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BASES OF AGGREGABLE SETS 

I n t r o d u c t i o n 
The n o t i o n s of a computable s e t and a computable f u n c t i o n 

a r e i n t r o d u c e d i n [ l ] . The n o t i o n s of an aggregab le s e t and 
a b a s i s of an agg regab le s e t a r e i n t r o d u c e d i n t h i s pape r 
ana logous ly t o [ 2 j . The aim of t h i s paper i s t o evolve a 
t h e o r y of ba se s of aggregab le s e t s . 

1 . Aggregable s e t s 
Let £ = ( T , é , 6 , X, Y, Z) be such a system which i s 

i n t r o d u c e d i n [1] . By we denote t h e s e t of a l l computable 
f u n c t i o n s f : T * X Y. 

D e f i n i t i o n 1 . 1 . Func t ions f ,g e. a r e s a i d t o be com-
monly computable ( i n symbols f ~ g ) i f t h e r e e x i s t s a compu-
t a b l e s e t F c such t h a t f , g e . F . 

C o r o l l a r y 1 . 1 . The r e l a t i o n ~ i s r e f l e x i v e and symmetric 
i n ^ . 

D e f i n i t i o n 1 . 2 . The s e t F £ S^ i s c a l l e d aggregab le i f f 
t h e r e l a t i o n ~ i s t r a n s i t i v e i n P and t h e s e t F i s 
» - c l o s e d (see [1] ). 

C o r o l l a r y 1 . 2 . Any computable s e t i s agg regab l e . 
C o r o l l a r y 1 . 3 . For any aggregab le s e t P and f o r any s e t 

H s F t h e s e t H* (see [1] ) i s a g g r e g a b l e . 
D e f i n i t i o n 1 . 2 and C o r o l l a r y 1 .1 imply t h e f o l l o w i n g 

c o r o l l a r y . 
C o r o l l a r y 1 . 4 . The r e l a t i o n ~ i s an equ iva l ence r e l a t i o n 

i n any aggregab le s e t . 
Theorem 1 . 1 . For any aggregab le s e t F and f o r any f & F 

t h e equ iva l ence c l a s s [ f ] ^ i s a computable s e t . 
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2 I. Nabiaïek 

Proof. The proof is analogical to the proof of Theorem 2 
in [2]. 

2. « -connected computable sets 
Definition 2.1. For any ffg e we define a relation 

= as follows (see [1] ) 

(2.1) (t = e) <=> 3 (f = f b) . a,btT a D 

Theorem 2.1. The relation = is an equivalence relation 
in . 

Proof. It is evident that the relation = is reflexive 
and symmetric in ^ . If f = g ana g = h, then there 
exists a,b,c,deT such that f & = g^ and gfi = h^. Let 
bée and 6(b) = /3, 6(c) (see [1] ). Let e = /3 (c) 
and 6(e) =7. If f = gb, then (fa)e = (g^)g = g » /3 « q = 
= g 0 f = gc> thus fa- = gc, where f^ = (fa)e- So, if 
gc = h^, then fa- = h^, whence f ? h. The relation = 
is transitive in If cib, then the proof is analogi-
cal. 

Corollary 2.1. The relation = is an equivalence relation 
in any aggregable set. 

Theorem 2.2. FOr any aggregable set F anu for any 
f ,g e F, if f = g, then f~g. 

Proof. The proof is analogical to the proof of Theorem 4 
in [2]. 

Corollary 2.2. For any aggregable set F ana for arty 
function f e F, [fĴ S. 

Theorem 2.3. For any aggregable set F and for any 
feF the equivalence class [f]̂  is a computable set. 

Proof. The set [f]^ is Z-injective, because M 
— £ — 

and [f]^ is Z-injective. If ge ([f] ) , then by Theorem 
5.3 [1] there exists h ¿[fj^ such that ge{ h }*. Hence 
g = h = f and g = f. bince g^f],, we have ( [f ] # )*ç [f 
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Bases of aggregatile se t s 3 

Since [ f j £ ( M , ) * (see Corollary 5.1 in CHI ) , we infer 

that ( [ f ] * ) = [ f ] . , whence the set [ f ] i s * -c losed . 

Definition 2.2. A set F c j ^ i s called »-connected i f f 

(2.2) V ( f i g ) . 
f,gel-

By Corollaries 1 .2 , 2.2 and Definition 2.2 i t i s 
possible to write Theorem 2.3 in the following form. 

Theorem 2.4. Any aggregable set and any computable set 
can be represented as a sum of *-connected computable s e t s . 

Theorem 2.5. Let F be an aggregable s e t , G£F and 
f e G. The set G i s computable ¡and * -connected i f f G* = G 
and { f }*£ G £ [f] 

Proof. The proof i s analogical to the proof of Theorem 6 
in [2] . 

Corollary 2.3. For any aggregable set F and for any 
function f e F the set { f } * i s the minimal se t , and the set 
[ f ] i s the maximal set of a l l computable and »-connected 

se t s G such that G Q F and f e. G. 

3« Basis of aggregable set 
Deffinition 3«1» A set G i s called a bas i s of an aggre-

gable set F i f f F = U [ f ] and f e G = 

(3.1) V {'(f * g) => [~( f = g ) ] } . 
f . g e G 

Corollary 3.1. If a set G i s a bas i s of an aggregable 
set. Ft then GsF . 

Let F/# be the quotient space of the equivalence re la-
tion = . 

Theorem 3.1. Let F be an aggregable set and GSF. The 
set G i s a bas i s of F i f f i t has exactly one element in 
common with every set [ f] e F'/' . 
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4 I . Nabialek 

Proof. The proof i s analogical to the proof of Theorem 7 
in [2] . 

Theorem 3 .2 . I f G i s a b a s i s of an aggregatile set F, 
then for any set H i G the set H* i s aggregable and H i s 
a b a s i s of H . 

Proof. I f HCG, then H*£ G* and since GSF and 
F* = F, we have G* e F and H * s F. By Corollary 1.3 the 
set H* i s aggregable. In H the condition 3.1 i s s a t i s f i e d . 
I f g e H * , then by Theorem 5»3 in [ l ] there e x i s t s f eH 
such that g e { f } \ I f h e H * and h * g , then h e { f } * . 
I f h ¿ { f } , then there e x i s t s p e H such that he {?>} and 
f = f , and by (3 .1 ) , ~ (<p= f ) , thus ~(h = g ) . Thus i f 
[ f j ^ e H*/^ , then [ f J ^ S { f } * . By Theorem 2 .5 me have 

{ f f ^ M , . thus { f } * = [ f ] ^ . Hence H* = U [ f ] # by 
= — f t H = 

Theorem 5.3 in [1]. 
Theorem 3«3. I f G i s a b a s i s of an aggregable set F 

and H| i Hg £ G, then Ĥ j £ H^. 

Proof. I f Ĥ  £ Hg, then c thus i t i s s u f f i c i e n t 

to demonstrate that i f Ĥ  $ Hg £ G, then Ĥ  jt Hg. Really 
i f ILj ^ Hg, then there e x i s t s f e H2 such that f é Ĥ  . 
By (3.1) f o r any function g e H^, we have ~ ( f = g ) , thus * * # 
f Ì { 6 } » whence f t H^. Because f £ H2 and f £ H/|, hence 

Ĥ  4- Hg • 

Free b a s i s 
Definit ion 4 .1 . Bases of an aggregable set F 

are cal led equivalent (in symbols G ^ G g ) i f Ĝ  = Gg . 
Corollary 4 .1 . Let G-p be the se t of a l l bases of an 

aggregable set F. The re la t ion =» i s an equivalence re la t ion 
in G r 

Definit ion 4."2. An equivalence c l a s s e. G ^ i s 

ca l led a f r ee b a s i s of F and i t i s denoted by G. 
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B a s e s of aggrega t i l e s e t s 5 

D e f i n i t i o n . 4 . 3 . L e t G^ ,G 2 e. G ^ . We d e f i n e a r e l a t i o n < 
i n G-p/., a s f o l l o w s 

( 4 . 1 ) (G1 < G 2 ) (G* £ G * ) . 

Theorem 4 . 1 . For any a g g r e g a b l e s e t F the r e l a t i o n < 
i s i r r e f l e x i v e and t r a n s i t i v e i n Gj,/^. 

P r o o f . I f G1 ,G 2 £ Gj,/^ and G^ < G 2 , then G* £ G2 and 

(G* £ G * ) , hence ~ ( G 2 < G 1 ) . I f (L, , G 2 , Gj e G p 4 , G^ < &2 

and G 2 < G J , then g!J £ G2 and £ G^, hence G^ s G*. 

So we have G,j < G y 
C o r o l l a r y 4 . 2 . For any ' a g g r e g a b l e s e t F the r e l a t i o n 

d e f i n e d a s f o l l o w s 

( 4 . 2 ) (G1 < G 2 ) ( ^ < G 2 ) v (G^ = G 2 ) 

i s a p a r t i a l o r d e r r e l a t i o n i n 

Theorem 4 . 2 . A f r e e b a s i s GQ o f F i s the l a s t element 
i n the p a r t i a l l y o r d e r e d s e t (G- /̂C , —) i f and only i f 
G o = F ' 

P r o o f . Le t GQ be the l a s t element of , < ) and 

G* ^ F . S i n c e GQ i s a b a s i s o f F , we have G* £ F and 

i f G* ^ F , then G* £ F . Hence t h e r e e x i s t s f e. F such 
t h a t f i G* . By D e f i n i t i o n 1 . 1 t h e r e e x i s t s e x a c t l y one 
f u n c t i o n <p e GQ such t h a t f = f . Le t HQ denote the s e t 
(G0 - { y } )u{f}. Hq i s c l e a r l y a b a s i s o f F . We have 
GQ = H u j i p ] and HQ = H u { f } , where H = GQ - [ f ] . Whence 
GQ = H* u {f}* and H* = H*u { f }* ( s e e [ l ] ) . Because f o r 

every G e G^A we have G*£ G* , we i n f e r t h a t H* £ G* f 

hence { f }* £ { p } * and f e {<pj*. S i n c e { ? } * £ G* , we have 
f e G * . Hence i f . GQ i s t h e l a s t element of ( G j / . , ^ ) , then 

G* = F . I f G* = F , then f o r any G e G , we have G*s G* , 

b e c a u s e G* £ F. 
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6 I. Nabialek 

Definition The last element GQ in (Gp4 t < ) is 
called a proper basis of P. 

Corollary 4.5. A free basis GQ is a proper basis of F 
iff G* = P. G 

Theorem 3.2 implies the following corollary. 
Corollary 4.4. If G is a basis of P, then for any set 

H é G , H is a proper basis of H*. 
Corollary 4.$. Any aggregable set has at most one proper 

basis. 

5. Pree functions 
By Definition 3.1 and the condition {f [f] we have 

the following corollary. 
Corollary $.1. Por any function ge(f }' the set {g} is 

a basis of j f }*. 
Definition 5.1. Any free basis {g} of {f} is called 

a free function of { f 
We denote by g the free function {g} of {f and by 

f/w we denote the set of all free functions of {f}*. 
T h e o r e m 5.1. If a function f e. is Z-injective 

then any free function g e P/̂ . has exactly one representa-
tion g. 

Proof. If g e f 4 , then g e {f }* and {g}*c{ff. If 
h £ g, then { h}* = {g}* (see Definitions 5.1 and 4.2). If 
{h}* = { g } * £ { f r , then g,he{f}* and if the function f 
is Z-injective, then the functions g,h are Z-injective, 
too (see [1]). If {h}* = {g}*» "then hi{g}* and ge.{hf. 
If he.{g}*, then there exists ae.T such that h = g&, and 
if ge{h}*, then there exists b e. T such that g = h^. 
Hence h = (b^)^ Since the function h = g & is Z-injectlw, 
we obtain a = b = 0 and h = g. 

Theorem 5«2. If a free function g e f4- bas more than 
one representation, then the computable function f is 
Z-periodic (see [l]). 

Proof. By Theorem.5.1 if there exists a free function 
g e f 4 such that g has more than one representation, then 
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Bases of aggregatile sets 7 

f is not Z-injective. Because f is the computable function, 
thus f is Z-periodic (see Theorem 6.2 in [l]). 

Corollary 5.2. If a free function g has more than one 
representation, then g is.Z-periodic. 

Theorem 5.3. For any function f e the relation ^ de-
fined by (4.2) is an ordering relation in f . 

Proof. By Corollary 4.2 the relation 4 is a partially 
ordering relation in f/x . It is enough to prove that the 
relation 6 is connective in f . If g,hti/„ then by 
Definition 5.1 we have g,he{f}* and by Theorem 6.4 from 
[1J, S £ { h f or he{g}*. If g e { h f , then^ {g }*£ { h }* , 
thus g=6h. Analogously, if he{g}*, then h^g. 

Theorem 5.4. For any f e the free function f is the 
last element in (f/^ , ̂  ). 

P r o o f . It is enough to demonstrate that for any 
g t f/a , g<f. Because g e f , thus g e.{f } , hence 
{ g }* £. { f }* and g < f . 

Theorem 5.5. Let F be an aggregable set and f e. F. If 
the set [i]^ has a proper basis G, then G is a 
free function. 

Proof. Any basis of [f]^ is a one-element set {g}. If 
the set [f] has a proper basis, then there exists g e [f 3 

such that {g}* = [f] and the free function g is a proper 
basis of [f]# . 

Theorem 5.6. An aggregable set F has a proper basis G 
iff for every f eF, the set [f] has a proper basis g. 

Proof. If G is a proper basis of F, then for every 
2 e F there exists exactly one function geG such that 
ge[f]#. Let G1 = G - {g}, thus G = G ^ j g } and because 
G is a proper basis of F, then G^ufg}* = F. Because 
F = U [hi u [g] , hence 

heG, = i 
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(5.1) gI u i s r = u w ^ u [g]<. h 6. Ĝj = = 

Because the set [gj is separate in G,, and U [hi, 
i 1 h£G 1 = 

we have 

(5.2) {gfn [g]4 = [g]Ä . 

By (5.2) we have [g] £ {g} , and because {g}*£ [gj (see 

Theorem 2.5) we obtain {g}* = [g] • Hence the free function 
g is a proper basis of [g] . Since g e [f] , we have 

[g] = M „ , and g is a proper basis of [f]r . 
Corollary 5«3- Let F' be an aggregable set and G be a 

basis of F. The set G is a representation of a proper 
basis G of F if and only if F = U {f}* and if any 

I I ~ only if G = U f. 
f e G 
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