DEMONSTRATIO MATHEMATICA

Val. X No 2 19717

Janina Sladkowska

THEOREME DES AIRES DANS LA THEORIE
DES FONCTIONS UNIVALENTES BORNEES, I

1. Fosons:
31 - classe des fonctions f, holomorphes et upnivalentes
dens le disque unité U = {z:lz]< 1}, de la forme

(4) f(z):bz+b2Z2+... ) b> O!

et satisfaisznt & la condition lf(z)f < 1.
8,(b) - sous-classe de S,y avec b établi,

B

T
par l'aprplication w = f(z).

y O <r <1,- image de la circonférence Cr = {z:lzl = r}

a. - domairne borné par la courbe F} et par la circon-
férence 49U = {z:lzl = 1}.

Dans [1], [3] on a formulé le théoréme générale des aires
pour les fonctions de la classe S1. Ce théoréme est une
expression analytique du simple fait géométrique que l'aire
du domaine d. est un nombre positife.

Théor éme des aires. Soient: f(z) - une fonction
holomorphe de la forme (1), g(w) - une fonction holomorphe

dans tout le plan ouvert, sauf peut-&tre w = C, et avant

le développement de Laurent glw) = Efi cmwm, 0< |w|<eoo,

-oe
Dans ces condition, on a:
Pour que la fonction f(z) soit univalente et bornée, il
faut et il suffit que l'on ait
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(2) ‘im|0m|2< z mlcml2

-0

Ny

ot g(f(z)) = S szm, quelle que soit la fonction g(w).

31, en outre, im {g(w)} ou bien re{g(w)} est constamment
égal 3 U sur AU, le second membre de (2) s'annule et 1'inéga-
1ité (2) devient

(%) Y mcy|? <o

1'égalité n'ayant lieu que si f£(U) est un ensemble de mesure

superficielle égale & l'aire du disque U, autrement dit a =«¥.
Dans le texte qui suit, la sous-classe de S1 de fonctions

satisfaisant & la condition susmentionnée sera désignée par S

2.,Posons:

oo
(%) Pf(ZoS) = -log (b f%ij E%Z) g&i%{}flﬁ)): z::: amnzmsn
m,n="1

et
(5) ap(2,0) = -log(1 - £()E(2)) = ) by 2T,
m,n=1

Les fonctions Pprqe des variables respectivement 2,{,
et z,f étant holomorphes dans le bicylindre U > U, leurs
séries y sont convergeantes. Posons encore

(6) KR =Y ey m= 2.,
n=A

7 B (D) = i bpnfls B = 1a2peee
n=1
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Théoréme des aires 3

alors
(8) pez) = -Loe (b 7y iy ﬁ%:—f(% Z A ()",

(9 1p(2,0) = ~log(1 - £(O(2)) =) B (D7"
m:']
D'autre part, si Fm(w), (m = 1,2...,F0(w) = 1), est le
m-iéme polyn8me de Faber pour la fonction 1/f(z), ou f € Sq»
alors on a

(10) F (—(T =—1§ icmzn.

n=1

Posons encore

(1) Fa(2(2)) =)  ap 2™

n=0
Utilisant le développement bien connu
(3¢) log(1 -~ tf(z)) = (f (t) + mlm) "
m_

dans un entourage du point O, suffisament petit, ou

[= =]
log ﬂzg) = E ]'mzm,

n=0
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on parvient aux égalités

(12) Fy (%7):% + mAy(2),
(13) Fm(f‘(?)) = myy + mBy(Z).

Les relations (10) -'713), (6) et (7) entralnent Con =

on? m,n:> 1 et dmn = mbmn’ n,n > 1.

Le théoréme des aires [1] nous permettra d'obtenir quel-
ques propriétés des fonctions Am(ﬁ) et Bm(f). Posons, en
particulier, dans ce théoréme

N

) =Y L (xpRp(d) + %FM)

m=1

= ma

od ¥ (w) est le m-iéme polyndme ge Faber de la fonction

1/ fiz), et XqyeoasXy - dks nombres complexes arbltraires. Cn
voit que im{g(w)} = O sur dU. En vertu des (12), (13), (6)

et \7) nous avons

gkf(z)) [Z ( m(ﬁ) + )gnF (f(z))) Z ( mAm(z>+)§nB (Z))
m_.
N X

&Y )
_m‘Jm = Z <Z (xmamnﬂﬁnbmny
n=1 “m=1

X

N
>
m=" m=1
N N
DEEE )
m=1 z m=1

En vertu de (3), on parvient a4 l'inégalité

: N
o o

(14) Y 2| Y gy + Tbp) [P Y i)
n=1 m:'] n=1

et, comme a . =|a | et b = Bﬁm' on a

N A
(15) im|2(xnam +in°mn>'2<2ifl |xm|2
n="1 m="1

m="
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Théoréme des aires 5

X étant arbitraires, l'inégalité (15) devient

n
oo N . N

(1) Y m[ Y Gy ¢ e EmR) P Y Gkl
m=1 n=1 m="1

ot B est un nombre arbitraire, réel. Remplacant dans (16)
X, par \/nx , on obtlent

—w N . N
an Y 1S (xVam ey, + o xvma v )2 < Y [x,/2
m=1 n=1 m="1

Soit 4 présent (xnfT - une suite arbitraire de nombres
(=]

complexes, telle que 2:: Ixn|2~<oo. Posons encore
n=1

(18) A= (Van apy)y oo

(19 B = (Vmn bmny:,n=1'

Faisant tendre N vers 1'infini dans (17), on obtient
le théoréme suivant.

Théoréme 1. Soients X - un vecteur arbitraire
de la classe 12, 8 - un nombre arbitraire, 4,B - les ma-
trices définies par (18) et (19), ou &, €t by, sont les
coerficients des développements des fonctions resp. pp(2z,¢)
et qp(2,{) Jou £ € S,. Dans ces conditions, on a

(20) “Ax + ol Bi" < Ix};
|---] désignant la norme des matrices. En outre, l'égalité

dans (20) n'a lieu que &i la fonction £ engendrant les matri-
ces A et B est une fonction de la classe §H.
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3. Utilisant 1'inégalité (20) on déduira successivement
quelgues résultats faciles, concernant les suiltes (Am(g)),

(B, ()

Théoréme 2. Soit f ¢ 543 alors, quel que soit
{e U, ona

OO . N
(21) Y mlag6) + o¥mD|2<)  Liei,
m=" m=1

(22) i m“ﬁl)(;) "’916 m(()’2<z: n(n-1) ...(n_1+1)21“2(n—1)
n=1

pour 1 =1,2,... Les inégalités ci-dessus ne deviennent des
égalités que si fe §H'

Démonstration. Le cas 1 = 0. De (6) et
(7), on déduit

§ ulage) + o208 (D)2 -

m=1
=i|i (VaR e = ¢® + o2V by, LIM|? -
m= n=1

= ifi‘ ifi (Vﬁﬁ‘amnxn + eiBVES mnih)lz = ﬂAx + eieBiﬂz,

m=1 n=1

5 oo 1 :
ou x = (X )4y X, = ———gn, n = 1,2... Comme la série

Vo'

Sf: Ixn|2 converge, en vertu de (20) on obtient (21).
n=1
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Le cas 1> 0. De (6) et (7) on déduit

Aél)(ﬁ) = Efi: n(n=1)...(n~-141) amngn-l’

n=1

@ = atat)enea1en) v 7Y,

n=1
donc
5 alalP) + D@12 23| 3 (VaB eV
m=1 m=1 n=l

...(n—1+'1)§n'1 + eiEan bmnVﬁ(n—ﬂ)...(n—l+1)§n—l'2 =

pour
n=1,...1-%,

o

Va(n-1).. o (amlen)g B, RO

Comme la série %;:;|xnlz converge, en vertu de (20) on
obtient (22). B

Remarque. Les inégalités (21) et (22) correspon -
dent & celles de Milin (voir [2], p.29) pour les fonctions
de la classe S. On remarque aisément que les deux inégali-
tés (21) et (22) peuvent 8tre remplacées par une seule de la

forme
=)

2

(1

§ ajgDe) + otfM@[2 < )
n=1

m="1
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Théoréme 3, Soit f¢€ S, et soient 10,11,...1N
des nombres complexes arbitraires; alors pour tout {e U,
on a

N
(23) Y a]3 - a0 + A |2<
m=1 k=0

N
&= 1,0\ (k)|2
< E E A(—=L" .
n=1 I k=0 k<‘/; / |

pour { fixé (e U), 1l'égalité n'ayant lieu que si f € §H.
Démonstration. De (6) et (7), on déduit

OO N .
@ )=} (AP @) + oM {0 (@) |2

m=1

I (e () Y

m=1 k=0 n=1
. eiaik (V—:T g"‘)(k)va‘ bmn>|2 N

o N NS
SIS (e a7

m=1 n=1



Théoréme des aires 9

n=1
- 5 (e
n=1 n=1 k=0 n
N N o >
<G M Sl

donc, en vertu du théoréme 1, l'égalité (24) entralne (23).

Théoréme 4. Soit fe S, et soient Aq,...kN -
des nombres complexes arbitraires, §1““§N ~ des points
arbitraires dans U. Alors, pour 1 = 0,1,..., 1 étant établi,
on a

N
(25) T o]y aalPey + o1 a0 3<
m="1 k=1
N
= (1)
<y | il
r; g M Vng)g;:;k’ .

l'égalité n'ayant lieu que si fe¢ §1.
Démonstration. De (6) et (7), on déduit

N
26) £ 0 M + MRV EN? -
n=1 k=1
oo N o5
= I Voo (A, (-%¢0
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g, )

N N
Y15 VR (Mt
m=1

n
n=1 k=1 é:{k

N 2
1 1§n _ llx+eiBBi,
o 2 A “k>l o

k=1

0 pOllI' n=1,00014"4’
ou x = (xn)n=1 et x, = X 1
E A (—1§n> pour n=1,141,¢e4.

k
Va {={x
La série i |xn| converge, car on a
n=1
N 2
(1)
2 1
S S () <
u=1 n=1 k=1 £=(k

LI (e >“’; ,

k=1 n=1
k

par conséquent, en vertu du théoréme 1, l'égalité (26) en-
tratne l'inégalité (25).

4. Remarquons ensuite que si fe¢ S, et 8i lton pose
fa(z) = Vf(zz), on a f,€8,, f, étant impaire, et inverse-~
ment, si T,€ 8, f, étant impaire et si l'on pose f£(2z) =

= (fQ(VE))Z, ona fe S,
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CensTrulson:s nour iz fonctlon £, des
4 celles gu'on 3 corstruiltes dans (6) et (7). 3oit

£2(2) - £, &
(27)  -log <\f§f2§2> faiﬁ e >Z 2,(0)2",

(28) “log i1 - £5(00E,(2)) =Y bp(D2R,

m="

ou am(() resp. bm(f) sont des fonctions holomorphes dans
le disque U. Remplagons ( par - { et 2z par -z. La fonction

f étant impaire, on aura

2

£,(2) - £,(0) =
(29) —1og<\/?fz%75 szs 2 - 42 >= Z{ (-1)mam(—g)zm,
m=

(30) -log(1 - £,(0)E,(2)) =) (- f-Dz"
m=1

Les coéfficients de 2%, dans les seconds membres des
formules (27), (29) et (28) (30) étant égaux, on parviendra
aux relations

(31 8on_q(=0) = =gy 4(8), ayu(=0) = ay(0),

(52) bam_q(’C) —bzm_1(§), bzm(‘f) b2m(§)'
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Utilisant (27) et (28), on aura

2 2 2 2
(33) ~log <b I gz—%'—fég—z> -

£(2%) £(£°) 2% - ¢

¢ fa(z) - fz(.()
= —108 (ﬁ f—(—jazz f2(§y Z = g -

z ¢ T5(2) + £,5(0)
~1og <VFf2@ 0z e

= i am(é)zm +}i am\-ﬁ)zm = .?.Ea?m(ﬁ)zam»
m="

m=1 m=1

(34) ~log 1 (- f(§2)f(z‘2)) -

—log@-@fz(za - log<’l + f2—(§—)f2(z)> =

= }oi b, (£)2" +i o (-{)2" =2 i bzm(g')z‘?m.
m="1

m=" m="1

Cependent, d'autre part, on a

2 2 2 2
(35) “log <b 2z ¢2  £(2°) - ¢ >= (£2)720
£2(2%) £(t® ° - ¢ — k&
(36) -logé - f(;a)f(z2)> = Bm(ﬁz)zem.
m="
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Théoréme des alires 13

Les coéfficients de 2z®, dans les seconds membres des
formules (33), (35) et (34), (36) étant égaux, on parviendra
aux relations

(37) a,(¢3) = 2a5 (0),

(38) B, (¢%)

n

2b, (£).

Si l'on pose

2 5 -5\ = (5
39 '1°8<"Ff2<z> 07 z-¢ =) e

,D:’l

B

(40) ~log(1 - f2(§)f2(z)> =Y 7 o{@emem,
m,n="1

alors les relations (37), (38) entrainent aéﬁ) =0 et
béﬁ’ = 0, pourvu que l'un des indices m,n soit impair,
ltautre restant pair. On en dédult aisément le théoréme sui-
vant.

Théoreéeme 5. Soit f, €S, une fonction impaite.
Cn a

@) 3 @y fag 00,0 D12 < S gl |
- k=1

[e2=] ==l 2
@) 5 aafey + o D2y S |
k=1 k=1

pour V= 0,1,.4., 1'égalité n’ayant lieu que si f,¢€ §H.

Démonstration. En vertu de (27), (39), (28),
(40) on obtient
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(43) ‘i (2k-1) a6y + 2o, (D)2 =

oo (V)
|Z<\k2k 1) (21-1 a2k 1,21 ,](‘/%_ §21-1> +

k=1 11 211

. _ N | 2
e V(ax-1y (21-7) bé§21’21_1<v2_1_"_1£21—1> >

= ”A(2>x + eiBB(Z)iﬂz,

A ep 3D

drées par la fonction £os tandils jue X = (xnf:, ou

désignant resp. les matrices A et B, engen-

0 pour n 21,
X =

1 +n ™)
— pour n
(@)

En vertu de l'inégalité (20), utilisant le théoréme 1,

21-1,

on voit gue la formule (43) entraine (41) cgfd.
De fagon analogue, on aura

=) )
2k “’)( ) ")(g) 2 6/21{ 21 2(2) <—1— 1>0
g l () + et | ; I; azy 21 1§ +

+ o105 3T b(3) < 1 §21>("> 2

2K 21 \Vo1 = "A(e)x + e385(2)5 HZ




Théoréme des aires 15

0] pour n

1 ,n\M
— £ pour n
<fo>

En vertu de 1l'inégalité (20), utilisant le théoréme 1,
on voit que la formule (44) entratne (42).
Rappelons encore les relations

21-1,

ol X = (xn)1 et x =

2l.

k=1 2" 3¢ z=§,
2 21 1
1 ' (c2k>(\)) l i ( lo ; ng)a
k=1 FIPAE] -t .

Les inégalités (41) et (42) peuvent donc s'écrire

i l(2k-'1) 32(0) ) + ot (9) (§)| 52 (1 log -"’_ZE)
k=1

A I z=
oo 32’(11 1.
S o] afh) + oD |2 (2 o5 5)
k=1 32" af’ 2= ¢

Théoréme 6, Soit f,€ S, une fonction impaire
et soient 10,11,...ln des nombres complexes arbitraires;
alors, pour tout (e U, on a
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#5) Y (20-1)

m="1

Z (Ayask) (¢ + e Akb(k)q(ﬁ))'
k=0

m:']

N
=2 (2n-1)(k 2
<Z‘koxk<\/2m-ﬂ >( )}

N
46) Y "am(y <1k Kty + ot (k)(ﬁ))‘ <
m=1 k=0

<}°i il <1 §2m>(k) :
m=1 | k=0 8 \_/2=m

{ étant établi, 1l'égalité dans (45) et (46) n'a lieu que si

f2€ Sq.

Démonstration est analogue & celle du théo-
reme 3.

Théoreéeme VR Soit f26 S1 et solent A1""1N
des nombres complexes établis, d'ailleurs gquelconques,
{qreeely des points arbitraires du disque U. Alors, quel
que soit 1 fixé, 1 = 0,1..., on a les inégalites

BNE
wn 5 (2’“'1)|>: k& 24ty + 91811;"(121(41:))( <
m=1

<

m="1

:%( ¢ >

pe AN ) 6={x
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Théoréme des aires 17

N

wey Y em|y (e () + oA @ )P<
m=1 k=1
oo | N (1) |2
< Ay ( )
m=1 | k=1 £ !k

Les inégalités (47) et (48) deviennent des égalités pour
f, impaire, f,¢€ §H et uniquement dans ce cas.

Démonstration reste analogue & celle du
théoréme 4.

5. Dans la suite, on examinera ces fonctions £ pour les-

quelles les suites (An(g;f)),(Bn(E;f)) vérifient respective-
ment laes relations

n = 1,2,00. v

"
= J IR
V‘h‘

(49) AL(LiT) + B (E;f)

n=1,2,oo- .

"
U|J
n

(50) A (E32) - B (£iD)

On démontrera les théorémes suivants.

Théoréme 8. Pour qu'une fonction fe¢ S1(b)
soit une solution du systéme (49) pour un (= re 1¢ fixé
dans U, il faut et il suffit qu'elle satisfasse & l'équation
fonctionnelle

o sl B 10 - (dpy + 70) -3(2 1) - 40

Les seules solutions de cette équation sont les fonotions
A
f +telles que
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(52) Ro(£(2)) + C = L(Ky(2) + O,
ou
(52') tF(z) = %— _2iqz,

C étant une constante arbitraire dont l'argument est égal
a -¢ et |[C|< 2.

Théoréme 9. Pour qu'une fonction fe¢ S, (b)
soit une solution du systéme (50) pour un (= rel¢ flxe dans
U, il faut et il suffit qu'elle satisfasse & l'équation fon-
ctionnelle

(53) 1 1 f(z) - £(¢) _

2111 z-(
PO I 1 iee) P

1-(2

Les seules solutions de cette équation sont les fonctions
$ telles que

(54) Lyret® (£(2)) = § Ly(2),

ou

(54') L(2) =3 354

« étant un nombre réel arbitraire, suffisamment proche de ;.

Démonstration du théoréme 8 Multiplions
(49) par z®, n=1,2,... Les égalités ainsi obtenues sommées,
en vertu de (8), (9), on obtiendra

(5) 108 (b gty iy TH=FL) + 108 (1 - FD2) =

= log(1 - ZZ),

d'ou il résulte (51).
Supposons & présent qu'il existe une fonction fe S, sa-
tisfaisant & 1'égalité (51). Cette équation se peut écrire '

- 304 -



Théoréme des aires 19

(56) Kg(£(2)) + C = ¢ (Ky(2) + O),

ou B= arg f(;), C = %<b<fj(? +T_¢)) -<%+§)).

La fonction K¢(z) représente d'une fagon conforme le
disque U en tout le plan ouvert, sauf le segment aux extre-
mités -2e"1% et 2¢7*f. Il en résulte que B8=¢, arg C =
= -¢ et |C| < 2. La fonction $ vérifiant (52) représente
le disque U en le méme disque, sauf deux segmeunts d'origines
respe -e1f et e dont chacun est contenu en entier dans
un diamétre du disque U. Si C = 2e™*9, les deux segments
se reduisent en un seul et la fonction f, donnée par (52),
devient la bien connue fonction bornee de Koebe detinie par la
formule

%(z) = b Z .
(1 + e72¢ f‘(z))2 1 + e'wz)2

(57)

Inversement, on voit aisément que toute fonction donnée
par (52) vérifie l'équation (51). En effet, on constate d'abord
qu'il doit &tre arg f(g) = (p et ensuite, par changement de
z enf dans (52) on voit que

1 A R VP S I 3
Bo-0 (55t 10) HE0)

et l'équation (51) en résulte aussitdt.
Démonstration du théoréme 9. Le m8me raison-

nement gqu'auparavant. On multiplie (50) par Z%, D=1,2,e00.

Les egalites ainsi obtenues sommées, en vertu de (8) et (9) on

obtient

(58) log <b 53 5705 &);%(Q> - log(1-£(£)f(2)) =
= -log(1 - £2),
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d'ol il résulte (S53). Inversement, de (53) on obtient (58)
et ensuite, ayant comparé les coefficients de 22, on arrive
a (50).

Suppcsons & présent qu'il existe une fonction fe S,1 vé-
rifiant la relation (53). Observons que la fonction Lg(z),
teU, est une fonction univalente dans U. En effet, s'il
n'en était pas ainsi, il existerait une circonférence |z| =
= Q E(P‘I contenant deux pg%nts distimets z, = Qel‘h y 2y =
= e '2, tels que L;(Qe N = LeQge ., Il en résulterait

donc 92 - q;(e'ﬁq’ff e'i??) + f-.e_i‘?r e"icﬁ: C. Posant §-= I'eiq,'
on aurait 92 - Qrelq’(e'wl + o 192y 4 e210e=19 =14, _ 0, d'ou

(58') 92 - or(cos(g-¢,) + cos(g-¢,))+ cos(29-(¢,+¢,)) = O
et

Qr(sin(cp-(h) + sin((p-(pz)) - sin(2q-(q1+q2)) = 0.

La derniére relation entraine

(1) sin ((p- (P']“Pz) =0
ou
(11) grcos L‘;ﬁ = cos( - ﬁ?,—‘?’ ’

tandis que suivant (58') on a

02 - aproos (¢ - 11,92 ) cos I1%2 , cos? (g- 102
- Sin.z (Cp - qi;——qz)= 0.
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¢,
Dans le cas (i), on a Q + 29rcos 42 241 =0 ce qui

est évidémment impossible. Dans le cas (ii), on a Q -1=0
ce qui est également impossible. Cn vérifie aisément que Lc(z)
représente d'une fagon conforme le disque unité U en tout

le plan, sauf l'arc de la circonférence |w]| = centrée au
point %—, aux extrémités

wq = % (ir - Vi - r2)2 = %—(1 - 2r2 -2ir'V1 - r2),
wp = Flir + V2 =12 = F (1 - 2x? 4 2ir V1 - £B).

H|>

S'il existe donc une fonction f vérifiant la relation
(53), il doit 8tre |¥(¢)| = br. Posant #(¢) = bre’*, on
constate d'une fagon analogue que la fonction Lf( >(z) re-
présente le disque U en tout le plan, sauf l'arc de la cir-

conférence |w| = %— centrée au point 15 8uX extré-
mités bre
Wy = ——= (1 - 26°0? - 2ivr V1 - v2r?),
bre
W, = = (1 - 2v%r? + 2ibr V1 - v2r?).
bre®

On voit donc que si o appartient & un entourage de ¢ ,
assez petit et que l'on peut déterminer - et seulement dans
ce cas, l'arc uﬁ,w} est contenu dans l'tarc %-wq, %—w2, dtou
on déduit que toute fonction vérifiant la relation (53) est
réellement de la forme (54).

L'inverse est facile & constater. En effet, on apergoit
qu'il doit 8&tre f(;) = bge:LOL ce qui fait conclure que f(z)
satisfait 4 1l'équation (53).

Remarque. Si fe Sq(b) est une solution du sy-
stéme des équations
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(59 (i) + 6B (i) = 61T 1ER, 0= 1,2,..,

il doit &tre r =86.

En effet, pour que la fonction f¢ S1(b) soit une solu~
tion du systéme (59), il faut et il suffit qu'elle satisfasse
a4 l'équation fonctionnelle

_ i8 ir
©0) (gl - sigy) (1 - TO2@)* = L - P - e
. 1 1 - ei‘f
La fonction g (z) = (E = -;-)(1 - {2) représente U

en tout le plan, sauf un arc d'une spirale logarythmique fai-
sant en tout son point l'angle T avec son rayon-vecteur.
L'image du point z =¢, par cette représentation, est le
point O, La relation (60) équivaut A&

Be(e),8(E(2)) = T & (20,

d'ou il résulte que, quelle que soit la fonction 1 ¢ S, verifiant
(60), elle doit 8tre de la forme

-1 1
22) = £y, (b Ec(2)

et par conséquent Tt =260.

Théoreéeme 10. Soit (x.)> une suite arbitraire
n’4 oo

de nombres complexes telle que l'on ait z:: %lxn,2<ag
n=1
pour toute fonction fe Sq, la série

ifi (xmAn(z;f) + eigimBm(Z;f»

m=1

est convergeante presque uniformément dans U; en outre, pour
tout couple de neturels p,q,p < q, et pour tout 2€U, on a
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a .
(61) |5 gy (zst) + 5B F00) | <
m=p
1 1/2
2\1/2 1
< <Z %l"ml> / <1°8 1—_|—z|2>
m=p

Démonstration. Suivant (6), (7), l'inéga-
1ité de Schwarz et celle (14), ol l'on a posé x, = 0, pour
m<p ou m>gq on aura

q X
’Z (xmAm(z;f) + eleic"mBm(Z;f))' =
m=p
q .
= l: n(E (xga , + et imﬁmn))zn,<
n= m=p

1 % lzlzn>1/2<

n=1 n

(5 ,‘z e+ )2

q 1/2
(St o )

m=p

ce qui achéve la démonstration.

Théoréme 11, Soit XqyeeesXy un systeme arbi-
traire dges nombres complexes et soit 0<ouv <1, 068 <2
11 existe uars la classe 51(0) une Ionction T telle que les
suites (A_\z3T/), (B (Z;1)) formees pour 1, satisrassent pour

tout ze U & la relation

N N
Z (xmAm(z;f) + ele)'ﬁan(Z;f)) = e]‘8 Z :—)— )'c'nzn.

m=1 n=1
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Tour cette fonction la fonctionnelle

¢(£) = 2:::: (amn b xm n’

m,n="1

atteint sa valeur la plus grande dans la classe Sq(b).
L'énoncé du théoréme résulte immédiatement du théoréme 1
de [4] et des relations (12), (13).
Théoréme 12. Soit (x ) une suite de nombres
complexes, telle que l'on ait

(= =]

*2 S il < oo

n=1

pour tout be]0,1[, 8 e [0,2n[ i1 existe aans la classe 5,(0)
une fonction f telle que les suites (Amkz;f)), (B, (z;T)) sa-
tisfassent, pour tout zeU, & la relation

(e3) Sfi (xmAm(z;f) + elgihB (z3£)) = i8 Sf; %—inzn.
n=

m="1

Four cette fonction la fonctionnelle

¢(f) = [ E (amnxmx + bmnxmxn)}

m,n="1

atteint sa valeur la plus grande dans la classe Sq(b).
Démonstration., Observons que la suite.
(xn):° est non-nulle, sinon toute fonction de la classe Sq(b)

vérifierait 1'égalité (63). Soit N un nombre assez grand
pour que la suite (xn)§ soit non-nulle, et soit fN(z)e Sq(b)
une fonction satisfaisant & la relation

m_\

N N
o T ity + ST < 0
m="

n="1
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l'existence d'une telle fonction résulte du théoréme 11,
D'autre part on sait que la fonctionnelle

N
¢N(f) = re E (amnxmxn + elgbmnxmin)

m,n="1

atteint pour cette fonction sa valeur la plus grande dans la
classe S,(b). Observons ensuite que la série au second mem-;
bre de (63) est convergeante presque uniformément dans le
disque U., En effet, suivant 1'inégalité de Schwarz, on a

1T 152 < 5 Yn 2 dim®,
n="1 n="1 n="1

Soit

(85) ¢(z) = o1t ﬁ % % 2°

n=1

et soient ¢ un nombre positif arbitraire, N = N(¢) assez
grand pour que l'on ait

oo
(66) L gl P < e
P

l'existence d'un tel N résulte de (62). Fixons ze Ue et

évaluons le reste de la série au second membre de (63). Sui-
vant (66), pour n > N, on aura

e [ et | di <o fios S
k=n k=n k=n

Or, suivant le théoréme 1l la série au premier membre de
le formule (63) est convergeante presque uniformément dans IT
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Observons queg pour n > X et pour toute fonction f¢€ Sq(b),
son n-iéme reste s'estime d'une fajon analogue jue dans (67).
Autrement dit, on a

£ \/105‘ ;:;Z—IE ’

Posant X4 # C, par chansement de N en 1 dans (64),

(68 |Y  oa(zit) + e 3 (757
k=n

or construlra une suite de fonctions (fl):: € Sq(b), tel-
. oo - o

les gue les suites <An(2;fl))n=1’ (on(z;ll)):zq, satisfas-

sent aux relations

1
(69) Z (XA (23E7) + et kBk(z Il)) = elg ; ;{ l{z

quelgue soit zeU et pour 1 = 1,2,..,

Si 1>N et zeU, de (65), (69), (67), 168) il résulte
l'inégalité

——
(70) lcp(z) - : (xh (25£)) + e29%, B (Z; fl))l < 2£Vlog - le

Comme f;e S,(b), 1la sulte (fl):° est compacte et par
conséquent elle contient une sous-suite (flo)°° convergean-
=1

te presque uniformément dans U vers une fonction fe Sq(hT.
Il en résulte, suivant (12), (13) et (%) que, pour tout n
fixé, on ait

7n %(z§fl° q—.ooA (z3F),
(72) Bn(‘z';flo) s=& B (Z51).

presque uniformément dans U,
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Evaluons ensuite la différence

(73) ) (qeay(zif) + oix

k=1

By (Z3 B (Z;f)) -
8. ————
- ;:1 (xkAk(Z;fl,) + ot kak(Z;fle)) =

N
=<Z (x, Ay (238) + oifx Bk(l £)) -
k=1

N

Z (xkA,k(z;fl )+ ot Bk(z, ) +

k=1

...(E (x4, (232) + eieszk(Z;f)) -

k=N+1
i, ————
- E (xkAk(z;flo) + e ikBk(z’flg))> = I,‘ + IZ'
k=N+1

I1 en résulte de (68) que

(74) || < lg‘ﬁ?

Z

D'autre part, si € > 0, arbitraire,et 2z eU, arbitraire,
fixé, les formules (71), (72) entrainent l'existence d'un
N, = §,(z,¢), tel que pour V>N, on ait

(75) |I1|<5\/105 1—11'-2 .
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31 v > Ny, suivant (?73), (74), (75), on obtient

(76) ’E:: (xk k(z £) + el 9 B.(z £)) -

O T
- ( if B (Z;f; ))| < 3¢)/log - .
?{; Xk (232 ) + e "5, By 1,0)] Vi 1,

Soit N, assez grand pour que v> N, entrafne 1, N.
Dans ce cas, suivant (70), (76), on obtient l'estimation

iq(z) - z:: (x, A, (23E) + et

vérifiée, z étant arbitraire dans U. Ainsi on voit gue la
fonction f = 11m fl satisfait & la relation (63) et la

démonstration du théoréme est achevée.

Enfin, en conséquence du théoréme 12, cn obtient le sui-
vant.

Théoréme 13, Quels gue solent B¢ [O,Zr[;
te U,be] 0,1[; 1)l existe au moilns une fonction fe Sq(b)
setisfeisant au systéme infini des équations

18 61 -
Ap(L5D) + e B (Eif) = et % no= 1,2,
Démonstratilion. Fosons X, = gn, n=1,2,000
Cn a
O OO
1 2 _ 1 en _ i oo
(78) E Hlxnl = E al¢] = log ;:—]7?<: .
n=1 n=1 IC

“n vertu du théoréme 12, il existe une fonction f ¢ Sq(b),

telle jue, Lour tout ze€J, on ait
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T (Paacesn) » SR ED) o8 T Lenen

n=1 n=1

Utilisant (8), (9), ainsi que les relationms pf(z,g) =
= pety2), qf(z,z) = qp({,2), 1la formule (78) stécrira sous
la forme

o= 7 i8, 5 n 0 S 1 ¢
(79) ) (A (E31) + e B ({30)) 2% = e ) " S ETan.
n=1 n=1

Comparant les coefficients de 2z® dans (79), on obtient
les relations (?77) ce qui achéve la démonstration.

Les résultats obtenus ci-dessus seront utilisés dans la
seconde partie du travail ci-présenté. Ils y serviroal du
point de départ pour en déduire, d'une fagon entiérement élé-
mentaire et trés simple, les estimations de quelques fonction-

nelles de la famille Sq(b).
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