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SUR LES DISTANCES DES ZÉROS DE CERTAINES ÉQUATIONS 
DIFFÉRENTIELLES DU SECOND ORDRE 

1. Introduction 
Soi t b : < 0 , d ) —* R (où d ^ +©«) une fonct ion continue. 

Supposons que 

( 1 . 1 ) < b (x ) 

pour tous l e s x e < 0 , d ) . Si 0 C i l es t "bien connu 
(voir [ ï ] ) que l es solut ions non banales de l ' équat ion l i -
néaire du second ordre 

ont au plus un zéro. I l e s t aussi connu que s i , d = +oo et 
b (x) < < a l o r s l e s solutions non banales de ( 1 . 2 ) 
o s c i l l e n t . Si en plus b^ < b(x) < bg < 0 , on peut donner 
des estimations i n f é r i e u r e s et supérieures (en fonct ions des 
constantes b^, i = 1 , 2 ) des distances zéros consécuti fs de 
ces solutions non banales (voir [2] es t aussi ci-dessous 
l'exemple de l ' équat ion ( 1 . 2 ) avec la fonct ion b donnée par 
l a formule ( 4 . 2 ) ) . 

Nous a l lons donner une estimation infér ieure des d is tan-
ces de deux zéros (consécut i f s ) des solutions non banales de 
l ' équat ion ( 1 . 2 ) ( s i ces solutions admettent au moins deux 
zéros) dans le cas où b^ < 0 , c ' e s t - à - d i r e s i 

( 1 . 2 ) y" - b y = 0 

( 1 . 3 ) 

où k > 0 (voir le c o r o l l a i r e au n° 4 ) . 
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2 K.Tatarkiewicz 

Nous allons donner aussi une généralisation de ce résultat 
aux équations non nécessairement linéaires, à savoir le théo-
rème suivant. 

T h é o r è m e 1. Soit f s <0.d) x B^ —<> R (où 
d < +<>°) une fonction continue. Supposons que 

(1.4) 
-k2y < f(x,y,z) y > 0 

ppur 
f(x,y,z) « -k2y y < 0 

et pour tous les x e <^0,d), z e E. Supposons aussi que les 
solutions saturées de l'équation du second ordre 

(1.5) y" = f(3,y,y') 
1 ) 

sont déterminées univoquement par leur valeurs initiales '. 
Si une solution non identiquement nulle y = y(x) de 

l'équation (1.5) admet au moins deux zéros x^ < (c'est-
-à-dire que y(x^) =0), alors 

(1.6) x2 - . 

La démonstration ae ce théorème sera donnée aux n o s 2 
et 3. 

La fonction f étant continue, vu (1.4-), on a f(x,0,0)=0 
pour x e <^0,d). Donc l'équation (1.5) admet la solution 
banale yQ(x) = 0 pour x £<0,d). Les autres solutions 
n'ont que des zéros isolés. 

Une autre généralisation du corollaire 1 (du n° 5) aux 
équations linéaires 

(1.7) y" - 2a^y1 - by = 0 , 

où a^ est une constante, sera considérée au n° 5-

où j désigne la fonction - identité, c'est-à-dire une 
fonction telle que j(x) = x pour tous les x 6 R. 
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Sur les distances des zéros 3 

2. Un lemme 
Nous allons commencer l a démonstration du théorème 1 par 

la démonstration d'un lemme. Admettons provisoirement une 
supposition plus f o r t e que l a supposition ( 1 . 4 ) , à savoir 
admettons que 

(2 .1 ) -k 2 y < f ( x , y , z ) 

(où k > 0) pour tous l es y > 0 , x e < 0 , d ) et z e R. 
Désignons par D'y l e domaine d'existence de l a solution 

saturée y de l 'équation (1.5)« Evidemment D'y est un en-
semble connexe t e l que < 0 , d ) . 

Soit x^ € ( 0 , d ) et so i t y = y(x) la solution saturée 
de l 'équation (1 .5 ) déterminée (univoquement) par l es valeurs 
y ( x 1 ) = yQ > 0 , et y ' ( x 1 ) = vQ > 0. Posons 

y ' ( x 1 ) 
( 2 .2 ) u ( x , x 1 ) : = y t x ^ c o s kix-x,,) + g — sin k i x - x ^ ) . 

Un a uix^jx^) > 0. Soit x = h(x^) - le plus pet i t 
nombre supérieur à x^ et t e l que u(x,x,j) = 0 (donc 
u(x,x^) > 0 pour x € < x ^ , x ) - voir aussi l e s formules (2 .12) 
et ( 2 . 1 3 ) ) . 

Toutes ces hypothèses étant v é r i f i é e s on a le lemme sui -
vant. 

L e m m e 1. Si x e (x^ ,x)«D'y, a lors 

(2 .3 ) y(x) > u ( x , x 1 ) . 

D é m o n s t r a t i o n du lemme. Nous avons supposé 
que y(x^) > 0. Posons s : = Sup D'y. Si y(x) > 0 pour 
x 6 < x ^ , s ) , posons Xj = s et s ' i l existe un x 2 > x^, t e l 
que y ( x 2 ) = 0 , so i t x^ le plus pe t i t supérieur à x^ zéro 
de la fonction y ( c ' e s t - à - d i r e x^ < x ^ e D ' y , y(x^) = 0 , 
y(x) > 0 pour x e < x 1 t x , ) ) . 
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(2 .4) 

Pour x e vu ( 2 . 1 ) , nous aurons 

' = y(x)y" (x) - [ y ' (x)] 2 _ y ' ( x ) 
y W 

y ' (x) 
y l x ) > - k 2 - yTx) 

, K X J 1 y u ; 

= y f ^ y f (x ,y (x ) ,y ' (x) ) -

Pour l e s mêmes x £ <x^ ,Xj ) posons 

(2 .5 ) 

Vu (2 .4 ) nous aurons 

(2 .6 ) z ' ( x ) > - k 2 - [ z ( x ) ] 2 

pour x e <x^ , X j ) . 
Considérons l a s o l u t i o n sa tu rée w = w(x) de l ' é q u a t i o n 

d i f f é r e n t i e l l e du prémier ordre 

(2 .7 ) w ' = - k 2 - w2 

qui v é r i f i e l a cond i t ion i n i t i a l e 

(2.8) w(x1) = z(x^) 

ou 

(2 .9 ) zU«) = > o. 1 ' ~ yTï^J 

Vu ( 2 . 6 ) , nous aurons a l o r s 

(2 .10) z(x) > w(x) 

pour x e (x |̂ , X j ) . 
Notre s o l u t i o n w = w(x) de l ' é q u a t i o n (2 .7 ) s 'expr ime 

par des f o n c t i o n s é l émen ta i r e s . En e f f e t , on a 

(2.11 ) w(x) = k t g k(x - x ) , 
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où 

A -w(x 1 ) 
(2.12) xQ t= x 1 + Y arc tg — • 

Vu (2.8) et (2 .9 ) , on a 

X1 < xo < X1 + 2E* 

Posons 

(2.13) x = : = x 0 + - J^ . 

On a 

X1 + ¿HE < x < X 1 + 

et on voit facilement que, s i x^ < x , a lors x^ = s = 
= Sup D'y. Vu (2 .5 ) , (2.10) et (2 .11) , on a 

[ln y ( x ) ] ' > k tg k(x0 - x) 

pour x e (x̂ j ,x ) . (x^ ) = Cx^,x)-D'y. Intégrons cette inéga-
l i t é . En posant x Q - x = ( x 0 ~ x i ) +' ~ x ) o n obtient 
l ' e s t imat ion cherchée (2.3) pour x e (x^ ,x)*D'y. Un calcul 
f a c i l e montre que u(x,x,|) = 0 et que u ( x , x / j ) > 0 pour 
x e < x ^ , x ) - ce qui achève la démonstration du lemme 1. 

3. La démonstration du théorème 1 
Soit maintenant y(x^) = 0 (où x^ £ < 0 , d ) ) et y / ( x / | ) > 0 . 

Alors i l ex i s te un x^ > x^ t e l que y(x) > 0 et y ' ( x ) > 0 
pour x e (x/j Considérons une sui te de nombres 
x r e ( x 1 , x ^ ) t e l l e que 

(3.1) x r — o X l 

pour r-t>+oo. Donc y ( x r ) —>0, y ' ( x r ) — > y ' ( x ^ ) et 

w ( x r ) — > + o o pour r — > + o o . 
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Évidemment il est u(xr,xr) > 0. Posons xr = h(xr) 
(pour la définition de la fonction h - voir le n° 2), c'est-
-à-dire soit xr le plus petit nombre supérieur à xr et tel 
que 

u(xr,xr) = 0. 
Vu (3.1), (2.12) et (2.13) on aura 

(3.2) x r = h(xr) = X 1 + ¿ + 4 arc 

pour r—o+oo. 
Admettons (2.1). Du lemme 1 il s'ensuit que y(x)>u(x,xr) 

pour x e(xr,xr). D'y. 
En passant à la limite avec r —»+oo f vu la définition 

(2.2) et les formules (3.1), (3.2), on obtient 

y'U.) 
y(x)> — g — 1 — sin k(x - x 1) 

pour x € (x̂  ,x/| + ir/k > • D'y. Mais il est facile à voir que 
pour les mêmes x on a même 

y '(x ) 
(3.3) y(x) > k

 1 sin k(x - x,, ) . 

Revenons à la supposition (1.4). Nous aurons alors 

- k2y < f (x,y,z) 

pour y > 0, x e(0,d) et zeR. De (3.3) il s'ensuit que 

y'tei) r?—T" 1 
y(x)> sin"l/k + -f (x - x.) V^I 

pour 
D'y 
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En passant encore une fois à la limite avec n-o + o« , on 
obtient 

y ' (x ) 
(3.4) y(x) > — s i n k(x - x 1) 

pour x e<x1,x/] + JT/k> .D'y 
Nous avons supposé que y'(x,|) > 0 et nous avons admis 

que k > 0 - il s'ensuit que sin k(x - x^) > 0 pour 
x £ (x̂  |x̂  + jr A). 

Donc s'il existe un autre zéro x 2 > x^ de là solution 
considérée y (c'est-à-dire si y(x2) = 0), alors 

x2 > X1 ~ I ' 
d'où l'estimation (1.6). Si y(x^) = 0 et y'ix^) < 0, on 
obtient la meme estimation. Si y(x1). = 0 et y' (x̂  ) = 0, 
la solution y = y(x) sera - comme nous l'avons déjà remar-
qué - identiquement nulle, c'est-à-dire elle est exclue par 
les hypothèses du théorème 1. Cette remarque achève la dé-
monstration du théorème 1. 

4. Un corollaire 
Posons f(x,y,z) î= b(x)y, où b : <0,d) — > R (et 

d ^ + oo ) est une fonction continue. Alors l'équation (1.5) 
se réduit à l'équation linéaire (1.2) dont les solutions sont 
déterminées univoquement par leur valeurs initiales. 

Si la condition 

(4.1) -k 2< b (x ) f 
où k > 0 (c'est-à-dire si la condition (1.1) avec (1.3) est 
vérifiée pour tous les x £ <0,d), alors (1.4) l'est aussi 
et du théorème 1 on obtient immédiatement le corollaire sui-
vant. 

C o r o l l a i r e 1. Supposons que la fonction 
b s <0,d)—>R (où d +o°) est continue et que la condi-
tion (4.1) est vérifiée. Si une solution non banale y = y(x) 
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de l'équation (1.2) admet au moins deux zéros x^ < Xg 
(c'est-à-dire si y(x) & 0, y(x^) = 0, 1=1,2), alors on a 
l'estimation (1.6). 

Les conditions du corollaire 1 (donc aussi - à plus forte 
raison - du théorème 1) sont les meilleures possibles. En 
effet, l'estimation (1.6) est la meilleure possible, comme 
le démontre l'exemple de l'équation linéaire à coefficients 
constants 

y" + k2y = 0 
(où k > 0) qui vérifie les hypothè'ses du corollaire 1 (et 
du théorème 1) et pour laquelle - si x^ < Xg sont n'importe 
quels deux zéros consécutifs de n'importe quelle solution non 
banale - on a Xg - x^ = JT/k. 

De meme, on ne peut pas omettre la supposition (4.1) du 
corollaire 1 (ou bien la supposition (1.4) du théorème 1). 
L'exemple de l'équation (1.2) avec 

(4.2) b(x) = 5 ~ 1 6 (* V ) 4 

4(x + 1 r 
pour x > 0 (où b(x)->-oo pour x-o + oo) le démontre. 
En effet, cette équation admet comme une de ses solutions la 
fonction 

y(x) = 1 , sin(x + 1)2 

Vx + 1 
pour laquelle la borne inférieure de£ distances des zéros 
consécutifs est égale à zéro. 

Le lecteur voudra bien trouver lui-même une équation 
(1.5) (et même une équation linéaire (1.2) avec d = +<x>), 
vérifiant les hypothèse du théorème 1 (ou bien du corol-
laire 1) et telle, que si une de ses solutions admet au moins 
deux zéros, alors la distance de deux zéros consécutifs peut 
être plus grande que n'importe quel nombre (et le nombre des 
zéros d'une solution - meme si d = +<=>*> - peut être égala n'im-
porte quel nombre naturel choisi d'avance); le nombre des zé-
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ro s d 'une s o l u t i o n peut ê t r e i n f i n i e t a l o r s l a borne supé-
r i e u r e des d i s t a n c e s de ces zéros c o n s é c u t i f s peut ê t r e -
e l l e a u s s i - i n f i n i e . 

5. Un a u t r e r é s u l t a t 
S o i t une cons tan te e t s o i t b : < 0 , d ) —>R (où 

d < +00) une f o n c t i o n con t inue . Supposons que l a cond i t ion 

- a ^ - k 2 < b ( x ) 

(où k > 0) s o i t v é r i f i é e pour x e < 0 , d ) . 
Considérons l ' é q u a t i o n (1 .7) e t sa s o l u t i o n non banale 

y = y ( x ) qui admet au moins un zéro ( c ' e s t - à - d i r e que 
y ( x ) * 0 , y ( X l ) = 0 ) . Si y ( x ^ ) = 0 , y ' ( X l ) > 0 on ob-
t i e n t (de l a même manière qu 'au nOB 2 e t 3) l ' e s t i m a t i o n 

A a . ( x - x s ) 
y(x ) > ^ y ' ( x 1 ) e s i n k(x - x^) 

pour xe<x / j , x^ + or/k> . Pour a^ = 0 e l l e c o n t i e n t comme 
cas p a r t i c u l i e r l ' e s t i m a t i o n ( 3 . 4 ) . 

I l s ' e n s u i t que, s ' i l e x i s t e un a u t r e zéro Xg > x^ de 
l a même s o l u t i o n non banale y = y ( x ) , a l o r s on a a u s s i 
l ' e s t i m a t i o n ( 1 . 6 ) . 

En f in supposons que a ,b : <(0,d)—>R (où d < +00) sont 
deux f o n c t i o n s con t inues e t considérons l ' é q u a t i o n l i n é a i r e 

(5 .1 ) y" - 2ay' - by = 0. 
— —2 _ So i t un po in t A = ( S , - 5 e ) du p lan des (a,B) e t s o i t 

» ~ —2 K l a normale à l a parabole b = - a au poin t A. Soient 
deux d i f f é r e n t e s d r o i t e s L^ e t Lg passan t par l e po in t A 
e t t e l l e s que N s o i t l eur b i s s e c t r i c e . 

So i t Z l ' ensemble des p o i n t s du p lan des ( à ,5 ) t e l s que 
1° b > - à 2 - k 2 (où k > 0 e s t une c o n s t a n t e ) , 2° ( à , b ) 
a p p a r t i e n t à L^ ou b ien à ou b ien - e n f i n - e s t con-
tenu à l ' i n t é r i e u r de ces deux p a r t i e s du p lan (qu 'on o b t i e n t 
en l e d i v i s a n t par l e s d r o i t e s L^ e t Lg) qui cont iennent 
l a d r o i t e N. 
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L b 

a 

Fig . 

Supposons que l a courbe du plan des (a /5) donnée pa ra -
métriquement par l e s équations 

pour x e <0,d) e s t contenue dans Z. Alors on peut poser 
l e problème suivant : s i une so lu t ion de l ' é q u a t i o n (5.1) 
admet au moins deux zéros d i f f é r e n t s x^ e t x^, v é r i f i e n t -
- i l s l a condi t ion (1.6)? 

Vu c e r t a i n s r é s u l t a t s connus (voir [ 3 ] ) , s i l e s courbes 
(5 .2) ne sont pas contenues dans aucun ensemble Z i l es t 
d i f f i c i l e d ' e spé re r une es t imat ion semblable pour des équa-
t i o n s (5.1) correspondantes. 

Si a £ C , l ' é q u a t i o n (5.1) se ramène par l a s u b s t i t u -

t i o n bien connue y(x) = v(x) e x p y a ( t ) d t à une équation 

l i n é a i r e binôme (du type (1 .2 ) ) . En appliquant a ce t t e équa-
t i o n le c o r o l l a i r e 1 et en revenant à l ' é q u a t i o n (5.1) on 
obt ien t le r é s u l t a t su ivant : 

(5 .2) a = a (x) f b = b(x) 

x 

0 

Supposons que a e C1, b £ c' ,o e t 

(5.3) - k 2 < b(x) + a 2 ( x ) - a' (x) 
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pour x e < 0 , d ) . Si l a so lu t ion non. banale y = y('x) de 
l ' é q u a t i o n (5»1) admet au moins deux zéros x^ < n^y a lo r s 
on a l ' e s t i m a t i o n (1 .6) . 

SI 

Mais ce r é s u l t a t (outre q u ' i l suppose a e C ) es t d 'un 
autre type que le c o r o l l a i r e 1: le second membre de l ' i n é g a -
l i t é (5.3) cont ient non seulement l e s f o n c t i o n s - c o e f f i c i e n t s 
a e t b , mais auss i l a dérivée a ' . 
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