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Piotr Krzystek

A NUMERICAL SOLUTION OF THE BOUNDARY-VALUE PROBLEM
FOR A SYSTEM OF TWO NON-LINEAR SECOND ORDER
ORDINARY DIFFERENTIAL EQUATIONS

In the present paper we give a method of numerical solving
of the boundary-value problem for two non-linear second order
ordinary differential equations, based on an idea suggested by
I.S. Berezin and N,P, Zidkow [1] for one second order non-
~linear ordinary differential equation. Namely, we approximate
differential equations by suitable difference equations and
solve the latter system by the method -of simple iteratives
leading to an open iteration scheme. We prove the existence
and uniqueness of the solution of the posed problem, and we
show the convergence of the method and estimate the error of
the numerical solution.

W. Niklivborc [4#] considered the following problemq)

x" = F(t,x,7,x7,3), ¥ = g(t,x,y,x/,5),
- 2 2
x(0) = y(0) = O, [x’(O)] + [y'(O)] = v2, x(v) = a, y(*) =1,
where a,b,v,T are constants, and he showed that under some
additional assumption the problem can be solved by the method
of succesive approximations.
The problem of the form

yII; = fp(xqu 9y29y:, 1yé) (P=192)
(a) _ (b) _
Ip " =hpy Vp T = By

1) See E. Kamke [3], p. 288.
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2 P.Krzystek

has been dealt with by G. Scorza-Dragoni [5] who showed that
this problem has a solution under the assumption that for
X € (a,b> the functions fp| are continuous and bounded.

Now we state the basic problem of *his paper. We are given
the system

(1) x” = f(t,x,y,x’,y')
v = g(t,x,y,x",3’)
for 0 t<1, with the boundary conditions

aox(O) + a1y(0) = a

box’(O) +10,5/(0) =D
(2)

cox(’l) - c,]y('l) =c

dox'(1) - d1y<(1) = d.

We represent the problem (”), (2) in the following form
(1) z” = H(t,z,2")
A z2(00)+Cz(1) =2

(2) 1
Bz/(0) +Dz/(1) =25,

L ol L )
e e )

We assume that
{(a) a44b5404,4d4, (i=0,1), are positive constants
(b) the vector function H is continuous in some convex do-
main GCR with respect to 2z and z’, and has derivatives

where

p

(3)
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A numerical solution 3

with respect to t up to the second order continuous and
bounded in this domain.

We divide the interval <0,1> into n equal parts with
points O = t°<t1< e..{t, =1, denoting ti—ti-’l =g =h

Next we approximate the differential problem (1’), (27)
by the corresponding difference problem

» Z, -2
(4) Ty T % * Ty q = haﬂ(tk’zk"—31%5—§:1>(k=1’2’""n-1)

(5) A z, + c z, = 24

B(-3z,+424~25) + D(3z 4z, _4+z,_5) = 2hd,
which represents a system of n+1 non-linear algebraic equa-
tions with respect'to n+1 unknown vector functions Zy.
Moreover, the difference problem (4), (5) approximates (1'),
(2') up to h°.

We shall give an iterative method for solving the system

(4), (5). We perform iterations according to the following
schema

r r
T+ r+1 r+1 _ 2 r Zk+1"%k-1 2.1
(6)  zyq - 2% + 1z 4 =h H<tk’zk’ ’_Eh_>= B7Hy
(k:’l,...,n-’l),

r+1 r+1 _
Azy' +C oz -?11

(7)

r+1 _r+1 r+1 r+1.  _r+1
1 =23 )+ D(3z " -4z T 4z 75) = 2hA,.

B(—Bzg+1+4z
The upper indices in (6), (7) denote the number of the
consecutive approximation of the problem (1), (2). For a fixed
h and the zero approximation ‘{zﬁ}'the system (6), (7), is
a systen of linear equations. We assume that for fixed r and
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h +this system possesses a unique solution which we represent
in the form

1 1
Yk Vi

(8) Zy = Uy + Vy, Where u, = 5| Vy = o |
U Vk

The vector function vy, Solves the’ problem
Vi 1~2VictVeq = (0],
(9) Avy +Cvy =2,

B(=3v +4v,=v5) + D(3v ~4v, ,+v,_») = 2hd,,

and the function oy solves the problem

2
uk+1-2uk+uk-1 = h Hk’

(10) Auy + Cuy = [O],
B(-3ug+4uq-uy) + D(Bug-tuy_+u; o) = [0].

Theorem 1. If v, and u, are solutions of the
problem (9) and (10) respectively, then 1z, = u, + vy, for
fixed h and r, solves the problem (6), (7). The proof of
this theorem is evident.

The first equation in (9) shows that the second finite
difference of the vector function Vi is equal to O. Hence,
we have

(11) Ve = L+ Fk (L and P are column vectors)

and Vi (k=1,2404.,0-1) satisfies the first equation in (9)
for any L and P. We determine L and F from the rema-
ining two equations in (9). After some computations we obtain
(A + C)L = A4, - nCF,
2(B + D)F = 2h22.
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A numerical solution 5

By assumption there exist (A+C)—1 and (B+D)_1. Hence we obtain

F

"

n(B+D)™" 2, ,

L

(a+¢)7 ", + ba(a+e) o)A, .

This yields the following theorem.
Theorem 2. For fixed h and r +the system (9)
has a unique solution of the form

(12) vy = (A+C)_1,1,I + h[kE - n(A+C)—1C](B+D)_122,

where E - the 2x2 unit matrix.

Since (9) is a system of linear non-homogeneous equations
and has a unique solution, the matrix of this system (concid-
ing with the matrix of (10)) is non-singular. Hence we have
the following corollary.

Corocllary 1. For fixed h and r vhe system
(10), as well as (6), (7), has a unique solution.

For simplicity we write e instead of u§+1.

We seek the solution of (10) in the form

n~{
(13) u = 0% gy 0y, (k=1,2,4..,0-1),
i=1
where Byx is a matrix function which satisfies the system

[E] for i=k

rSik+1'zgik+gik-’i = [0] for izx

(14) (i=0yev.yn; k=1,0..,0=1)

Agio + Cgin = [O]

—A

| B(-3810*4€117612) + D&y, 48, 1485, o) = [O].

In order that the function (13) satisfy the system (10) it
suffices to find a function g,, satisfying (14). Let us
consider the equation
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6 P.Krzystek

(15) 81x41-281x 81k = dik y (84, 1is the Kronecker symbol)

equivalent to

The functions 1, k constitute a fundamental system of
the homogeneous equation corresponding to (16). Hence, the
general solution of this homogeneous equation has the form

(17) Bix = T+ Fk, (L and F are 2x2 matrices),

We denote the particular solution of (16) by Pixe It can be
represented in the form (see [2] p. 390)

1 gt
Pix = ZLFW'II‘ Oiypq® = Z [ie- (9#1)] 83,4 -
¢=0 |1 q+2 ¢=0
Putting
(18) 6(1,k) dgfzk*sik 6(1,k) -{O for 1%ick
we have

(19) (Pik =6(i’k)(k-1)E, (i=0,1,.-.,; k=1,2,...,ﬂ.—1).

From (18) it follows that

6(0,k) =0
(197) 6(n,k) = O (k=1,240..,0-1)
6(i,0) = 0

By (17) and (19), the general solution of (16), and hence also
(15), has the form

(20) Bix = L+ Fk +6(1,k)(k-i)E.
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A numerical solution C(7)

It is easy to verify that the function (20) is the solu-
tion of (16). We now determine 1L and F in such a way that
811k satisfy the two last equations of (14), namely

(21) AL + CT + uCF + 6(i,n)(n-1)C = [0]
T = oMF + 6(i,n)(o-1)M,

where M = -(A+C)-1c and

2BF + B[46(1,1)(1-1)-6(1,2)(2-1)]+2DF +

+ D[?G(i,n)(n—i)-46(i;n-1)(n—1-i)+ §(1,n-2)(n~2-1) | = [0].

Denoting
= 46(1i,1)(1=1)-6(1i,2)(2~1)
(22) f = 36(i,n)(n-1)-46(i,0~1)(n~1-1)+6(i,n-2)(n-2-1)
1 = 5(1,n)(n—i)
we obtain
(23) F = -3 (Wg+N£), where W = -(B+D)"'B, N = -(B+D) .

By (21) ~ (23) we then have
(24) L = 3 M(Wg + N£) + 1M.
Hence, the function 8y 1in (20) has the form

2 M(Wg+NE)+1M+ L (WgeNE£)k+6(1,k)(k-1)E 1 < K,
(25) B4k =
L M(Wg+N£) + 1M + + (WeeN£)k . i>k.

Theorem 3, For afixed h the function (13) is
a solution of system (10),
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Proof. We take

-1
2 n
Uy pq Rty g = BT D> [gik+1-2sik+gik-’l]Hi'

=1

By (25) and (16), the expression in the parantheses under the
sign of sum is equal to the unit matrix for i=k, and egual
to the matrix [0] otherwise, Hence, we have

2 2
uk+,]-2uk+uk_1 = h"EH, = h7H,

that is the first equation in (10). Further, by (13), (22)
and (25) we have

n-1

Auj + Cup = h22 {A[% M(Wg+Nf)+lM] +
i=1

+ c[% (Wg+NE J+1M+ 5 (Wg+NE) + (i,n)(n-i)E]}Hi =

n-1
= pe ' 21 {-% C(Wg+Nf)-6(1i,n) (n-i)C+-§_l C(Wg+Nf)+6(1i,n) (n-i)C}Hi=[O].
L=

Similarly, we show that the last condition (10) holds. Hence
the function (13) is a unique solution of the system (10).

Corollary 2. By Corollary 1 and Theorem 1 the
unique solution of the system (6), (7) has the form

n-1
r+1 _ -1 -1 2 r
(26) gt = (ar0) A [kBena [(B+D) " y+0 l; 8,
(k=0,1,¢..,1).
" The iteration formula (26) allows us to compute approxima-
te values of the vector functions Zy = z(tk) at any point
t, € <0,1>. For a fixed h it suffices to calculate the

functions 84k and then %o find consecutive approximations
of the solution of the system (4), (5). This solution can be
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A numerical solution 9

also ootained by solvirg the system (6), (7). The formula (26)
allows us to show the convergence of this process and to
estimate the error of the numerical solution.

To show convergence we estimate some quantities involved
in (25). By the assumptions (a) and (b), we obtaian from (25)
the followiung inequalities

n-1
|22 8 ou] < 3wl ] ¢ o] 2]
where I—| denotes a matrix worm. Since
g=-1 g=0 g=0
£=2 for (i=1,2), £=2 for 3 1 n-2, f=4 for i=n-1
l=n-1 l=n—i‘f l=n-~-1
we have
n-1 2
_Z’: gik"< L_Z1'||% M(2N-W)+ (n-1)M +3 (2N-W)k
L= -
G k(k-1)
n B . ~1
SN o))

i=3
n-1

S lewel < ] + 2]u] -

(27) N ﬂ+guE” -5,

2 O
w2 e

n-{

2 81 k+1"E1x-1 h

llh 2;"“Zﬁr"‘" Hy < 7 max
= -

n-|
Hiz

‘=

81x+1"81k-1 “ '

Biipr = 5 M(Wg+NL) + 1M + 5 1 (WgeN£) (k1 )+ 6(4, k1) (ki 1-1)E

By = —‘5— M(Wg+Nf) + 1M + - (Wg+Nf)(k-’l J+6(1,k~1)(k-1-1)E ,
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gik+']_gik—'l = Wg+NL + [6(1,k+'] ) (k+1-1)-6(1 -1 )(k—1—i) ] E,

n-{ -
(ao) | ? 2 B | e g [ + | =[] - myme [

where B, B, are constants.

Assume that the vector function H(t,z,u) satisfies the
Lipschitz condltion with respect to the variables 2z and u,

xl

Where u = [ J that is, there exist positive counstants L1
J

and L2 such that

(30) | EG,z,0) - 55,2, | € 1)) e-E] + 1,]u-a].

Let us take the set Rn+1 consisting of all sequences

{zn}t=i(zg,z1,...,zn). For all {2}, {'z'n}eRm"I we define
a metric by

2, . 1—Z A -2
(51) ez} o 2g}) = Tqmax | 27, | et - e et l.

2h I

+Lmax
27y

The set Rn+1 with the so-defined metric is a complete
vector space. In the sequel we shall consider only those
elements {z)} € B**1 for which (2,00 ) € G, where

_ Zxe17%k

Uy = >h ’ (k=14...,0-1). For every element z, € el

(k=0,14+..,0=1) the formula (26) defines a non-linear trans-
formation of the form

(32) {zf{”}:A({zi}) , where {zi}eRnH,{ziH}eRnM.
In the above A denotes the following operation

89T (4 Ag,eeah),
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n-f

2 r -1 -1
A, =8, + 1k Z Bifys S, = (A+C)™ 2, +h (pE+nM) (B+D)™" A,
&

To simplify the notation and to avoid upper indices we define

the element {Vk} as the image of the element {zk}. We
write this in the form

(33) {7} = 4({ze])»  G=0,1,...50)

Having given the elements {z,} ¢ R®*7 e obtain by (26),
(28)-(31)

n-1
(3u) i | = [6° > eq[E g0z 0my) - BC8, 7T <
=1

-1 ,
< b2 _21 [Bux | (2 mex [ | + 5 max o))<

<Bog (fxchs {2icl)-

Analogously we obtain

Piun=" Terq="
(35) ' k+gh k=1 _ k+;h k=1

< By o(fzrch of7i) -

Since Bo and B, are independent of "i" and the ine-
qualities (34) and (35) hold for %=0,1,...,n, these

inequalities hold also for the maximum with respect to k.
Multiplying them by L1 and L2, respectively, we obtain

by o [y | < T )

Pt Pt TP
2k 2h

L, mla{x l < LyBe ({zk}, {Zk})
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which implies

(36) ¢ ({mehs {Fu) < v o ({mac) o{Ec]) »

where 7§ = L1B° + L2B1 independent of h, depends only on
844D5905,d; (1=0,1). If 7 € (0,1), then the mep (32) is
contractive and the followlng theorem holds.

Theorem 5., If the zero approximation {zz} is
such that the points (tk,zg,ug) belong to G defined in
(b), the vector function H satisfies eondition (30) and A
is a contractive map, then the following inequalities hold

2 - o |< =2 (sl {22}

oy - o ﬂ< 4—1.3179({ b {25 )

Proof. These inequalities follow directly from the
properties of the map A and from (34) - (36). The set of
points (t,2,,u,) for which (37) holds is a compact set G,< G.

From the principle of contractive maps we obtain the
followlng theorem.

Theorem 6, If in the domain G +the function
H(t,z,u) 1is continuous and satisfies condition (30) and A
is a contractive map with the constant 7y € (0,1), then there
exists a unique solution of the system (4), (5) in the form

(37)

z, } = lim {z% for k=0,1,...,n.
{mc} = 1in {5

N-—eco

This solution can be obtained by the method of successive
approximation. _

Remark 1, The condition y¢€ (0,1) 1s satisfied,
when there exist constants IL,, L, € (0,1).

Finally we shall show that the solution of the difference
problem (4), (5) is convergent to the solutior ¢f the diffe~
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rential problem (1’), (2’) and we shall estimate the error
of the numerical solution. To this aim we make the following

assumptions:

A, The vector function H satisfies the condition (b) in the
domain G,

B, There exists a solution =z = z(t) of the problem (1'),
(2’) which has bounded derivatives up to the order 4.

C. The difference problem (4), (5) corresponding to the
problem (1’), (2') has a solution with values in the
domain G,

¢4 (%)

Let ¢(t) = [wq(t)} denote the sclution of the problem (1°),
2

(2') and ¢y = (p(tk), k=0,1,...,n, Besides, let

(38) H(t'(f(t), (P,(t)) = G(t) and G(tk) = Gk

(39) M, = max ]|w (3=1,2,3,4).

1€<0,0>

We introduce the column vector
€x =B — Zypo (k=0y140..,0),

where 2y denotes the approximate solution obtained by the
difference method.

Expressing the value ¢k+1’ Preq by Taylor?s formula
for the function @(t) in a neighbourhood of the point
t) € <0,1> we obtain

pe 3, 4
Pre1 =@ (5*h) = ihbl + 5 6+ + 37" + 90(4)“1:*91“1)
0<8,< 1
2 3
Proq = P (th) = @ =boy + Fr ¢ - %fﬁ";‘ + o7 cp(‘*)(t-ean)

0<62<1.
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This implies
(#1) Prpq = 2P * Ppq = h%ﬂk +o(k) = h2Gk + ¢(k),
where
2
(42) Q(k) = % [(p(4)(tk+9,‘h)+(p(4)(tk-62h)} and " Q(k)”< % M, .

In an analogous way we obtain

A‘PO + C(pn = ).1
(#1")
B(=30y+40q=05 4D (3 ~4g,_4+¢, ) = 2hA,+2h° (Be +Dg, ),
where
P 1
(427) [ea] = ool < 5% -

The vector function Zy satisfies the system (4), (5).
Hence, by substracting the equations of the system (4), (5)
from the corresponding equations of the system (41) 1 (41')
and teking into account (40) we obtain

2 4
€128y *+€q = b (G~Hy) + bo(k),
(43) < Aey + ey =0,

B(-3€,+48 =65 )+D(3€,~4,_q+E, o) = 2h° (Bp +Dg,) = 2h’s.

The left-hand sides of (41) are analogous to those of (4),(5).
By a reasonning analogous to that for the system (4), (5) we
obtain the solution

n-1 n-1
(44) €, = b5 (kBenlt) (B+D) ™ s+n” ggik(ei-ﬂi)m“ggikq(i),
&t =
(k=0,140 e yn)e
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) leal < Pl koo zgene, | -

n-1
* hag“ g1x| |6y + v* Z lewe]- [e®)]-
=

By assumption, the vector function Gi'Hi satisfies the
Lipschitz condition.  Further we have

n-1
o 2 one] Jorale
. .
<22 2 oue] [ == [ei-ss

z -2z
' i+1 “i-1
+ L,1 mz;x "goi - -—zh——.ﬂ .

Since
zi-‘l ‘P1+1 "’1-1 P U o I U e v
2h 2h =
(Pi -Q. £ -£
I I Tl O e T T | 1+1"1-1
-il e a h S|
Where
# _?_ [ ”'(52)+(Pm(2,1 ] for xi-’l <E,1 <xi, xi<£2 < 1-:,1+,l ’

and " p,]" < %— MB’ we obtain

(6) 2 2 |8

<h22";',"gik" (L max usill +L,]max n ﬁg-#
=1

B2 o
* 5 Bolqly

[ERAS

I, 3) B,g(€,0) +
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where ¢ (€,0) is the distance between the points )
€= (£g1Eqse+-1€,) and O = (0,0,...,0) of the space R

From (27) and (42) it Afollowl:-::hat
@) i S eue] Jetw)] < 4 2ok
Hence we have L
0o)  Jex] < & [meu] ooy (1slelot)uges,qte.0) +
+ %§~(2L1BOM3+B 4).

By (44) and (29) we have

) _ n-1 n-{
Eppq = 0 [(k+’] )E+nM](B+D) Tas hag 8y (GyH, )+hq'§gikq(1),
L= L=

£y =t | (1 E+nM |(B+D)™"s+n? Z 8y, (G;-H, )+h* Z; CRICOR

(49) " Eﬁ};ﬁ“ < %-z-IlEll n(B+D)'1" <HB|+||D[{> M3+B1g(é,6) *

2
h
+ 1z (2L1 B1 M3+B,] )

The inequalities (48), (49) hold for k=1,2,...,0~1
they also hold for the maximum with respect to k.
ing (48) and (49) by I, and L,
side by side we obtaln

(50) e(£,0)< <°|E+M|+L1 "Eﬂ) "(B+D)-1u (|Bﬂ ﬂD[]

+—2-~4(M +2L, M),

» hence
Multiply -
respectively, and adding
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From (50) it follows that h -~ O implies ¢(¢,0) =0, and
by (48) we ipfer that ”sk|y*-o with h—~ O as fast as

h® — 0. The same holds for "5511225:1” for k=1,2,...,0-1.
Hence we see that for every k we have ¥, —~¢, and

AT L A

=t g

Moreover, if in (48) we substitute the right-hand side of
(48) in place of g¢(e,0), we obtain an estimation for the
error of the numerical solution.

Theorem 7. If the assumptions of Theorem 5 hold
and 1f the vector function H bhas in G continuous and
bounded dervatives up to the order 2, then the error between
the numerical and exact solution of the bcundary value problem

(1), (2) tends to O as fast as B2,
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