r a t i o n du théorème 9« Le môme raisoni-

nement qu'auparavant. On multiplie (50) par zn, n=1,2,.... 
Les e'galites ainsi obtenues somme'es, en vertu de (8) et (9) on 
obtient 

(58) log f f a ffc Î { Z \ " lOB(1-f7T)f(3)> = 

= -log(1 - Jz), 
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20 j. ̂ LadkowslEa 

d'où il résulte (53)« Inversement, de (53) on obtient (58) 
et ensuite, ayant comparé les coefficients de zn, on arrive 
à (50). 

Supposons à présent qu'il existe une fonction ï€ S^ vé-
rifiant la relation (53). Observons que la fonction L^(z), 
{êU, est une fonction univalente dans U . En effet, s'il 
n'en était pas ainsi, il existerait une circonférence |z| = 
= 0 *> 1 contenant deuxi points distincts z„ 

icp, iav 1 2. = e z , tels que ') = L^(çe *) • Il en résulterait 
donc 9 2 - (¡¿(e-b-V + e _ i ^ ) + -f e-1'» e " H = c. Posant £ = « H 
on aurait <?2 - çre^Ce - 1?/+ e " 1 ^ ) + e2i(te~i(t' e " 1 ^ = 0, d'où 

(58') ç 2 - çr(cos(cp-<p^) + cos(ip-(p2))+ cos(2<p-(cp1+ip2)) = 0 

et 

Çrisinty-cp,,) + sin(cp-<f2)) - sin(2(f-((p1+if2)) = 0. 

La dernière relation entraîne 

(i) sin (tp - = 0 

ou 

V ^ ( V f e N ( n ) çrcos —-g-1- = cosi cp -g-î I , 

tandis que suivant (58' ) on a 

. ^ c o s ( Y - ^ C O S • „os* ( T . Ï Î ^ L ) . 

( , - Ï ^ . O . - 3 in 2 
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2 
Dans le cas ( i ) , on a <p + 2çrcos —g— t1 = 0 ce qui 

es t évidémment impossible. Dans l e cas ( i i ) , on a ç>2 - 1 = 0 
ce qui e s t également impossible. Cn v é r i f i e aisément que L^(z) 
représente d'une façon conforme le disque unité U en tout 
le plan, sauf l ' a r c de l a circonférence |w| = — centrée au 
point Y i a u x extrémités 

^ = | ( i r - V l - r 2 ) 2 = ̂  (1 - 2r 2 - 2 ir Vl - r 2 ) , 

oj2 = y(Lr + Vl - r 2 ' ) 2 = y (1 - 2r 2 + 2ir Vl - r 2 ) . 

S ' i l ex i s te donc une fonction f vér i f i ant la r e l a t ion 
(55) , i l doit ótre | f ( £ ) | = b r * Posant i ( £ ) = bre l c t , on 
constate d'une façon analogue que la fonction r e -
présente le disque U en tout le plan, sauf l ' a r c de l a c i r -
conférence |w| = centrée au point — , aux extré-
mités b r e 

Gì'* = (1 - 2b 2 r 2 - 2ibr Vl - b 2 r 2 ) , 
' bre 

6J' = — ( 1 - 2b 2 r 2 + 2 i b r V l - b 2 r 2 ) . 
2 bre 

On voit donc que s i ci appartient à un entourage de (f , 
assez p e t i t et que l 'on peut déterminer - et seulement dans 

1 1 
ce cas , l ' a r c ^ e s t contenu dans l ' a r c d'où 
on déduit que toute fonction vér i f i an t l a re l a t ion (53) e s t 
réellement de l a forme (54) . 

L' inverse e s t f a c i l e à çonstater. En e f f e t , on aperçoit 
q u ' i l doit Ôtre i ( £ ) = bÇe lcc ce qui f a i t conclure que f(z) 
s a t i s f a i t à l 'équat ion (53)« 

R e m a r q u e . S i f e S,j(b) e s t une solution du sy-
stème des équations 
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(59) A ^ j f ) + ei0Bn(£;f) = eiT n=1,2,... 

il doit être r = 8. 
En effet, poux que la fonction f 6 S^Cb) soit une solu-

tion du système (59)t il faut et il suffit qu'elle satisfasse 
à l'équation fonctionnelle 

<»> (ife - îtît)(1 - « n « - ) ) ' " K H - -

/1 1\ - e ^ La fonction S^r(z) = ̂  ~ jJC - £z) représente U 
en tout le plan, sauf un arc d'une spirale logarithmique fai-
sant en tout son point l'angle r avec son rayon-vecteur. 
L'image du point z = £ , par cette représentation, est le 
point 0. La relation (60) équivaut à 

gf(o,e ( f ( z ) ) = b e{r(z)' 

d'où il résulte que, quelle que soit la fonction i £ t>1 vérifiant 
(60), elle doit être de la forme 

f ( z ) = gf(0,*(b gir(z))' 

et par conséquent V = 9. 
T h é o r è m e 10. Soit (xj°° n'^ 

de nombres complexes telle que l'on ait 
pour toute fonction f £ S^, la série 

£ ( W » f > + e i 8*mV zi f>) 
m=1 

est convergeante presque uniformément dans U; en outre, pour 
tout couple de naturels p,q,p < q, et pour tout ztU, on a 

une suite arbitraire 
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(61) 
m=p 

m=p 
log 

1-1 zi 

1/2 

D é m o n s t r a t i o n . Suivant ( 6 ) , ( 7 ) , l ' i n é g a -
l i t é de Schwarz et c e l l e ( 1 4 ) , où l ' o n a posé x^ = 0, pour 
n < p ou m > q on aura 

q 

m=p 

= | £ > ( ¿ < V » n + e Í W ) 8 " 
n=1 m=p 

h 

< ( £ . » i £ t v - * ì I«I " Y 2 < 
n=1 m=p n=1 

m=p 1 - I z 
1 \ l / 2 

ce qui achève l a démonstration. 
T h é o r è m e 11. So i t x ^ , . . . , ^ un système a r b i -

t r a i r e aes nombres complexes et so i t 0 < 0 < 1, 0 <. 0 < 2 ir. 
11 e x i s t e uar.s la c l a s s e une fonction f t e l l e que l e s 
s u i t e s I A v̂ z ; f ; J , (B ( z ; f ) ) forme'es pour f , s a t i s f a s s e n t pour 
tout z 6 U à l a r e l a t i o n 

C ( x m V * î f ) + e ^ B ^ f ) ) - e Ì 0 X I E 
m=1 n=1 
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Pour c e t t e f o n c t i o n l a f o n c t i o n n e l l e 

N 
0 ( f ) = r e I 

m,n=1 
( a „ x x. + e ^ b x _x„) nm m n mn m n 

a t t e i n t sa v a l e u r l a p lus grande dans l a c l a s s e S^ (b ) . 
L 'énoncé du théorème r é s u l t e immédiatement du théorème 1 

de [4] e t des r e l a t i o n s ( 1 2 ) , ( 1 3 ) . 
T h é o r è m e 12. S o i t ( x

n ) ° * 1:1116 s u i t e de nombres 
complexes, t e l l e que l ' o n a i t 

(|62) 
OO A 

< oo ; 
n=1 

pour t ou t b t ] 0 , l [ , 9 e [ o , 2 j r [ i l e x i s t e dans l a c l a s s e S ^ o ) 
une f o n c t i o n f t e l l e que l e s s u i t e s (A ( z ; f ) ) , (.B [ z ; f ) ) s a -in m * 
t i s f a s s e n t , pour t o u t z e U, à l a r e l a t i o n 

<65) £ ( * m V z ' f > + e i f l ^ B m ( z ; f ) ) = e i 9 £ J x Q z n . 
m=1 n=1 

Four c e t t e f o n c t i o n l a f o n c t i o n n e l l e 

• OO . 
tf>(f) = r e ( « W V n + ^ b n m V n > 

. a ,n=1 

a t t e i n t sa v a l e u r l a p l u s grande dans l a c l a s s e S ^ ( b ) . 
D é m o n s t r a t i o n . Observons que l a s u i t e . 

( x Q ) ~ e s t n o n - n u l l e , s inon t o u t e f o n c t i o n de l a c l a s s e S^(b) 
v é r i f i e r a i t l ' é g a l i t é ( 6 3 ) . S o i t N un nombre assez grand 
pour que l a s u i t e ( x

n ) ^ s o i t n o n - n u l l e , e t s o i t f j j ( z ) £ S^(b) 
une f o n c t i o n s a t i s f a i s a n t à l a r e l a t i o n 

N N 

M H c W « * f N > + e i 0 V V ^ f N > > = e i 0 E ï V * » 
m=1 n=1 
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l ' e x i s t e n c e d'une t e l l e fonct ion r é s u l t e du théorème 11 . 
D'autre part on s a i t que l a fonc t i o nne l l e 

<fo(f) = re 
N 

> (amnxmxn + ^ W n ) 
. m,n=1 

a t t e i n t pour c e t t e fonct ion sa valeur l a plus grande dans l a 
c l a s s e Observons ensuite que la s é r i e au second mem-
bre de (63) e s t convergeante presque uniformément dans l e 
disque U. En e f f e t , suivant l ' i n é g a l i t é de Schwarz, on a 

12n 

n=1 n=1 n=1 

S o i t 

(65) ? ( z ) = e i f l ^ 1 V * 
n=1 

et s o i e n t £ un nombre p o s i t i f a r b i t r a i r e , N = N(e) assez 
grand' pour que l ' o n a i t 

(66) C 
k=N 

l ' e x i s t e n c e d'un t e l N r é s u l t e de ( 6 2 ) . Fixons ze Ue e t 
évaluons le r e s t e de l a s é r i e au second membre de ( 6 3 ) . Sui-
vant ( 6 6 ) , pour n > N, on aura 

k=n V k=n V k=n v I z I ' 

Or, suivant l e théorème 1D., l a s é r i e au premier membre de> 
la formule (63) es t convergeante presque uniformément dans TT 
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Observons qu£ pour n > N et pour toute fonct ion f e 3^ (0 ) , 
son n-ième reste s 'est ime d'une fa?on analogue que dans (67 ) . 
Autrement d i t , on a 

(68) ( V k ( z ; f ) + e ^ X ^ C z ; : : ) ) < £ W l o g • 
k=n V ' - i z | 

Posant x^ f C, par changement de N en 1 dans (64) , 
on construira une suite de fonct ions (i'i)'^'» 3^ (b ) , t e l -
les que l es suites ( An ( z ;f , (3 r ( , s a t i s f a s -
sent aux re la t i ons 

1 1 (69) YL  (xkVzi fi>+ ^v^i» =e±9 Y2l vk 
k=1 k=1 

quelque so i t z e U et pour 1 = 1 , 2 , . . . 
Si 1 > N et z e U , de (65 ) , ( 69 ) , (6? ; , ,68) i l resuite 

l ' i n é g a l i t é 

(70) cpiz) - ( x k A k ( z { f l ) + e ^ x ^ i z ; ^ ) ) < 2el/log — ^ 
k=1 1~ 

Comme f ^ è S^(b ) , la suite e s t compacte et par 
conséquent e l l e contient une sous-suite (f-, convergean-

± 0 0 =1 
te presque uniformément dans U vers une fonct ion f é S ^ t j ) . 
I l en r ésu l t e , suivant" (12 ) , (13) et ( * ) que, pour tout n 
f i x é , on a i t 

(72) B n ( z ; f ^ ) f ^ ; B n ( £ ; f ) . 

presque uniformément dans U. 
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Evaluons ensuite la différence 

(73) J Z ( xk Ak ( z' f ) + e ^ k V z j f ) ) " 
k=1 

- C C W » V + = 
k=1 

N 

=(YZ ^ x k A k ( z ' f ^ + e i 0 i k B k ( î î f ) ) -
k=1 

N , 
- C ^ » i ' i P + « ^ w ^ v O + 

k=1 

+ ( ) (xfcAk(zjf) + e ^ ^ C z j f ) ) -
\k=Jî+1 

- f^Z < w » v + « i 0 w 2 » f i , ) ) ) = + v 
k=N+1 

Il en résulte de (68) que 

(74) |I2| < 

D'autre part, si e. > 0, arbitraire,et z e U , arbitraire, 
fixé, les formules (71), (72) entraînent l'existence d'un 
N^ = N,|(z,t), tel que pour "3 > N^ on ait 

(75) 
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3i g > N1 , suivant (73) , (74 ) , (75) , on obtient 

l A -o 
(76) ( x k A k ( z ; f ) + e 1 x ^ ^ f ) ) -

k=1 

Soit N̂  assez grand pour que > N/j entraîne l g > N. 
Dans ce cas, suivant (70 ) , (76) , on obtient l 'est imation 

|cpu) - C ( x k A k ( z ; f ) + e l 0 * k V z î f ^ | < ¡ I f 2 ' 
k=1 

v é r i f i é e , z étant arb i t ra i re dans U. Ainsi on vo i t que la 
fonct ion f = lim f-, s a t i s f a i t à la re la t ion (63) et la 

1 -»os X g 

démonstration du théorème est achevée. 
Enfin, en conséquence du théorème 12, on obtient le sui-

vant. 
T h é o r è m e 13^ Quels que soient 8 e [o,2jt [ , 

¿ e U , b t ] 0,1 i l ex iste au moins une fonct ion f e c,](b) 
sa t is fa isant au système i n f i n i des équations 

A n ( £ ; f ) + o i 0 B n ( f i f ) = e i 0 ^ - i n , n = 1 , 2 , . . . 

D é m o n s t r a t i o n . Posons xn = £ n , n = 1,2,, 
On a 

( 7 8 > C ïïN2 = J K i 2 n = r î 7 P " < 0 0 -
n=1 n=1 Kl 

TJn vertu du théorème 12, i l ex iste une fonction f £ 3<|(b), 
tel ' .? i'ue , pour tout z £ u, on ait 
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n=1 n=1 

Utilisant (8), (9)» ainsi que les relations p^(z,£) = 
= Pf(£>z)> 1f(z»i) = q f , z ) , la formule (78) s'écrira sous 
la forme 

(79) f ^ C V Ï S f> + ei9Bn(£jf)) zn = eid £ l £ nz n. 
n=1 n=1 

Comparant les coefficients de z n dans (79)> on obtient 
les relations (77) ce qui achève la démonstration. 

Les résultats obtenus ci-dessus seront utilisés dans la 
seconde partie du travail ci-présenté. Ils y serviront du 
point de départ pour en déduire, d'une façon entièrement élé-
mentaire et très simple, les estimations de quelques fonction-
nelles de la famille S1(b). 
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