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Introduction 
The c l a s s i c a l d e f i n i t i o n of a f f i n e symmetric space i s 

based on the notion of geodesic symmetry. 0. Loos [9] gave 
another de f in i t ion of a f f i n e symmetric space, an axiomatic 
one, by introducing the structure of d i f f e r e n t i a b l e mul t ip l i -
cation on manifolds. Modifying the axioms 0. Kowalski has 
generalized these notions to the so-ca l led tangent ia l ly 
regular s-manifolds [ 6 ] . Next in [7] he has given a new 
def in i t ion of generalized a f f ine symmetric space. 

In t h i s paper we develop some theory which i s important 
f o r c l a s s i f i c a t i o n of generalized symmetric a f f i n e space. 
Description of a method of the c l a s s i f i c a t i o n and a f u l l l i s t 
of generalized symmetric a f f i n e spaces (of dimension 
w i l l be published in [11] , [12]. 

The present paper was prepared during the author 's prac-
t i c e under Professor Oldrich Kowalski at Karol University in 
Prague in 1975« The author desires to express his gratitude 
to him f o r valuable remarks concerning the problem. 

I . Di f ferent iab le s-manifolds 
Following 0 . Loos, [ 9 ] , a symmetric space i s defined as 

a manifold M with a d i f f e r e n t i a b l e mult ipl icat ion jU : 
M x M —•M written as p ( x , y ) = x-y sa t i s fy ing the following 
proper t ies : 

1° x»x = x 
2° x . ( x - y ) = y 
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2 S.W§grzynowski 

3° x. (y«z) = (x»y)-(x-z) 
4° e^ery x has a neighbourhood U such that x-y = y 

implies y = x for all y in U. 
For each xeM the map sx : M — M given by sx(y) = 

= x-y is a diffeomorphism, and it is called the symmetry p 
around x. We have ( s

x) = identity for each x. One of 
the basic results of f9] is the following. 

T h e o r e m A. Each symmetric space (M, (sxJ) admits 
a unique linear connection V which is invariant under all 
symmetries sx. The connection V is complete and satisfies 
T = 0, \7K = 0. The affine manifold (M, V ) is then a usual 
affine (globally) symmetric space, and the symmetries sx, 
x*eM, are the usual geodesic symmetries. 

In [6] , the above theorem was generalized to more general 
objects, called tangentially regular s-manifolds. 

Following 0. Kowalski [6] we define a tangentially regular 
s-structure on a smooth manifold M as a family {sx}xe]y[ 
of diffeomorphisms satisfying the following axioms: 
(1) sx(x) = x 
(2) the tangent map (s_L_ s T (M) — T (M) has no fixed JL *Jt JL JL vectors except the null vector 
(3) s

x° s y = s z° sx* z = sx(y), 
(4) the map (x,y)—"s

x(y) i s smooth. 
The diffeomomorphisms sx, xeM, are called symmetries 

of M. The pair (M, {sx}) is called a tangentially regular 
s-manifold (or shortly, an s-manifold). 

It is easy to see that each symmetric space is a tangen-
tially regular s-manifold. (See [6] for details). 

An automorphism of (M, {sx}) onto itself is a diffe-
omorphism cf> s M — - M such that <|> ® sx = s<|)(x)0 $ f°r each 
x G M. Let us remark that all symmetries sx of M are auto-
morphisms. 

In [6] the following basic theorem was proved: 
T h e o r e m B. Let (M, fs )) be a connected s-ma-I X i 

nifold. Denote by S the tensor field of type (1.1) given by 
Sv = (s„)„„ for all x e M. Then X X nJC 
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Representat ion of symmetric spaces 3 

1) There i s a unique connection V on M (cal led the 
canonical connection) such t h a t V i s invar ian t under a l l s x 

and V S = 0. V i s complete and has p a r a l l e l curvature and 
p a r a l l e l t o r s i o n . 

2) The group Aut(M) of a l l automorphisms of (M, {sx}) 
i s a t r a n s i t i v e Lie t ransformat ion group, which i s a closed 
subgroup of the f u l l a f f i n e t ransformat ion group A(M) with 
respect to V . The automorphisms of (M, { s x j ) are exact ly 
those a f f i n e t ransformat ions which leave the tensor f i e l d S 
i nva r i an t . 

3) Let G- denote the component of unity of Aut(M), l e t 
o he a f i xed point of M, and GQ the corresponding isotropy 
subgroup. Then the homogeneous space G/GQ i s reduct ive in a 
canonical way and, under the standard i d e n t i f i c a t i o n G/GQ —M, 
the connection V coincides with the canonical connection of 
the second kind of G/GQ. 

Prom [3] , Chapter VI, Theorem 7.7 i t fo l lows tha t each 
s-manifold (M, {sx}) admits a subordinated ana ly t i c s t r u c -
ture f o r which the tensor f i e l d S and the canonical connec-

/ v 

t i o n V are a n a l y t i c . 
In the subsequent considera t ions we s h a l l fo l low, in p a r t , 

the Riemannian theory which has been developed in [5] . All 
s—manifolds in question are supposed to be ana ly t i c and 
connected. 

D e f i n i t i o n 1. Two s-manifolds (M, {s x }) , 
(M', {Syj) are ca l led isomorphic i f there i s a diffeomorphism 
<(>: M — ' (cal led isomorphism) such t h a t 4>°sx = s ^( x ) e < i ) 

f o r each x e M. They are rcalled loca l ly isomorphic i f , f o r 
every two po in t s p e M, p'e M', there i s a diffeomorphism <|> 
of a neighbourhood U of p onto a neighbourhood U' of p' 
(ca l led loca l isomorphism) with the fol lowing proper ty : For 
each x e U there i s a neighbourhood V_ ci IT H s""1 (U) such i JC 
t h a t <f> • s x = 3'(j)(x) ° <j> holds on Vx. 

L e m m a 1. Let (M, ( s x | ) be an s-manifold , and V 
i t s canonical connection. Let V be another connection 
defined on an open subset U cz m. Suppose t h a t V i s l oca l l y 
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4- S.Wçgrzynowski 

i n v a r i a n t with r e s p e c t t o j s x ] i n t he fo l lowing sense : f o r 
each x e U, 
Vx c U i s a 
(U,V ). Then 

each x e U, the r e s t r i c t i o n of s x t o a neighbourhood 
Vx c U i s a l o c a l a f f i n e t r a n s f o r m a t i o n of t he manifold 

V X I =VXY - ( V ( I _ S ) - 1 X S ) ( S - 1 Y ) 

f o r a l l vec to r f i e l d s X,Y de f ined on U, where I i s the 
Kronecker t e n s o r f i e l d . P a r t i c u l a r l y , i f V S j ^ = 0 , t hen V 
co inc ides with V on U. 

The proof of t h i s lemma i s the same as t h a t of P r o p o s i t i o n 
12, [ 6 ] . Namely, l e t E = V - V be the corresponding d i f f e -
rence t e n s o r . We wr i t e E^Y = V^Y - V X Y . Since both V and 
V a re i n v a r i a n t under s x , x e U, E i s i n v a r i a n t with 
r e s p e c t to S: S(EXY) = EgxSY. Now we check e a s i l y t h a t 

= E ( i - s r 1 x [ s ( s " l Y ^ - s ( E ( i - s r 1 x s ~ l Y ) = 

= E ( i - s r 1 x Y - E s [ ( i - s r 1 f ( s ' 1 y ) = E ( i - s ) " ' l x - s ( i - s ) - 1 x Y = E x Y -

Since V S = 0 , we ge t f i n a l l y 

EyY = (E . S)(S~1Y) = ( V * S)(S~1Y) 
A ( I -S ) 'X ( I -S ) 'x 

which was t o be proved. 
T h e o r e m 1. Let (M, { s x } ) , (M', {Sy} ) be two 

s -man i fo ld s with the canonica l connect ions V and V' r e s -
p e c t i v e l y , and l e t U c M, U'c: m' be open s e t s . Then a d i f -
feomorphism 4> : U — ^ U ' i s a l o c a l isomorphism of (M, { s x j ) 
i n to (M,' {s^}) i f and only i f $ i s a l o c a l a f f i n e map of 
(M,V) i n t o ( M V ' ) such t h a t <t> ( S ^ ) = S ^ , 1 ^ . 

P r o o f . I f <t> : U U ' i s a l o c a l isomorphism, we get 
f i r s t ^ (S j j j ) = s ' ^ / . F u r t h e r , l e t V' denote the <J>-image 

1 ) ' The image of a t e n s o r f i e l d T wi th r e s p e c t t o a d i f f e -
omorphism (J) w i l l be denoted b r i e f l y by <)>(T). 
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Representation of symmetric spaces 5 

on U' of the connection V ^ . Because V ^ is locally 
invariant with respect to |sxj then V' is locally invariant 
with respect to {sy} • Moreover, V'CS^,) = 0 "because 
VSjy = 0. According to Lemma 1, V' coincides on U' with the 
canonical connection V' , which proves the "only if" part of 
the theorem. 

Let now 4): U — b e a local affine map of (M, V ) into 
(M'f V'), and suppose ^(Sj^) = S^/. Choose x e U and 
a connected neighbourhood V x of x such that 
Then the maps <t> 0 sx, ¡^(x)0 $ restricted to V x are affine 
diffeomorphisms of V onto a connected neighbourhood 

/ 
V4>(x) U'* ^cause <1> (S i^) = S|JJ/, they have the same 
tangent map s M ^ — " M<j,(x) a t x' Consequently, (j) ° sx 
and sJj,(x)° ̂  coincide on V x, q.e.d. 

C o r o l l a r y . Two locally isomorphic simply connect-
ed s-manifolds are globally isomorphic. 

P r o o f . Consider simply connected s-manifolds 
(M, {sx}), (M'f {Sy'})« L e t b e a l o c a l isomorphism of 
U c M onto U ' c m'. Then 4>,j is a local affine map of 
(M, V ) into (M', V') which maps Sj^ onto S^'. According 
to [3, Chapter 

VI] 4>TT can be extended to a global affine map 
4> : (M, V ) ~~(M', V' ). Because S is parallel with respect 
to V and S' is parallel with respect to V' , then 
<|>(S) = S' on M. Now we can use the second part of the proof 
of Theorem 1, where we put V x = M for each x. 

T h e o r e m 2. For every s-manifold (M, {sx}) there 
is a simply connected covering s-manifold (M', {s^}) such 
that the covering map is, in a neighbourhood of each point of 
M', a local isomorphism. 

P r o o f . Denote by V the canonical connection of 
_(M, fsx}). Let (M'f V') be a simply connected covering 
manifold of the affine m^ifold (M, V), T7 : M' — M being 
the covering map. (M't V ) is complete and analytic because 
so is (M,V). The tensor fields R, 5' and also T, T' axe 
lT-related. Let S' be the lift of S with respect to TT . 
Then we get S'(B') = B', S'(T') = T', V'r' = V'T' = V'S' = 0. 
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6 S.W§grzynowski 

Hence each linear transformation S^, uei', gives rise to 
a unique affine diffeomorphism s,' such that (s' ),, = S,', U U A U U 
(see [3 j» Chapter VI). Because S' is parallel with respect 
to V ; and all s Q (u e M') are affine maps, each tensor 
field is a* 8 0 parallel. Now, because S' and 
s^iS') coincide at the point u, they must coincide every-
where. We have obtained = s ' o n f o r each 
u e M'. The last property means that the tangend maps 
( su° sv)*v a n d ^ s w ° s u ^ v w i t h w = su^ v) coincide for 
every u, veil'. Beoause the maps s^« s^ and s^ ° s^ are 
both affine diffeomorphisms of (M', 7̂'), they must coincide, 
and we get axiom (3) for the family s^. Thus (M', {s^}) 
is an s-manifold. Finally, the tangent maps aEld 

^sTT(u)° c°i,lci<ie each u e M' and hence the affine 
maps TT0s^ and sJJ(u) ° ̂  always coincide. The projection TT 
is locally a diffeomorphism and thus, in the neighbourhood of 
each point u, a local isomorphism, q.e.d. 

II. Infinitesimal s-manifolds 
Let (M, {S x}) be an s-manifold, V the canonical con-

nection and E, f the curvature tensor field and the torsion 
tensor field of V respectively. Let o be a fixed point of 
M, and denote by V = M Q the correspoinding tangent space. 
Denote by S the tensor field of type (1.1) given by 
S x = for all x e M. I is the Kronecker tensor field. 

T h e o r e m 3. The tensor fields S, E, T satisfy at 
the initial point o the following algebraic conditions; 

(i) Both S Q f IQ - S Q are non-singular linear transforma-
tions of V. 

(ii) For every X,YeV the endomorphism Rq(X,Y) acting 
are derivation on the tensor algebra £p(V) satisfies 
E0(X,Y)Sq = 0, E0(X,Y)Eq = 0, E0(X,Y)T0 = 0. 

(iii) The tensor' Rq and TQ are invariant by S Q. 
(iv) E0(X,Y) = -E0(Y,X), T0(X,Y) = -?0(Y,X). 
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Representation of symmetric spaces 7 

(v) The first Bianchi identity holds? <T[R0(X,Y)Z -
- T0(T0(X,Y),Z)] = 0. 

(vi) The second Bianchi identity holds: ff [RQ(Tq(X,Y),Z)] =0. 
P r o o f . (i) and (iv) are obvious, (ii) and (iii) 

follows from Part 1) of Theorem B. Finally, (v) and (vi) are 
the Bianchi identities for the case V R =VT = 0. 

Now we shall prove that the tensor SQ, RQ, TQ locally 
characterize the corresponding s-manifold. 

D e f i n i t i o n 2. An infinitesimal s-manifold is 
a collection ( v» s

0» E
0i T

0) where V is a real vector space 
and S0,R0,TQ are tensor of types (1,1), (1,3), (1,2) res-
pectively such that the conditions (i) - (vi) of Theorem 3 
are satisfied. 

Two infinitesimal s-manifolds (Vif Sit Rif iL), 1 = 1,2, 
will be called isomorphic if there is a linear isomorphism 

of vector spaces such that f(S1) = S2, f(R1)=R2, 
f(T1) = T2. 

Because the group Aut(M) (see Theorem B) acts transitively 
on a connected s-manifold (M, {s }) and leaves the tensor ~ ~ <• x J 
fields S, R and T invariant, we see that for every two 
points p, qe M the collection (Mp, Sp, Rp, Tp), 
^q* ®q' ^q) 3116 isomorphic infinitesimal s-manifolds. 
Therefore, we can introduce the following definition. 

D e f i n i t i o n 3. The infinitesimal type of an 
s-manifold (M, [sx|) is the isomorphism class of infinite-
simal s-manifolds (Mp, Sp, Rp, Tp), p eM. 

T h e o r e m Two s-manifolds (M, {sx}), (M'»{sy}) 
are locally isomorphic if and only if they have the same in-
finitesimal type. 

P r o o f . It follows immediately from Theorem 1 that 
locally isomorphic s-manifolds have the same inifitesimal 
type. Let now p 6M, p'e M' be two points and assume that 
there exists an isomorphis f of (Mp, S^, R , T ) onto 
(Mp'/ , Si,, Rp/ , Tp, ). The affine manifolds (M, V), 
(M' V ) have parallel curvature and parallel torsion. Accord-
ing to Theorem 7.4, Chapter VI of [3], there is a affine map 
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8 S.ffggrzynow3ki 

F of a connected neighbourhood U of p onto a neighbour-
hood U' of p' such that F(p) = p', 3" = f. Moreover, 
f(Sp) = Sp., and VS = V's' = 0. Hence ^ ( S ^ ) = sj^. 
According to Theorem 1, F is a local isomorphism, q.e.d. 

T h e o r e m 5. Each infinitesimal s-manifold 
(V, SQ, SQ> Tq) defines the infinitesimal type of a simply 
connected s-manifold (M, |sx}) which is unique up to an 
isomorphism. 

P r o o f . Let (V, SQ, RQ, TQ) be an infinitesimal 
s-manifold. Let h be the Lie algebra of all endomorphism 
A of V which, as derivations of the tensor algebra CTCV), 
satisfy A(Sq) = 0, A(Eq) = 0, A(Tq) = 0. 

Particularly, we have Rq(X,Y) € h. for every X,YeV 
(see axiom (ii)). Following a construction of K. Nomizu, [10], 
we define a Lie algebra to be the direct sum V + _h with 
the multiplication given by 

for X,YeV; A,B € h. 
One can check easily that the Jacobian identities follow from 
the conditions (v) and (vi) of Theorem 3« 

Let G be the simply connected Lie group with the Lie 
algebra g, and H be the connected Lie subgroup correspond-
ing to the Lie algebra h^g. H is a closed subgroup of G 
[10]. Because [V,h]<=V the group G acting on the factor 
set G/H by left translations is almost effective. G/H is 
a homogeneous manifold which is simply connected and reductive 
with respect to the decomposition g = V + ,h. Denote by V 
the canonical connection of the second kind of G/H. Similarly 
as in the proof of Theorem 8, [5]» we identify first j|=V+ h 
with the tangent space Gg and then V with the tangent 
space (G/H)n at the origin of G/H via the projection 
IT: G—«»G/H. Starting from S

0»R0»T
0
 w e c a n construct (in 

a uniaue way) tensor fields S,R,T on G/H which are G-in-

(5) < 
[X,Y] = (-T0(X,Y), -E0(X,Y)) 
[A,X] = AX, [X,A] = - AX 
[A,B] = AB - BA 
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Representation, of symmetric spaces 9 

variant, and also paral le l with respect to V . "hen there is 
* A / 

a family { s^ j of affine.transformations of (G/H, V ) uni-
quely determined by S. Here (G/H, { s x } ) i s an s-manifold 
for which V is the canonical connection. Also, we can show 
that R and T are the curvature tensor f i e l d and the 
torsion tensor f i e l d of V respectively. Hence we deduce that 
our s-manifold has the prescribed infinitesimal type. 
(See \_5~\ for some more deta i ls ) . The uniqueness fol lows from 
Corollary of Theorem 1. 

T h e o r e m 6. The construction described in Theorem 
5 has the same outcome ( i . e . , i t produces the same si,mply 
connected s-manifold) i f we replace the Lie algebra h_ by i t s 
subalgebra h' provided that R0(X,Y)c-h' for every X,YeV. 

P r o o f . Let M = G/H be the homogeneous space 
constructed in Theorem 5. Then G acts almost e f f ec t i ve l y on 
M by l e f t translations. Now, g ' = V + h' i s a subalgebra of 
g ; l e t G G be the corresponding connected subgroup. Then 
a standard argument shows that G' acts transit ively (and 
almost e f f e c t i v e l y ) on M. Thus the subgroup h'<= H cor-
responding to h.' i s the maximal connected subgroup of G' 
leaving the origin o f ixed. Hence H' i s closed in G'. 

Now, let G' be a simply connected Lie group with the Lie 
algebra g ' . Then we can consider G' as the universal 
covering group of G', and the connected subgroup H'c G' 
corresponding to ;h' covers H' . Hence i t fol lows that H' 
i s closed in G'. From niow on we can proceed as in the second 
part of the proof of Theorem 5. 

R e m a r k . I f we take h as in the proof of Theorem 5, 
then the group G i s local ly isomorphic to the automorphism 
group of (M, { s x j ) . 

I f we take the Lie subalgebra h. c h. generated by a l l 
curvature transformation« E (X,Y), X jYeV, then the group 
G is local ly isomorphic to the transvection group of (M, V ) 
(see the next paragraph). 
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10 S.W§grzynowski 

I I I . Generalized a f f ine symmetric.spaces 
In this paragraph, we shall present some definit ions ana 

results from \J?~\. 
Following 0. Kowalski, [ 7 ] , a connected af f ine manifold 

(M, V ) i s called a generalized af f ine symmetric space 
(shortly: g .a.s . space) i f M admits at least one tangential-
ly regular s-structure -[sx] such that V is i t s canonical 
connection. (An s-structure with this property w i l l be called 
admissible). 

/ V 

I t fol lows from Theorem B that each g.a.s. space (M, V ) 
i s a homogeneous and complete a f f ine manifold. Further, from 
Theorem A we can see that the usual a f f ine symmetric spaces 
are those g.a.s. spaces which admit a tangentially regular o 
s-structure { s x } with ( s x ) = identity. 

The group of transvections of a generalized a f f ine symme-
t r i c space (M, V ) i s the group Tr(M) of a l l a f f ine trans-

/ v 

formations q> of (M, V ) with the following property: 
For each xeM the tangent map : M ^ — M 

coincides with the paral le l transport along a broken geodesic 
from x to <p(x). 

The following theorem shows the connection between the 
transvection group Tr(M) and the admissible s-structures on 
(M, V ) . 

T h e o r e m C. The transvection group Tr(M) i s a 
connected Lie subgroup of A(M) acting transit ively on 
(M,V). For each admissible s-structure { s x } o n Mv Tr(M) 
is generated by a l l transformations of the form s ° a""1, x y 
x,y e M, and i t i s a normal subgroup of the corresponding 
automorphism group Aut(M, { s x } ) . 

Final ly, the Lie algebra t_ of Tr(M) can be obtained 
in the following way: l e t V be the tangent space at an 
arbitrary point o e M, and let h.' be the Lie subalgebra of 
gl-(V) generated by a l l curvature transformations 
X,YfeV. Then t = V + h' with the multiplication given as 
in Formula (5) . 
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Representation of symmetric spaces 11 

It is easy to see that a g.a. s. space (M,V) satisfies 
T = 0 if and only if it is locally symmetric. On the o-cher 
hand, we have the following theorem. 

T h e o r e m D. A generalized affine symmetric space 
(it,V ) satisfies B = 0 if and only if dim Tr(M) = dim M. 
Moreover, if E = 0, then the group Tr(M) is solvable. 

IV. On admissible s-structures 
M. Berger, [1] has worked out a complete list of local 

structures of all affine symmetric spaces admitting a transi-
tive semisimple. group of automorphisms. He has set aside the 
spaces of "solvable" and "mixed" type; for such spaces only 
a topological structural theorem has been proved. 

As Theorem D suggests, in the case of generalized affine 
symmetric spaces the solvable groups play even more important 
part than in the classical situation. Hence we can guess that 
the classification of local structures of g.a.s. spaces is a 
very difficult problem. In this section we shall develop some 
technical means which can help us to solve the classification 
problem for the small dimensions, at least. (The method is 
similar to that used in the classification of generalized 
symmetric Eiemannian spaces of dimension 3,4 and 5, see 
[5], [8]). 

First of all, we shall limit ourselves to the primitive 
g.a.s. spaces, i.e. those which are not products of g.a.s. 
spaces. Secondly, we can represent the local structures of 
g.a.s. spaces by the simply connected g.a.s. spaces (of Theo-
rem 2). 

Finally, for our purpose, it is inevitable to represent 
g.a.s. spaces by certain sTmanifolds first (so that we could 
use the algebraic characterization given in Theorem 5). Yet, 
it is not necessary to give a list of all s-manifolds of a 
given dimension to obtain a complete list of g.a.s. spaces of 
this dimension. Namely, we are going to show that it is quite 
sufficient to find certain "privileged" s-manifolds. 
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12 S. W^grzynowski 

D e f i n i t i o n An s-manifold (M, |s x } ) i s 
cal led the product of s-manifolds ( l^, { s ^ } ) , (Mg, [ s^] ) i f 
M = iX| * Mg, and i f for every (u,v) , (p ,q)eM we have 

S ( U t V ) ( p , q ) = ( s j ( p ) , s * ( q ) ) . 
(Mf ( s x | ) i s cal led reducible or irreducible according 

to as i t i s a product or not. 
A 

P r o p o s i t i o n 1. Let (M, { s x } ) = (Wt,, { s u } ) * 

and denote by V , V^« Vg the canonical connec-

t ions on M, IVLj, Mg, respect ively. Then (M, V) = (it , , V 1 ) * 
xCMg, V 2 ) -

P r o o f . We can show by means of Theorem B, 1 ) that 
product connection V/^Vg 011 M i s the canonical one. 

D e f i n i t i o n 5« An inf in i tes imal s-manifold 
(V, S, H, T) i s cal led the direct sum of in f in i tes imal 
s-manifolds ^ , S t f ? i ) , i = 1,2 i f V = V̂  + V2 (direct 

2 2 
sum) and S-(X) = ¿ T S j C X j ) , R(X,Y)Z = ^ ' S 1 ( X 1 , Y i ) Z 1 

T(X,Y) = (X̂  ) , where the indices denote the corres-

ponding components of a vector with respect to the decomposi-

t ion V = V̂  + v 2 . 
An inf in i tes imal s-manifold (V,S,R,T) i s cal led r e -

ducible or irreducible according to as i t i s a direct sum or 
not. 

P r o p o s i t i o n 2. A simply connected s-manifold 
(M, { s x } ) i s reducible i f and only i f i t s in f in i tes imal type 
i s reducible. 

The proof follows eas i ly from Proposition 1 and Theorem 5. 
D e f i n i t i o n 6. Let (M, ( s "I) be an s-mani-

fold and (V ,S 0 ,E 0 ,T 0 ) i t s inf in i tes imal type. The symmetries 
s x are cal led semi-simple i f SQ i s completely reducible on 
the complexification Vc of V. The eigenvalues of the 
s -s tructure { s x } a r e defined to be the eigenvalues of S 0 . 

T h e o r e m 7. Let M be a simply connected mani-
/ v / 

fo ld . Each admissible s-structure { s x } on the space (M, V ) 
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can be rep laced by an admiss ib le s - s t r u c t u r e having the 
same e igenva lues ( inc lud ing the m u l t i p l i c i t y ) and such t h a t 
the symmetries are semi-simple. 

P r o o f . Let { s x j "be an a r b i t r a r y admiss ib le s - s t r u c -

t u r e on (M,V) ; l e t (V,S0 ,RQ ,T ) be the i n f i n i t e s i m a l type 
of (M, {s x})» Consider the Lie a lgebra £ = V + h. de f ined 
by formula (5) . According to the proof of Theorem 5, the 
a f f i n e manifold (M,V) i s uniquely determined by g ,h and 
V. Let us decompose the c o m p l e x i f f i c a t i o n Vc i n to the 
e igenspaces corresponding to mutual ly d i f f e r e n t e igenva lues 

of S , say Vc (We always have « ¿ 0 , 1 ) . Thus, 

each i s the subspace of a l l Z €V such t h a t 

(SQ - <xl)kZ = 0 f o r some k. Consider the automorphism S+ 

of the Lie a lgebra de f ined by S+ = S0 + i d^ . The we can 

w r i t e , with r e spec t t o S + , j[C = J ^ V ^ + where 

V ( 1 ) = N o w» i - t i a well-known t h a t [ v ( a ) ' V( /3)]C V(«*/3) 
whenever o(. •/S i s an e igenva lues of S+> and [ V ^ , V ^ j = 0 
o therwise (Cf. [2] , p. 26) . Hence we ge t the fo l lowing 
r e l a t i o n s i 

s 

(6) 

W ) . V ( / i ) ) = 0 i f ot*j3 i z 

fO <*<«)• i f o1.1 3 e 3 

V v ( o 0 . V(/J)> = ° i f ct,ß e 3 , OL-fi i 1 

V v ( o 0 ' V ( / 3 ) ) < = h c i f <x,ß e a, ot-/3 = 1 

A(V(, * ) > C V ( o O i f A<= h c . 
V 

Lei us d e f i n e a new l i n e a r t r a n s f o r m a t i o n s'Q on Vc as 
f o l l o w s : 

SQ(Z) = <*,Z whenever Z e V ^ , oC 6 J 

Because SQ i s a r e a l t r a n s f o r m a t i o n , we have Z€V^-N f o r 
I -Z e V ^ and hence S^ i s a r e a l t r a n s f o r m a t i o n a s we l l . 
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14 S. Wegrzynowskl 

Further more, S^ is completely reducible on V° because 
all vectors of the eigenspaces V ^ , « . 6 3 a r e eigenvectors 
of SQ. NOW, from relation (6) we can see that TQ and HQ 

are invariant with respect to S^, and h h' , where h' 
is the subalgebra of all endomorphism A of V such that 
A(S^) = 0, A ( S 0 ) = 0, A(TQ) = 0. Hence (V, S'Q, TQ) 
is an infinitesimal s-manifold. 

Let (Mj be the corresponding simply connected 
s-manifold as in Theorem 5. Here for our construction we have 
used the Lie algebra _g' = V + Ji . According to Theorem 6 
(where we interchange the meaning of h and h' ) we come to 
the same s-manifold (M', ) using in our construction 
the Lie algebra _g = V + h. On the other hand, we have seen 
that the Lie algebra g = V + _h determines the affine 
manifold (M, V). Hence M\ = M, and the s-structure {s^ } 
determines the canonical connection V . This completes the 
proof. 

D e f i n i t i o n Let be the set of all 
n-tuples (6^) of complex numbers such that 

a) Oĵ  ¡i 0,1 for i = 1,... ,n 
b) there is a permutation e of the indices 1,...,n such 2 — that ^ = identity and = f o r i = 1»•••»&• 

The elements <A a will be called systems of eigenvalues. 
Let us remark that the condition b) is equivalent to the 

following: if 6 is among 81,...l6a with the multiplicity 
m, then so is 0 (the reality condition). It is obvious that 
a family of all eigenvalues of an n-dimensional s-structure 
belongs to Such a family will be called a system of 
eingenvalues of the s-structure. Thus, a system of eigenvalues 
of an s-structure is uniquely determined up to a permutation. 

D e f i n i t i o n 8. The following relations: 
e. •©. = 0 , i ¿j; e «9 = 1: 8_ = 0 O satisfied by the x j £ r s r s 
numbers 0^,...,©^, (©̂  .. ,0Q) e Jt11 are called the charac-
teristic relations. We shall denote by 2 (0^) the sat of all 
characteristic relations satisfied by an element (0.) of 
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L e m m a 2. Each r e l a t i o n of t h e form = , ± ¿ 3 , 
i s an a l g e b r a i c consequence of t he c h a r a c t e r i s t i c r e l a t i o n s 

of 2 (e^. 

P r o o f . We always have c h a r a c t e r i s t i c r e l a t i o n a of t he 
form = ©i» = where g i s a permuta t ion . 
Now, 0^ = y i e l d s the new c h a r a c t e r i s t i c r e l a t i o n s 

= = Consequently, t he e q u a l i t y 0^ = 0.. 
i s an a l g e b r a i c consequence of the c h a r a c t e r i s t i c r e l a t i o n s 
e $ ( i ) = G i» 0 s ( o ) = V e s ( i ) = V 0 < ?( j ) = e r 

D e f i n i t i o n 9. A system of e igenvalues 
i s c a l l e d r educ ib l e i f t h e r e i s an index k < n 

and a permuta t ion of 1 , . . . , n such t h a t £ ( 0 ^ , . . . , 0 ^ ) = 
= ^ e C k + D ' " - ' 0 ^ ) ) ( H e r e 

)»• • • a n d ^e6"(k+1 ) ' • " , 0er(n)^ a r e c o n s i d e l " e d a s 

elements of A and r e s p e c t i v e l y ) . 
T h e o r e m 8. I f a simply connected s -man i fo la 

(M, { s
x } ) possesses a r e d u c i b l e system of e igenvalues (0^) 

then i t i s r e d u c i b l e . 
P r o o f . We can choose our system of e igenvalues in 

such a way t h a t 

2 ' ( e 1 f . . . t e n ) = ¿ ' ( e 1 , . . . , e k ) u Z ( e ( k + 1 ) , . . . , e n ) . 

2 
Consider now a permuta t ion ^ such t h a t ^ = i d e n t i t y , and 
6 ? ( i ) = ®i f o r * = ' ' » • • • »n* Then g decomposes i n t o 
^ : { 1 , . . . { l , . . . , k } and ? 2 : { k + 1 , . . . ,n } — { k+1 n}. 

Let (V,S,R,T) be the i n f i n i t e s i m a l type of (M, {s^}) 
and l e t •( U , , , . . . ,U n} be a b a s i c of V° such t h a t , f o r each 
i = 1 , . . . , n , = the f u l l e igenspace of 0 i ) . 

Moreover, we can suppose t h a t = f o r i = 1 , . . . , n . 

Then the subspace V°C Vc genera ted by U , j , . . . , U k and the 

subspace v | genera ted by U k + 1 , . . . , U Q are complex i f i ca t ions 
of c e r t a i n subspaces V^ and V2 of V, r e s p e c t i v e l y . In 
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16 S. Wggrzynowski 

f a c t , we have (V°) = ( v | ) = v | i n V c . According to 
Lemma 2 , we can see t h a t each eigenspace VQ c. Vc i s con-

t a i n e d e i t h e r i n or in v j . Hence we get a decomposit ion 
"V^V^ + V2» where V^, V2 a re i n v a r i a n t subspaces with 
r e s p e c t to S. 

Prom Ibrmula (6) i t f o l l ows t h a t T ( V i , V i ) c : v 

H ^ . V J J V J C Vj f o r i , d = 1 , 2 j and TO^ ,V2) = 0, H(V1 ,V2) =0. 

Thus the i n f i n i t e s i m a l s -mani fo ld (V, S, R, T) i s r e d u c i b l e 
and consequent ly , the simply connected s -mani fo ld (M, 
i s a l so r e d u c i b l e . 

Now we s h a l l d e f i n e two r e l a t i o n s on J t n . 
D e f i n i t i o n 10. We wr i t e ( 6 ^ - 3 (©i) i f and 

only i f S ( e ± ) £ ¿ " ( 9 ^ ) a f t e r a p o s s i b l e re -numera t ion of 

the numbers F u r t h e r , denote (0^) ~ (6^) i f and only 
i f ( Q i ) - 3 ( 6 ^ ) and ( © j ) - } ^ ) . 

T h e o r e m 9« Let M be a simply connected n - d i -
mensional manifo ld . I f the space (M, V) admits an s - s t r u c -
t u r e { s x } wi th a system of e igenvalues (9^) , and i f 

i n J l n , t hen (M, V) admits an s - s t r u c t u r e 
{ s x } "k^e system of e igenva lues (9^) . 

P r o o f . Let (V,S,R,T) denote the i n f i n i t e s i m a l type 

of (M, | s x j ) . We can re-numerate the numbers (9^) i n such 

a way t h a t ¿ , ( 6 ^ ) c = We can a l so suppose t h a t S i s 
completely r educ ib l e (Theorem 7 ) . Let g be a permutat ion 

2 — such t h a t <3 = id and = f o r i = 1 »•••»&• Then 
Vc pos ses se s a b a s i s U , j , . . . , U of e igenvectors corresponding 
to r e s p e c t i v e l y , and such t h a t = ^j.» 
i = 1 , . . . ,n . 

Let us de f ine a t r a n s f o r m a t i o n S^ of V° by S^U^ = 
= ©l U, f o r i = 1 , . . . , n . F i r s t of a l l , the r e l a t i o n s 
®3(i) = ®i a r e c h a r a c t e r i s t i c r e l a t i o n s and hence ®<j( i ) = ®i 

f o r each i . 
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Representation of symmetric spaces 17 

T h ^ _ S o U i = S ^ ( i ) = e'<?(i)U*(i) = ^ ( i ) = G'iUi = 8i Ui = 

= S^IJ^. i.e, S^ is a real transformation. Further, let 

5 0(U l fU a) Because S q(T 0) = T q, we can have 

T ^ £ 0 only if ©^©.j = ©k. or else, only if ©¿-©j = © k 

Hence 

s;(T0(uitud)) = - Z ^ i W = 

- - Z =  e i e i ^ = 

= e'.e'.T^.u.) = ^(e'.u,, e'.u.) = ^ ( s ^ . s ^ u . ) , 

Now, let A "be an endomorphism such that A(SQ) = 0. 
Then A leaves invariant the eigenspaces of S Q corresponding 
to the mutually different eigenvalues 

among , •..»©_• 
According to Lemma 2 if has the multiplicity m, then 

has the multiplicity at least m. Hence each eigenspace 
of SQ is a direct sum of certain eigenspaces of SQ. Conse-
quently, A leaves invariant the eigenspaces of S^ and thus A(SQ) = 0. 

Particularly, R0(X,Y)S0 = 0 implies R0(X,Y)S^ = 0, The 
relations S 0 ( R 0 ) = R q and R O(X,I)S O=0 yield HQ(S0XFSQY)= 
= RQ(X,Y). Now, ^(UI.UJ) / 0 only if 6^6.. = 1, or else, 
only if e^.e'j = 1. Hence ^ ( S ^ , S ^ ) = ^ ( 6 ^ , 6 ' ^ ) = 
= e ' i - e - v v u . ) = S0(u.u.), i.e. R0(s;x, s'01) = R0(X,Y), 
and thus S^(R Q) = R q. We conclude that (V,S£,R ,T ) is an 
infinitesimal s-manifold. For the Lie algebras _h and _h' 
we obtain the inclusion Ja c h' . 

Quite similarly as in the proof of Theorem 7 we can show 
that the simply connected s-manifold ( H i ' , {sx}) coressponding 
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18 S.Wfgrzynowski 

to (V , SQ , E , T 0 ) y i e l d s the a f f i n e manifold (M,V) . Thus 
{ s x } a n O m i s s i b l e s - s t r u c t u r e on (M, V ) with the 
system of e igenvalues (0^). 

D e f i n i t i o n 11. A system of e igenvalues 
( Q ^ e i s ca l l ed maximal, i f f o r any ( 0 ^ ) e 4 n t he r e l a -
t i o n (e'i) (e±) impl ies (0̂ ) ~ ( 0 i ) . 

From Theorem 8 we o b t a i n the fo l lowing c o r o l l a r y . 
C o r o l l a r y . A simply connected genera l ized a f f i n e 

symmetric space (M, V) always admits an s - s t r u c t u r e { s
x } 

with a maximal system of e igenvalues . 
I f i s an "admiss ib le" system of e igenvalues 

f o r (M, V), then a l l system (e^evfl1 1 such t h a t ( 6 ^ ) ^ ( 0 ^ 
are admissible f o r (M, V) . 

D e f i n i t i o n 12. An s - s t r u c t u t e j s x | on M 

i s ca l l ed of order k (k > 1 being an i n t e g e r ) i f (s ) k = id 
f o r a l l x e U , and i f k i s the l e a s t i n t e g e r with t h i s 
p rope r ty . I f such an i n t e g e r k does not e x i s t , then { s

x } 
i s sa id to be of i n f i n i t e o rde r . 

Obviously, i f (8^) i s a system of e igenvalues of {sx}» 
then the r e l a t i o n = x e M , i s equiva lent to the 
r e l a t i o n ( 6 ^ = 1, i = 1 , . . . , n . 

D e f i n i t i o n 13. A genera l ized a f f i n e symmetric 
space (M, V) i s ca l l ed of order k i f i t admits an 
s - s t r u c t u r e of order k , and i t does not admit any s - s t r u e -
t u r e of order 1 < k. (M, V) i s ca l l ed of i n f i n i t e order i f 
i t admits only s - s t r u c t u r e s of i n f i n i t e o rde r . 

-—-

T h e o r e m 10. Let (M, V) be a genera l ized a f f i n e 
symmetric space which i s simply connected and of f i n i t e o rde r . 
Then (M,^) admits a s t r u c t u r e { s x j of f i n i t e order and with a 
maximal system of e igenvalues . 

To prove t h i s theorem, we s h a l l need some lemmas b o f o r e -
hand. 

L e m m a 3» Each r e l a t i o n of the form | 0 j | = 1 s a -
t i s f i e d by a system of e igenvalues i s an a l g e b r a i c 
consequence of the c h a r a c t e r i s t i c r e l a t i o n s . 
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P r o o f . Let q be a permutation of { 1 , . . . , n } auch 
tha t = ©i f ° r 1 = 1 n. Then | 6 j | = 1 implies 

= C o n v e r s e l y » ' t l l e c h a r a c t e r i s t i c r e l a t i o n s 

= 9 s ( d r e , i = 1 i m p l y | e d ' = 1 -
L e m m a Let (V, g) be a vector space with a po-

s i t i v e sca l a r product , and l e t us denote by 0((V,g) the 
group of a l l orthogonal t ransformat ions of (V,g). Ebr 
8 6 0 (7 ,6 ) , l e t C1(S) denote the l e a s t closed subgroup of 
0(V,g) generated by S. Then f o r each SeO(V,g) without 
uon-zero f i xed vector there i s a per iodic t ransformat ions 
S e C1(S) without non-zero f i xed vec to r s . 

Proof i s the same as t h a t of Lemma 3 , T5]» 
P r o o f o f T h e o r e m 10. Let { s be an 

s s * » U 
admissible s - s t r u c t u r e of f i n i t e order on (M,V ). In case 
t h a t the eigenvalues of { s z ] do not form a maximal 
system l e t us consider a maximal system of eigenvalues 
(9^) (8^). Let j s ^ be a corresponding s - s t r u c t u r e on 
(M, V ) . We can suppose that. | s £ j i s of i n f i n i t e order 
(otherwise the theorem obviously holds) . 

Since { 8
X } i s o f f i n i t e o rde r , the system (8^) i s also 

of f i n i t e order , i . e . , ( 8 ^ = 1 f o r i = 1 t . . . , n . P a r t i c u -
l a r l y , we have = 1 f o r i = 1 f . . . , n , and according to 
Lemma 3 we obta in | | = 1 f o r i = 1 , . . . , n . Let (VjS'.R,?) 
be the i n f i n i t e s i m a l type of (M, ( s ^ j ) . Then the l e a s t 
closed subgroup Cl (S ' ) of GL(V) generated by S' i s com-
pac t , and hence i t admits an Invar i an t sca la r product g. 
Obviously, C l (S ' ) c : 0(V,g). According to Lemma Cl (S ' ) 
contains a per iodic t ransformat ion S * without non-zero f ixed 
vec to r s . Thus, the corresponding system of eigenvalues (8^) 
belongs to J i u and i t i s of f i n i t e order . I t s u f f i c e s to 
prove t h a t ( e j ) ( 8 p . 

Obviously, in the na tu r a l topology of 0(V,g) , we can 

wri te S = lim (S " ) , where (n.,\ i s a subsequence of the /l-»o. I JJ 
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sequence 1,2,... Here the sequence j n., I can be selected in 
n, L 

such a way that all S d are transformations without non-,n, 
-zero fixed vectors. Consequently, for each n. 
n... It is obvious that (©[ (6^) for all n^ and 

hence (9.,*) = lim (9i This completes the proof. 
Resuming the results of Theorem 9 and 10, we obtain 
T h e o r e m 11. In each dimension n, the set itn 

possesses a finite subset £n of sn elements (sQ = the 
number of equivalence classes of maximal elements 

of eft11) with 
the following property! 

Each simply connected generalized affine symmetric space 
(M,V ) of dimension n admits an s-structure {sx} with a 
system of eigenvalues (©^ 6 fiQ. Particularly, of (M, V ) 
is of finite order, then {s^} can be chosen of finite order. 

Applying results of the present paper we shall in [il] * 
£12] the classification of generalized affine symmetric 
spaces of dimension n < There will be exactly 3 families 
of g.a.s. spaces of dimension 3 and 15 families of g.a.s. 
spaces of dimension All of them being simply connected, 
irreducible and not locally symmetric. We shall show, that 
g.a.s. spaces of dimension 2 are usual affine symmietric 
spaces. 
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