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SUR LES DISTANCES DES ZEROS DE CERTAINES EQUATIONS
DIFFERENTIELLES DU SECOND ORDRE

1. Introduction
Soit b:<0,d) — R (o0 d ¢ +oo) une fonction continue.
Supposons que

(1.1) b, < b(x)

pour tous les x €<0,d). S8i O¢« by, 1l est bien connu
(voir [1] ) que les solutions non banales de 1l’équation li-
néaire du second ordre

(1.2) y"-by=0

ont au plus un zéro. Il est aussi connu que si, 4 = +oo et
bix) € b, < 0, alors les solutions non banales de (1.2)
oscillent. S8i en plus b, < b(x) < b, < 0, on peut donner
des estimations inférieures et supérieures (en fonctioens des
constantes by, i=1,2) des distances zéros_consécutifs de
ces solutions non banales (voir [2] est aussi ci-dessous
1’exemple de l’équation (1.2) avec la fonction b donnée par
la formule (4.2)).

Nous allons donner une estimation inférieure des distan-
ces de deux zéros (consécutifs) des solutions non banales de
1'équation (1.2) (si ces solutions admettent au moins deux
zéros) dans le cas ol b, < 0, c’est-a-dire si

(1.3) by = k2,

(o]

oi k >0 (voir le corollaire au n° 4).
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2 K.Tatarkiewicz

Nous allons donner aussi une généralisation de ce résultat
aux équations non nécessairement linéaires, & savoir le théo-
réme suivant.

Théoréme 1. Soit £ :<0,4) * 32 —+R (ol
d € +°°) une fonction continue. Supposons que

-k2y < £(x,¥,2) y>0
(1.4) ) pour '
£(x,y,2) < =K% y<O

et pour tous les x ¢ <{0,d), z€R. Supposons aussi que les
solutions saturées de l'équation du second ordre

(1.5) ¥" = £(3,y,5")
1)

sont déterminées univoquement par leur valeurs initiales ’.

Si une solution non identiquement nulle ¥y = y(x) de
l?équation (1.5) admet au moins deux zéros x, < x5 (crest-
-a-dire que y(xi) = 0), alors

At -
La démonstration ae ce théoréme sera donnée aux n°® 2
et 3.

La fonction f étant continue, vu (1.4), on a f£(x,0,0)=0
pour x €<0,d). Donc 1’équation (1.5) admet la solution
banale y,(x) =0 pour x ¢ <0,4). Les autres solutions
n’ont que des zéros isolés.

Une autre généralisation du corollaire 1 (du no 5) aux
dquations linéaires

(1.7) y”-2a,]y' - by =0,

ol a, est une constante, sera considérée au o° 5.

1) ol j désigne la fonction - identité, c’est-a-dire une

fonction telle que j(x) = x pour tous les x € R.
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Sur les distances des zéros 3

2. Un lemme

Nous allons commencer la démonstration du théoréme 1 par
la démonstration d’un lemme. Admettons provisoirement une
supposition plus forte que la supposition (1.4), & savoir
admettons gque

(2.1) K%y < £(x,5,2)

(od Xk > 0O) pour tous les y >0, x¢€<0,d) et 'z € R.
Désignons par D’y le domaine d’existence de la solution
saturée y de 1l'équation (1.5). Evidemment D'y est un en-
semble connexe tel que <0,d).
Soit x, € {0,d) et soit y = y(x) 1la solution saturée
de 1'équation (1.5) déterminée (univoquement) par les valeurs
y(x) =3,> 0, et y'(x) =v,> 0. Posons '

v/ (xq) .
(2.2)  ulx,xq): = y(x1)cos k(x—x1) +-—— sin k(x—x1).

Jn a u(xq,xq) > 0., Soit X = h(xq) ‘le plus petit
nombre supérieur a x, et tel que u(i,xq) =0 (donc
u(x,x1) > 0 pour J<€<x1,f) ~ voir aussi les formules (2.12)
et (2.13)).

Toutes ces hypothéses étant vérifiées on a le lemme sui-
vant,

Lemme 1, Si x e(xq,i)-D’y, alors

(2.3) y(x) > ulxyx,).

Démonstration du lemme. Nous avons supposé
que y(x1) > 0. Posons s: = Sup D'y, Si y(x) > O pour
XE€E <x1,s), posons Xz = s et s'il existe un X5 > Xq tel
que y(xz) = 0, soit x; le plus petit supérieur a X, z2éro
de la founction y (c’est-a—-dire Xy < %5€ D'y, y(x5) = 0,
y(x) > O pour xe(xq,xz)).
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Pour x € <x1,x3), vu (2.1), nous aurons

ey 1! ny - ' 2
(2.4) H’_(%L] _3(x)y E;zx)]gy (x)12 _

=7y £ (), (x)) - [4}2%2]2 > -k - [%(%1;2]2

Pour les memes X € <x1,x3) posons

(2.5) z(x) s =%;(,?({-’§-2 .

Vu (2.4) nous aurons

(2.6) z’(x) > X2 - [z(x)]2

pour x € (x,],x3).
Considérons la solution saturée w = w(x) de l’équation
différentielle du prémier ordre

(2.7) W/ = -k° - 5o

qui vérifie la condition initiale

,(2.8) W(x1) = Z<x1) ’
ol

v’ (x,)
(2-9) Z(xq) Zm;-)— > 0.

Vu (2.6), nous aurons alors

(2.10) z(x) > w(x)

pour X €(Xq,%z).
Notre solution w = w(x) de 1l?équation (2.7) s'exprime
par des fonctions élémentaires. En effet, on a

(2.11) wix) = k tg k(xo - x),
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A

ol
wix,)
(2.12) x, t= X, +% arc tg-—kj—-

Vu (2.8) et (2.9), on a

k3
xq <X, <Xy 4 5%”

Posons

5 - . - g(
(2013) X = h(le)‘ = xo +‘2‘Eo
On a

T = w
x1+ﬁ<x <x1+i

et on vecit facilement que, si x; < X, alors Xz = 8 =
= Sup D'y. Vu (2.5), (2.10) et (2.11), on a

[ln y(x)]’ > k tg k(xo - x)

pour Xxe€ (x,] sX)e (x,] ,x3)
1lité., En posant X - X

n

{x, yX)+D'y., Intégrons cette inéga-
(xo- xq) + (x,I -x) on obtient
l’estimation cherchée (2.3) pour xe€(x,,%):D’y. Un caleul
facile montre que u(i,x,l) = 0 et que u(x,x1)> 0 pour

Xe< x, yX) - ce qui achéve la démonstration du lemme 1,

3, La démonstration du théoréme 1

Soit maintenant y(x,) = 0 (od x, €<0,d)) et y’(x,)> 0.
Alors il existe un x, > x, tel que y{x) >0 et y/(x)>0
pour X € (x,',xq_). Considérons une suite de nombres
% e (x,1 vX,) telle que

(3.1) xr—»x1

pour r—>+oe. Donc y(xT)-—eO, y’(xr)—>y’(x,]) et

w(xf)—t+ 00 DOUr T —b+o0o.
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fvidemment 11 est u(x®,x*) > 0. Posons X = h(x)
(pour la défini_tion de la fonction h - voir le n° 2), c’est-
-3-dire soit X' 1le plus petit nombre supérieur & x° et tel
que

u(:_cr,xr) = 0.

Vu (3.1), (2.12) et (2.13) on aura
: r
(3.2) x° = h(xF) =Xy +-2"E+%arc tg!—(i—l—Dx,] +-1-£

pour r-—e+oo.

Admettons (2.1). Du lemme 1 il s’ensuit que y(x) >u(x,xT)
pour x e (x¥,x°). D'y.

En passant 4 la limite avec r —»+oo, vu la définition
(2.2) et les formules (3.1), (3.2), on obtient

¥/ (x,)
¥ (x) }.——ki sin k(x - x,)

pour X € (x,] »Xq + /k > . D'y. Mais il est facile a voir que
pour les mémes X on a méme

v/ (xq)
(3.3) y(x) > —— sin k(x - x,).

Revenons a la supposition (1.4). Nous aurons alors
—%— kay <f(X,.Y,Z)
pour y >0, x¢€(0,d) et zeR. De (3.3) 11 s’ensuit que

v/ (x,)
y(x))—all—q—sinvk + 2 (x - x,

tn
pour

X 0Xq + - D'y

El

et pour tout n = 1,2,...
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En passant encore une fois & la limite avec n-e+o°, on
obtient
NAREPD
(3.4) vy(x) 2 ——3;1—-sin k(x - xq)

pour Xx (;‘(:;:,l,x,l + &/k> Dy,

Nous avons suppqsé que y'(x1) > 0 et nous avons admis
que k > 0 - il s’ensuit que sin k(x - xq) > 0 pour
X € (x49%, +7/K).

Donc s?il existe un autre zéro X5 > Xy de la solution
considérée y (c’est-a-dire si y(xz) = 0), alors

U
X225 "%’

d’ol l’estimation (1.6). Si y(xq) =0 et y’(x1) <0, on
obtient la méme estimation. Si ¥(x,) =0 et y' (x) =0,

la solution y = y(x)} sera - comme nous l'avons déjd remar-
qué - identiquement nulle, c’est-a-dire elle est exclue par

les hypothéses du théoréme 1. Cette remarque achéve la dé-

monstration du théoréme 1.

4, Un corollaire

Posons f(x,y,z) := b(x)y, od b : {0,d) >R (et
d{ +oo) est une fonction continue. Alors 1l’équation (1.5)
se réduit a l?équation linéaire (1.2) dont les solutions sont
déterminées univoquement par leur valeurs initiales.

Si la condition

(4.1) -x% £ b(x),

oi k >0 (c'est-d-dire si la condition (1.1) avec (1.3) est
vérifiée pour tous les x € <0,d), alors (1.4) l’est aussi
et du théoréme 1 on obtient immédiatement le corollaire sui-
vant.

Corollaire 1. Supposons gque la fonction-
b : {0,d)—>R (ol d ( +o°) est continue et que la condi-
tion (4.1) est vérifiée. Si une solution non banale y = y(x)
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de l?équation (1.2) admet au moins deux zéros x, < x,
(c’est-i-dire si y(x) #0, y(x) =0, 1=1,2), alorson a
1'estimation (1.6). '

Les coaditions du corollaire 41 (donc aussi - & plus forte
raison - du théoréme 1) sont les meilleures possibles. En
effet, l’estimation (1.6) est la meilleure possible, comme
le démontre l'exemple de l’équation linéaire & coefficients
constants

"+ k2y =0

(o k > 0) qui vérifie les hypothéses du corollaire 1 (et
du théoréme 1) et pour laguelle - si x4 < x, sont n’importe
quels deux zéros consécutifs de n’importe gquelle solution non
banale - on a X, - X = T/k.

De méme, on ne peut pas omettre la supposition (4.1) du
corollaire 1 (ou bien la supposition (1.4) du théoréme 1).
‘L'exemple de l?équation (1.2) avec

_3-16(x+ 1)
(4.2) b(x) T

pour x >0 (od b(x)—+-oo0 pour x—+oo) le démontre.
En effet, cette équation admet comme une de ses solutions la
fonction

1
VX + 1
pour laquelle la borne inférieure des distances des zéros

consécutifs est égale a zéro.
Le lecteur voudra bien trouver lui-méme une équation

y(x) = sin(x + 1)2

(1.5) (et méme une équation linéaire (1.2) avec d = +oo),
vérifiant les hypothése du théoréme 1 (ou bien du corol-
laire 1) et telle, que si une de ses solutions admet au moins
deux zéros, alors la distance de deux zéros consécutifs peut
étre plus grande que n'importe quel nombre (et le nombre des
zéros d’une solution — méme si d= +o - peut etre égal a n’im-
porte gquel nombre naturel choisi d'avance); le nombre des zé-
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ros d'une solution peut étre infini et alors la borne supé-
rieure des distances de ces zéros consécutifs peut etre -
elle aussi ~ infinie.

5. Un autre résultat
Soit &, une constante et soit b : {0,d) —R (ot
d £ +o0) une fonction continue. Supposons que la condition

-af - K°¢ b(x)

(ot k > 0) soit vérifiée pour x€<0,d).

Considérons 1l*équation (1.7) et sa solution non banale
¥y =y(x) qui admet au moins un zéro X, (¢c’est-8-dire que
y(x) #0, y(x;) =0). si y(x,) =0, ¥ (xq) >0 on ob-
tient (de la méme maniére qu'au n°® 2 et 3) l’estimation

aq(x-x1)

v(x) 2 %'y'(x1)e sin k(x - x,)
pour x€<x;,X, + /k>. Pour a; = O elle contient comme
cas particulier l'estimation (3.4).

Il s'ensuit gque, s'il existe un autre zéro X, > X, Qe
la méme solution non banale y = y(x), alors om a aussi
1l'estimation (1.6).

Enfin supposons que a,b :<0,d)—R (od d +oo) sont
deux fonctions continues et considérons 1?équation linéaire

(5.1) y" - 2ay' - by = O.

Soit un point A = (E,-Ez) du plan des (&a,b) et soit
N 1la normale & la parabole b = -52 au point A. Soient
deux différentes droites L1 et L2 passant par le point A
et telles que N soit Lleur bissectrice.

Soit Z 1l'ensemble des points du plan des (a,b) tels que
1° %> 32 - ¥® (od k >0 est une constante), 2° (&,b)
appartient a L, ou bien a& L, ou bien - enfin - est con~
tenu 3 1l'intérieur de ces deux parties du plan (qu’on obtient
en le divisant par les droites L1 et La) qui contiennent
la droite N,
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Fig.

Supposons que la courbe du pvlan des (&,b) dcnnée para-
métriquement par les équations

(5.2) a=a(x), b =blx)

pour~ x € {0,d) est contenue dans Z. Alors on peut poser
le probléme sulvant: si une solution de l'équation (5.1)
admet au moins deux zéros différents x, et x,, vérifient-
~11ls la condition (1.6)7

Vu certains résultats connus (voir [3]), si les courbes
(5.2) ne sont pas contenues dans aucun ensemble Z 1l est
difficile d'espérer une estimation semblable pour des égua~-
tions (5.1) correspondantes.

Si a€ 01, 1’équation (5.1) se raméne par la substitu-
tion bien connue y(x) = v(x) expj'a(t)dt & une équation

0

linéaire bindme (du type (1.2)). En appliquant & cette équa~
tion le corollaire 1 et en revenant & l'équation (5.1) on
obtient le résultat suivant:

Supposons que a € C1, bec® et

2

(5.3) x°% < bx) + a®(x) - a’ (x)
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pour x € {0,d)., Si la solution non banale y = y(x) de
1'équation (5.1) admet au moins deux zéros x, < X5, alors
on a l’estimation (1.6).

Mais ce résultat (outre qu’il suppose a € 01) est d'un
autre type que le corollaire 1: le second membre de l?inéga-~
1ité (5.3) contient non seulement les fonctions-coefficlents
a et b, mals aussi la dérivée a’'.
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