Ireneusz Nabiałek

BASES OF AGGREGABLE SETS

Introduction

The notions of a computable set and a computable function are introduced in [1]. The notions of an aggregable set and a basis of an aggregable set are introduced in this paper analogously to [2]. The aim of this paper is to evolve a theory of bases of aggregable sets.

1. Aggregable sets

Let $\zeta = (T, \leq, \Theta, X, Y, Z)$ be such a system which is introduced in [1]. By \mathcal{F}_{ζ} we denote the set of all computable functions $f : T \times X \xrightarrow{\cdot} Y$.

Definition 1.1. Functions $f,g \in \mathcal{F}_{\zeta}$ are said to be commonly computable (in symbols $f \sim g$) if there exists a computable set $F \subseteq \mathcal{F}_{\zeta}$ such that $f,g \in F$.

Definition 1.2. The set $F \subseteq \mathcal{F}_{\epsilon}$ is called aggregable iff the relation \sim is transitive in F and the set F is *-closed (see [1]).

Corollary 1.2. Any computable set is aggregable.

Corollary 1.3. For any aggregable set F and for any set $H \subseteq F$ the set H^* (see [1]) is aggregable.

Definition 1.2 and Corollary 1.1 imply the following corollary.

Corollary 1.4. The relation \sim is an equivalence relation in any aggregable set.

Theorem 1.1. For any aggregable set F and for any $f \in F$ the equivalence class $[f]_{\sim}$ is a computable set.

Proof. The proof is analogical to the proof of Theorem 2 in [2].

2. *-connected computable sets

Definition 2.1. For any f,g $\in \mathcal{F}_{\zeta}$ we define a relation

as follows (see [1])

(2.1)
$$(f \stackrel{*}{=} g) \Leftrightarrow \underset{a,b \in T}{\exists} (f_a = f_b).$$

Theorem 2.1. The relation $\stackrel{*}{=}$ is an equivalence relation in \mathcal{F}_{\bullet} .

<u>Proof.</u> It is evident that the relation $\stackrel{*}{=}$ is reflexive and symmetric in \mathcal{F}_{ζ} . If $f\stackrel{*}{=}g$ and $g\stackrel{*}{=}h$, then there exists $a,b,c,d\in T$ such that $f_a=g_b$ and $g_c=h_d$. Let $b\leqslant c$ and $\Theta(b)=\beta$, $\Theta(c)=\gamma$ (see [1]). Let $e=\beta^{-1}(c)$ and $\Theta(e)=\gamma$. If $f_a=g_b$, then $(f_a)_e=(g_b)_e=g\circ\tilde{\beta}\circ\tilde{\gamma}=g_c$, thus $f_a'=g_c$, where $f_a'=(f_a)_e$. So, if $g_c=h_d$, then $f_a'=h_d$, whence $f\stackrel{*}{=}h$. The relation $\stackrel{*}{=}i$ is transitive in \mathcal{F}_{ζ} . If $c\leqslant b$, then the proof is analogical.

Corollary 2.1. The relation = is an equivalence relation in any aggregable set.

Theorem 2.2. For any aggregable set f and for any $f,g \in F$, if $f \stackrel{*}{=} g$, then $f \sim g$.

<u>Proof.</u> The proof is analogical to the proof of Theorem 4 in [2].

Corollary 2.2. For any aggregable set F and for any function $f \in F$, $[f]_* \subseteq [f]_{\sim}$.

Theorem 2.3. For any aggregable set F and for any $f \in F$ the equivalence class $[f]_{\underline{*}}$ is a computable set.

Proof. The set $[f]_{\underline{\underline{*}}}$ is Z-injective, because $[f]_{\underline{\underline{*}}} \subseteq [f]_{\underline{*}}$ and $[f]_{\underline{*}}$ is Z-injective. If $g \in ([f]_{\underline{*}})^*$, then by Theorem 5.3 [1] there exists $h \in [f]_{\underline{\underline{*}}}$ such that $g \in \{h\}^*$. Hence $g \stackrel{*}{=} h \stackrel{*}{=} f$ and $g \stackrel{*}{=} f$. Since $g \in [f]_{\underline{\underline{*}}}$, we have $([f]_{\underline{\underline{*}}})^* \subseteq [f]_{\underline{\underline{*}}}$

Since $[f]_{\underline{\underline{z}}} \subseteq ([f]_{\underline{\underline{z}}})^{\underline{z}}$ (see Corollary 5.1 in [1]), we infer that $([f]_{\underline{\underline{z}}}^{\underline{z}}) = [f]_{\underline{\underline{z}}}^{\underline{z}}$, whence the set $[f]_{\underline{\underline{z}}}$ is *-closed.

Definition 2.2. A set $F \subseteq \mathcal{F}_{r}$ is called *-connected iff

(2.2)
$$\forall \text{ f,geF}$$

By Corollaries 1.2, 2.2 and Definition 2.2 it is possible to write Theorem 2.3 in the following form.

Theorem 2.4. Any aggregable set and any computable set can be represented as a sum of *-connected computable sets.

Theorem 2.5. Let F be an aggregable set, $G \subseteq F$ and $f \in G$. The set G is computable and *-connected iff $G^* = G$ and $\{f\}^* \subseteq G \subseteq [f]_*$.

<u>Proof.</u> The proof is analogical to the proof of Theorem 6 in [2].

Corollary 2.3. For any aggregable set F and for any function $f \in F$ the set $\{f\}^*$ is the minimal set, and the set $[f]_{\underline{*}}$ is the maximal set of all computable and *-connected sets F such that $F \in F$ and $F \in F$.

3. Basis of aggregable set

Definition 3.1. A set G is called a basis of an aggregable set F iff $F = \bigcup_{f \in G} [f]$ and

(3.1)
$$\forall \{ (f \neq g) \Rightarrow [\sim (f = g)] \}.$$

Corollary 3.1. If a set G is a basis of an aggregable set F, then $G \subseteq F$.

Let $F/_{\underline{*}}$ be the quotient space of the equivalence relation $\underline{*}$.

Theorem 3.1. Let F be an aggregable set and $G \subseteq F$. The set G is a basis of F iff it has exactly one element in common with every set $[f]_{\underline{*}} \in F/_{\underline{*}}$.

<u>Proof.</u> The proof is analogical to the proof of Theorem 7 in [2].

Theorem 3.2. If G is a basis of an aggregable set F, then for any set $H \subseteq G$ the set H^* is aggregable and H is a basis of H^* .

<u>Proof.</u> If $H \subseteq G$, then $H^* \subseteq G^*$ and since $G \subseteq F$ and $F^* = F$, we have $G^* \subseteq F$ and $H^* \subseteq F$. By Corollary 1.3 the set H^* is aggregable. In H the condition 3.1 is satisfied. If $g \in H^*$, then by Theorem 5.3 in [1] there exists $f \in H$ such that $g \in \{f\}^*$. If $h \in H^*$ and $h \stackrel{\#}{=} g$, then $h \in \{f\}^*$. If $h \notin \{f\}^*$, then there exists $\varphi \in H$ such that $h \in \{\varphi\}^*$ and $\varphi = f$, and by (3.1), $\sim (\varphi \stackrel{\#}{=} f)$, thus $\sim (h \stackrel{\#}{=} g)$. Thus if $[f]_{\stackrel{\#}{=}} \in H^*/_{\stackrel{\#}{=}}$, then $[f]_{\stackrel{\#}{=}} \subseteq \{f\}^*$. By Theorem 2.5 we have $\{f\}^* \subseteq [f]_{\stackrel{\#}{=}}$, thus $\{f\}^* = [f]_{\stackrel{\#}{=}}$. Hence $H^* = \bigcup_{f \in H} [f]_{\stackrel{\#}{=}}$ by Theorem 5.3 in [1].

Theorem 3.3. If G is a basis of an aggregable set F and $H_1 \subseteq H_2 \subseteq G$, then $H_1^* \subseteq H_2^*$.

<u>Proof.</u> If $H_1 \subseteq H_2$, then $H_1^* \subseteq H_2^*$, thus it is sufficient to demonstrate that if $H_1 \subseteq H_2 \subseteq G$, then $H_1^* \neq H_2^*$. Really if $H_1 \subseteq H_2$, then there exists $f \in H_2$ such that $f \notin H_1$. By (3.1) for any function $g \in H_1$, we have $\sim (f \stackrel{*}{=} g)$, thus $f \notin \{g\}^*$, whence $f \notin H_1^*$. Because $f \in H_2$ and $f \notin H_1^*$, hence $H_1^* \neq H_2^*$.

4. Free basis

Definition 4.1. Bases G_1, G_2 of an aggregable set F are called equivalent (in symbols $G_1 \approx G_2$) if $G_1^* = G_2^*$.

Corollary 4.1. Let G_F be the set of all bases of an aggregable set F. The relation \approx is an equivalence relation in G_F .

Definition 4.2. An equivalence class $[G]_{\approx} \in G_F/_{\approx}$ is called a free basis of F and it is denoted by \widehat{G} .

Definition 4.3. Let $\tilde{G}_1, \tilde{G}_2 \in G_F \sim$. We define a relation < in $G_F \sim$ as follows

$$(4.1) \qquad (\widetilde{\mathbf{G}}_{1} < \widetilde{\mathbf{G}}_{2}) \Longleftrightarrow (\widetilde{\mathbf{G}}_{1}^{*} \not\subseteq \widetilde{\mathbf{G}}_{2}^{*}).$$

Theorem 4.1. For any aggregable set F the relation < is irreflexive and transitive in $G_{\mathbb{F}}/_{\approx}$.

<u>Proof.</u> If $\widetilde{G}_1, \widetilde{G}_2 \in G_{\overline{F}} \underset{\sim}{/}$ and $\widetilde{G}_1 < \widetilde{G}_2$, then $G_1^* \not\subseteq G_2^*$ and $(G_2^* \subseteq G_1^*)$, hence $\sim (\widetilde{G}_2 < \widetilde{G}_1)$. If $\widetilde{G}_1, \widetilde{G}_2, \widetilde{G}_3 \in G_{\overline{F}} \underset{\sim}{/}$, $\widetilde{G}_1 < \widetilde{G}_2$ and $\widetilde{G}_2 < \widetilde{G}_3$, then $G_1^* \subseteq G_2^*$ and $G_2^* \subseteq G_3^*$, hence $G_1^* \subseteq G_3^*$. So we have $\widetilde{G}_1 < \widetilde{G}_3$.

Corollary 4.2. For any aggregable set F the relation \leq defined as follows

$$(4.2) (G_1 \leq G_2) \iff (\widetilde{G}_1 < \widetilde{G}_2) \vee (\widetilde{G}_1 = \widetilde{G}_2)$$

is a partial order relation in $G_{\mathbb{F}}/_{\approx}$.

Theorem 4.2. A free basis \widetilde{G}_{0} of F is the last element in the partially ordered set $(G_{\overline{F}}/_{\approx}, \leq)$ if and only if $G_{0}^{\star} = F$.

Proof. Let \widetilde{G}_{0} be the last element of $(G_{F}/_{\approx}, \leq)$ and $G_{0}^{*} \neq F$. Since G_{0} is a basis of F, we have $G_{0}^{*} \subseteq F$ and if $G_{0}^{*} \neq F$, then $G_{0}^{*} \subseteq F$. Hence there exists $f \in F$ such that $f \notin G_{0}^{*}$. By Definition 1.1 there exists exactly one function $\varphi \in G_{0}$ such that $\varphi \stackrel{*}{=} f$. Let H_{0} denote the set $(G_{0} - \{\varphi\}) \cup \{f\}$. H_{0} is clearly a basis of F. We have $G_{0} = H \cup \{\varphi\}$ and $H_{0} = H \cup \{f\}$, where $H = G_{0} - \{\varphi\}$. Whence $G_{0}^{*} = H^{*} \cup \{\varphi\}^{*}$ and $H_{0}^{*} = H^{*} \cup \{f\}^{*}$ (see [1]). Because for every $\widetilde{G} \in G_{F}/_{\approx}$ we have $G \subseteq G_{0}^{*}$, we infer that $H_{0}^{*} \subseteq G_{0}^{*}$, hence $\{f\}^{*} \subseteq \{\varphi\}^{*}$ and $f \in \{\varphi\}^{*}$. Since $\{\varphi\}^{*} \subseteq G_{0}^{*}$, we have $f \in G_{0}^{*}$. Hence if \widetilde{G}_{0} is the last element of $(G_{F}/_{\approx}, \leq)$, then $G_{0}^{*} = F$. If $G_{0}^{*} = F$, then for any $\widetilde{G} \in G_{F}/_{\approx}$, we have $G \subseteq G_{0}^{*}$, because $G \subseteq F$.

Corollary 4.3. A free basis \widetilde{G}_{0} is a proper basis of F iff $\overline{G}_{0}^{*}=F$.

Theorem 3.2 implies the following corollary.

Corollary 4.4. If G is a basis of F, then for any set $H \leq G$. H is a proper basis of H^* .

Corollary 4.5. Any aggregable set has at most one proper basis.

5. Free functions

By Definition 3.1 and the condition $\{f\}^* \subseteq [f]_{\underline{*}}$ we have the following corollary.

Corollary 5.1. For any function $g \in \{f\}^*$ the set $\{g\}$ is a basis of $\{f\}^*$.

<u>Definition 5.1</u>. Any free basis $\{\tilde{g}\}$ of $\{f\}^*$ is called a free function of $\{f\}^*$.

We denote by \tilde{g} the free function $\{\tilde{g}\}$ of $\{f\}^*$ and by $f/_{\sim}$ we denote the set of all free functions of $\{f\}^*$.

Theorem 5.1. If a function $f \in \mathcal{F}_{\zeta}$ is Z-injective then any free function $\tilde{g} \in F/_{\approx}$ has exactly one representation g.

Proof. If $\tilde{g} \in f_{\approx}'$, then $g \in \{f\}^*$ and $\{g\}^* \subseteq \{f\}^*$. If $h \in \tilde{g}$, then $\{h\}^* = \{g\}^*$ (see Definitions 5.1 and 4.2). If $\{h\}^* = \{g\}^* \subseteq \{f\}^*$, then $g,h \in \{f\}^*$ and if the function f is Z-injective, then the functions g,h are Z-injective, too (see [1]). If $\{h\}^* = \{g\}^*$, then $h \in \{g\}^*$ and $g \in \{h\}^*$. If $h \in \{g\}^*$, then there exists $a \in T$ such that $h = g_a$, and if $g \in \{h\}^*$, then there exists $b \in T$ such that $g = h_b$. Hence $h = (h_b)_a$. Since the function $h = g_a$ is Z-injective, we obtain a = b = 0 and h = g.

Theorem 5.2. If a free function $\tilde{g} \in f/_{\approx}$ has more than one representation, then the computable function f is Z-periodic (see [1]).

<u>Proof.</u> By Theorem 5.1 if there exists a free function $\tilde{g} \in f/_{\approx}$ such that \tilde{g} has more than one representation, then

f is not Z-injective. Because f is the computable function, thus f is Z-periodic (see Theorem 6.2 in [1]).

Corollary 5.2. If a free function \tilde{g} has more than one representation, then g is Z-periodic.

Theorem 5.3. For any function $f \in \mathcal{F}_{\zeta}$ the relation $\leq de$ -fined by (4.2) is an ordering relation in $f/_{\sim}$.

<u>Proof.</u> By Corollary 4.2 the relation \leq is a partially ordering relation in $f/_{\approx}$. It is enough to prove that the relation \leq is connective in $f/_{\approx}$. If $\widetilde{g},\widetilde{h}\in f/_{\approx}$ then by Definition 5.1 we have $g,h\in \{f\}^*$ and by Theorem 6.4 from [1], $g\in \{h\}^*$ or $h\in \{g\}^*$. If $g\in \{h\}^*$, then $\{g\}^*\subseteq \{h\}^*$, thus $\widetilde{g}\leq \widetilde{h}$. Analogously, if $h\in \{g\}^*$, then $\widetilde{h}\leq \widetilde{g}$.

Theorem 5.4. For any $f \in \mathcal{F}_{\zeta}$ the free function \tilde{f} is the last element in $(f/_{\approx}, \leq)$.

 \underline{P} roof. It is enough to demonstrate that for any $\tilde{g} \in f/_{\approx}$, $\tilde{g} \leq \tilde{f}$. Because $\tilde{g} \in f/_{\approx}$, thus $g \in \{f\}^*$, hence $\{g\}^* \subseteq \{f\}^*$ and $\tilde{g} \leq \tilde{f}$.

Theorem 5.5. Let F be an aggregable set and $f \in F$. If the set $[f]_{\underline{*}} \in F/_{\underline{*}}$ has a proper basis \widetilde{G} , then \widetilde{G} is a free function.

<u>Proof.</u> Any basis of $[f]_{\underline{\underline{*}}}$ is a one-element set $\{g\}$. If the set $[f]_{\underline{\underline{*}}}$ has a proper basis, then there exists $g \in [f]_{\underline{\underline{*}}}$ such that $\{g\}^* = [f]_{\underline{\underline{*}}}$ and the free function \widetilde{g} is a proper basis of $[f]_{\underline{*}}$.

Theorem 5.6. An aggregable set F has a proper basis \tilde{G} iff for every $f \in F$, the set $[f]_*$ has a proper basis \tilde{g} .

<u>Proof.</u> If \widetilde{G} is a proper basis of F, then for every $f \in F$ there exists exactly one function $g \in G$ such that $g \in [f]_{\underline{*}}$. Let $G_1 = G - \{g\}$, thus $G = G_1 \cup \{g\}$ and because \widetilde{G} is a proper basis of F, then $G_1^* \cup \{g\}^* = F$. Because $F = \bigcup_{h \in G_1} [h]_{\underline{*}} \cup [g]_{\underline{*}}$, hence

(5.1)
$$G_1^* \cup \{g\}^* = \bigcup_{\mathbf{h} \in G_1} [\mathbf{h}]_{\underline{\psi}} [g]_{\underline{\underline{\psi}}}.$$

Because the set $[g]_{\stackrel{*}{\underline{}}}$ is separate in G_1^* and $\bigcup_{h \in G_1} [h]_{\stackrel{*}{\underline{}}}$, we have

$$\left\{g\right\}^{*} \cap \left[g\right]_{\underline{*}} = \left[g\right]_{\underline{*}}.$$

By (5.2) we have $[g]_{\underline{*}} \subseteq \{g\}$, and because $\{g\}^* \subseteq [g]_{\underline{*}}$ (see Theorem 2.5) we obtain $\{g\}^* = [g]_{\underline{*}}$. Hence the free function \widetilde{g} is a proper basis of $[g]_{\underline{*}}$. Since $g \in [f]_{\underline{*}}$, we have $[g]_{\underline{*}} = [f]_{\underline{*}}$, and \widetilde{g} is a proper basis of $[f]_{\underline{*}}$. Corollary 5.3. Let F be an aggregable set and G be a basis of F. The set G is a representation of a proper basis \widetilde{G} of F if and only if $F = \bigcup_{f \in G} \{f\}^*$ and if any only if $\widetilde{G} = \bigcup_{f \in G} \widetilde{f}$.

BIBLIOGRAPHY

- [1] I. N a b i a l e k: Deterministic computability, Demonstratio Math. 9 (1976) 681-689.
- [2] I. N a b i a l e k: Z-aggregable sets of functions, Demonstratio Math. 8 (1975) 491-495.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW Received February 14, 1976.