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Introduction

The classical definition of affine symmetric space is
based on the notion of geodesic symmetry. O. Loos [9] gave
another definition of affine symmetric space, an axiomatic
one, by introducing the structure of differentiable multipli-
cation on manifolds. Modifying the axioms O. Kowalski has
generalized these notions to the so~called tangentially
regular s-manifolds [6]. Next in [7] he has given a new
definition of generalized affine symmetric space.

In this paper we develop some theory which is important
for classification of generalized symmetric affine space,
Description of a method of the classification and a full list
of generalized symmetric affine spaces (of dimension n<4)
will be published in [11], [12].

The present paper was prepared during the author’s prac-
tice under Professor Qldficb Kowalski at Karol University in
Prague in 1975. The author desires to express his gratitude
to him for valuable remarks concerning the problem.

I. Differentiable s-manifolds

Following O. Loos, [9], a symmetric space is defined as
a manifold M with a differentiable multiplication u:
MxM —=M written as L {(x,y) = x-y satisfying the following
properties:

1° x.x = x

2° x.(x.y) =y
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2 S. Wegrzynowski

3° v (yez) = (xey)- (x-2)

40 every X has a neighbourhood U such that x.y =y
implies y =x for all y in U.

For each x €M the map s, ¢ M—>M given by sx(y) =
= x.y 1is a diffeomorphism, and it is called the symmetry
around x. We have (Sx)2 = identity for each x. One of
the basic results of [2] is the following.

Theoren A Fach symetric space (M, {s }) admits
a unigue linear connection V which is invariant under all
symmetries Sye The comnection V is complete and satisfies
T =0, VR = O, The affine manifold (M,V ) 1is then a usual
affine (globally) symmetric space, and the symmstries s
x €M, are the usual geodesic symmetries.

In [6], the above theorem was generalized to more general
objects, called tangentially regular s-manifolds.

Following O. Kowalski [6] we define a tangentiaily regular
s-structure on a smooth manifold M as a family {B&}
of diffeomorphisms satisfying the following axioms:

(1) sx(x) =X

x’

xeM

(2) the tangent map (Sx)*x : Tx(M)-—* Tx(M) -has no fixed
vectors except the null vector
(3) sg° Sy = 8,° 8y 2= 8. (v),

(4) the mep (x,y)—=s5,(y) is smooth.

The diffeomomorphisms Sgr X €M, are called symmetries
of M. The pair (M, {sx}) is called a tangentially regular
s-manifold (or shortly, an s-manifold).

It is easy to see that each symmetric space is a tangen-
tially regular s-manifold. (See [6] for details).

An automorphism of (M, {sx}) onto itself is a diffe-
omorphism ¢: M—=M such that ¢ s = So(x) ° ¢ for each
x €M. Let us remark that all symmetries Sy of M are auto-
morphisms.

In [6] the following basic theorem was proved:

Theorem B, ILet (M, {sx}) be a connected s-ma-
nifold. Denote by S the tensor field of type (1.1) given by

8, = (sx)*x for all x € M, Then
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Representation of symmetric spaces 3

1) There is a unigue connection V on M (called the
canonical connfction) such that V is invariant under all s,
and V8 = 0. V 1is complete snd has parallel curvature and
parallel torsion.

2) The group Aut(M) of all automorphisms of (M, {sx})
is a transitive Lie transformation group, which is a closed
subgroup of r\‘gbe.full affine transformation group A(M) with
respect to V. The automorphisms of (M, {sx}) are exactly
those affine transformations which leave the tensor field S
invariant.

3) Let G denote the component of unity of Aut(M), let
o be a fixed point of M, and G, the corresponding isotropy
subgroup. Then the homogeneous space G/G is reductive in a
canonical way and, under the standard iden"ification G/u =M,
the connection ¥ coincides with the canonicel connection of
the second kind of G/G

From [3], Chapter VI, Theorem 7.7 4t follows that each
s-manifold (M, { sx}) admits a subordinated analytic struc-
ture for which the tensor field S and the canonical connec-
tion 6 are analytic.

In the subsequent considerations we shall follow, in part,
the Riemannian theory which has been developed in [5]. All
s-manifolds in question are supposed to be analytic and
counnected.

Definition 1, Two s-manifolds (M, {5g})s

(M’ {s }) are called isomorphic if there is a diffeomorphism
¢: M —M' (called isomorphism) such that ¢°s = s@(x) LX)
for each xeM. They are ;ealled locally isomorphic if, for
every two points peM, p'eM’, there is a diffeomorphism ¢
of a neighbourhood U of p onto a neighbourhood U' of p'
(called local isomorphism) with the following property: For
each x€U there is a neighbourhood Vi cun 3;1 (U) such
that ¢ o By = sl¢(x)° ¢ bolds on Ve N

Lenma 1. Let (M, {sx}) be an s-manifold, and V
its canonical connection. ILet V be another connection
defined on an open subset U M, Suppose that V is locally
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4 Se.Wegrzynowski

invariant with respect to {s, ]} in the following sense: for
each xe¢ U, the restriction of Sy to a neighbourhood
Vx C U 1is a local affine transformation of the manifold

(U, V). Then
Vil =V - (Vg g)-148)(571Y)

for all vector fields X,Y defined on U, where I is the
Kronecker tensor Eield. Particularly, if VSIU = 0, then V
coincides with V on U,

The. proof of this lemma is the same as that of Proposition
12, [6]. Namely, let E =V - 6 be the corresponding diffe-
rence tensor. We write EyY =V.Y -V, Y. Since both V and
V are invariant under sy» X € U, E is invariant with
respect to S S(EXY) = EqySY. Now we check easily that

(B(1_gy-1x8) (57') = E(I_S)-1X[s(s‘1x)] -S(B(1_gy~1x5TTY) =

= B(og)~"x=Eg [(1os) "1 5 1) = E(15)Tx s (1-5)~ T = By

Since VS = 0, we get finally

B,Y = (E

. $)(s™y) =(v_  _, 8)(s™My)

(1-s)"1x (1-s)x

which was to be proved.

Theorem 1. ILet (M, {s.]}), (M',~{s:;,}) be two
s-manifolds with the canonical connections V and V' res-
pectively, and let Uc M, U'© M’ be open sets. Then a dif-
feomorphism ¢ : U—=U’' is a local isomorphism of (M, {s¢})
into (M) {s);}) if and only if ¢ is a local affine map of
0,7 ) into (', V') such that ¢(S|y) = Sy 1)

Proof. If ¢: U—~U’ 4is a local isomorphism, we get
first ¢(SIU) = S’|U" Further, let V’ denote the ¢-image

1) The image of a tensor field T with respect to a diffe-
omorphism ¢ will be denoted briefly by ¢ (T).
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Representation of symmetric spaces 5

on U’ of the connection Y;,U Because @’ U is locally
invariant with respect to {sx then V' is locally invariant
with respect to {s&} Moreover, V/(S’IU,) = O because

VSIU = 0. According to Lemma 1, V' coincides on U’ with the
canonical connection 7! which proves the "only if" part of
the theorem,

Let now &: U—~TU' be a local affine map of (M, V) into
(M’, V'), and suppose ¢(S‘ ) = SIU" Choose x € U and
a connected neighbourhood V of x such that V cUNs, 1(U).
Then the maps ¢ ° s, S'¢(x)°¢ restricted to V_ are afflne
dlffeomorphlsms of V onto a connected neighbourhood

¢( ) C U'. Because ¢ SIU) = SlU , they have the same
tangent map A, : M —> ¢( y at x. Consequently, des,
and ¢( y° o d coincide on V., g.e.d.

Corollary. Two locally isomorphic simply connect-
ed s-manifolds are globally isomorphic.

Proof, Consider simply connected s-manifolds
(M, {s4}), (M’ v {8y V). Let ®; be a local isomorphism of
UcCM onto U'c M’ Then Oy is a local affine map of
(M, V) into (M’, V') which maps S|y omto S,IU" According
to [:3, Cbapter VI] d) can be extended to a global affine map
O (M, Ty —=@, ) Because S is parallel with respect
to ¥ and S’ is parallel with respect to A then
d(s) =8’ on M. Now we can use the second part of the proof
of Theorem 1, where we put Vx = M for each =x.

Theorem 2. For every s—mgnifold (1, {sx}) there
is a simply comnected covering s-manifold (M’, {su’l}) such
that the covering map is, in a neighbourhood of each point of
M’', a local isomorphism.

Proof, Denote by % the canonical connection of
(M, {sg})s Tet (', V’) be a simply connected covering
manifold of the affine meuifold (M, V), Ti: M  — M being
the covering map. (M’, 6') is complete and analytic because
so is (M,V ). The tensor fields R, R and also T, T’ are
[[-related. Let S’ be the 1ift of S with respect to II.
Then we get S’(R’) =R, 8'(T') =1, VR =VT = Vs’ =o.
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6 - S.Wegrzynowsgki

Hence each linear transformation Sa, ueM’, gives rise to
a unique affine diffeomorphism s; such that (sl’l*)u = S&
(seq~[3], Chapter YI). Because S’ is parallel with respect
to V'’ and all Su (u € M') are affine maps, each tensor
field s, (8') is also parallel. Now, because S’ and
sa*(s’) coincide at the point u, they must coincide every-
where. We have obtained sé*(s’) =8’ on M' for each

ue M'. The last property means that the tangend maps

(sé° s;)*v ané (sé °sé)xv with w = sa(v) coincide for
every u, veM'., Because the maps s/ o s, and s_° sé are
both affine diffeomorphisms of (M, V'), they must coincide,
and we get axiom (3) for the family s/. Thus (M', {sé})

is an s-manifold. Finally, the tangent maps (TT°Sé)*u and
(Bﬂ(u)°TT)*u colncide for each u € M’ and hence the affine
maps Tles; and Sn(u) ° M always coincide. The projection Tl
is locally a diffeomorphism and thus, in the neighbourhood of

each point u, a local isomorphism, q.e.d.

=

II. Infinitesimal s-manifolds

Let (M, {sg}) be an s-manifold, ¥V the canonical con-
nection and R, T the curvature tensor field and the torsion
tensor field of V respectively. Let o be a fixed point of
M, and denote by V = Mo the correspoinding tangent space.
Denote by S the tensor field of type (1.1) given by
Sx = (Sx)*x for all x e M. I is the Kronecgprﬁﬁensor field.

Theorem 3, The tensor fields S5, R, T satisfy at

the 1nitial point o the following algebraic conditions:

(1) Both So, Io
tions of V.

- S° are non-singular linear transforma-

(i1) Por every X,Y€V the endomorphism ﬁo(X,Y) acting
are derivation on the tensor algebra J(V) satisfies
R,(X,Y)s, = 0, R (X,Y)R =0, R (X,Y)T =o0.

(1ii) The tensor- ﬁo and
(iv) R (x,¥) = -R,(¥,X%),

are invariant by So.

T0
T, (X,Y) = =T (X,x).
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Representation of symmetric spaces 7

(v) The first Bianchi identity holds: 6[§°(X,Y)Z -
- T (7,(X,Y),2)] = O.

(vi) The second Blanchi identity holdst 6 [ R, (1, (x,Y),2)] =0.
Proof. (i) and (iv) are obvious, (ii) and (iii)
follows from Part 1) of Theorem B. Finally, (v) and (vi) are

the Blanchi identities for the case VIE =9T =

Now we shall prove that the tensor So’ ﬁ;, @; locally
characterize the corresponding s~-manifold.

Definition 2. An infinitesimal s-manifold is
a collecEion (V,So,ﬁo,ﬁo) where V 1s a real vector space
and SO,RO,EO are tensor of types (1,1), (1,3), (1,2) res-
pectively suca that the conditions (1) - (vi) of Theorem 3
are satisfied.

Two infinitesimal s-manifolds (Vy, S;, Ry, T,), 1=1,2,
will be called isomorphic if there is a linear isomorphism
f:zq—»'vg of vector spaces such that f(S1) ='82, f(ﬁq):=§2,
f(T1) = T2.

Because the group Aut(M) (see Thecrem B) acts transitively
on a connected s-manifold (M, {s }) and leaves the tensor
fields 8, R and T invariant, we see tbat for every two
points p, qeM the collection (Mp’ Sp, p’ Tp),

(Mq, Sq, Rq, Tq) are isomorphic infinitesimal s-manifolds.
Therefore, we can introduce the following definition.

Definition 3. The infinitesimal type of an
s-manitold (M, {sx}) is thg isgmorphism class of infinite-
simal s-manifolds (Mp, Sp, R_, 'I‘p), P EM,

Theorem &4 Two s-manifolds (M, {s,}), (M',{s&})
are locally isomorphic if and only if they have the same in-
finitesimal type.

Proof. It follows immediately from Theorem 1 that
locally isomorphic s-manifolds have the same inifitesimal
type. Let now peM, p’e M’ be two points and assume that
there ex1sts an isomorphls £ of (Mp, S, R T ) onto

(MPf’ Sp,, Ré,, p,). The affine manlfolds %M V)

(M’ 67) have parallel curvature and parallel torsion. Accord-
ing to Theorem 7.4, Chapter VI of [3], there is a affine map
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8 S.Wegrzynowski

F of a connected neighbourhood U -of p onto a neighbour-
hood U’ of p' such that F(p) = p’, Fep = f. Moreover,
£(s.) = sé; and VS =V'S’ = 0. Hence Fy(S|y) = 8y
According to Theorem 1, F 1is a local isomorphism, g.e.d.

Theorem 5. Each infinitesimal s-manifold
(v, So’.ﬁov 50) defines the infinitesimal type of a simply
connected s-manifold (M, {s%}) which is unique up to an
isomorphism,

Proof. Let (V, S, Ro, T ) be an infinitesimal
s-manifold., Let h Dbe the Lie algebra of all endomorphism
A of V which, as derivations of the tensor algebra T(V),
satisfy A(S,) = 0, A(R ) =0, A(T ) = 0.

Particularly, we have R (X,Y) € h for every X,YeV
(see axiom (ii)). Following a construction of K. Nomizu, [10],
we define a Lie algebra g to be the direct sum V + h with

the multiplication given by

[x,¥] = (T, (x,1), B, (X,Y))
(5) [4,X] = AX, [X,A] = - AX
[A,B] = AB - BA

for X,YeV; A,B€h,
One can check easily that the Jacobian identities follow from
the conditions (v) and (vi) of Theorem 3.

Let G De the simply connected Lie group with the Lie
algebra g, and H be the connected Lie subgroup correspond-
ing to the Lie algebra h<g. H 1is a closed subgroup of G
[10]. Because [V,h]<V +the group G acting on the factor
set G/H by left translations is almost effective. G/H 1is
a homogeneous manifold which is simply connected and reducE}ve
with respect to the decomposition g =V + h. Denote by Y,
the canonical connection of the second kind of G/H. Similarly
as in the proof of Theorem 8, [5], we identify first g=V+h
with the tangent space Ge and then V with the tangent
space (G/H) at the origin of G/H via the projection
M: G—=G/H., Starting from S, R T we can construct (in

a unique way) tensor fields S,R,T on G/H which are G-in-
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Representation of symmetric spaces 9

variant, and also parallel with respect %o § . Theqwthere is
a family {sx} of affine . transformations of (G/H, V) uni-
quely dete;&}ned by S. Here (G/H, {sx}) is an s-manifold
for which V is the canonical connection. Also, we can show
that R and T are thehgurvature tensor field and the
torsion tensor field of V respectively. Hence we deduce that
our s-manifold has the prescribed infinitesimal type.

(See [5] for some more details). The uniqueness follows from
Corollary of Theorem 1.

Theorem 6, The construction described in Theorem
5 has the same outcome (i.e., it produces the same simply
connected s-manifold) if we replace the Lie algebra h Dby its
subalgebra h' provided that RO(X,Y)G_Q' for every X,YeV.

Proof. Let M=G/H be the homogeneous space
constructed in Theorem 5. Then G acts almost effectively on
M by left translations. Now, g’ =V + E' is a subalgebra of
g; 1let G'© G be the corresponding connected subgroup. Then
‘a standard argument shows that G’ acts transitively (and
almost effectively) on M. Thus the subgroup H'©H cor-
responding to gf is the maximal connected subgroup of G’
leaving the origin o fixed. Hence H is closed in G'.

Now, 1let G’ be a simply connected Lie group with the Lie
algebra _§’. Then we can consider % as the universal
covering group of G', and the connected subgroup H'C G’
corresponding to ' covers H'. Hence it follows that X'
is closed in G’. From nbw on we can proceed as in the second
part of the proof of Theorem 5.

Remark. If we take h as in the proof of Theorem 5,
then the group G 1is lccally isomorphic to the automorphism
group of (M, {sx}). )

If we take the Lie subalgebra h & h generated by all
curvature transformations ﬁo(X,Y), X,YeV, +then the group
G’ is locally isomorphic to the transvection group of ML 6)
(see the next paragraph).
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10 S. Wegrzynowski

III., Generalized affine symmetric spaces

In this paragraph, we shall present some definitions anu
results from [7]. '

Following O. Kowalski, [?7], a connected affine manifold
(M.f?) is called a generalized affine symmetric space
(shortly: g.a.s. space) if M admits at least one tangential-
ly regular s-structure {sx} such that v is its canonical
connection. (An s-structure with this property will be called
admissible ). N

It follows from Theorem B that each g.a.s. space (M,V)
is a homogeneous and complete affine manifold. Further, from
Theorem A we can see that the usual affine symmetric spaces

are those g.a.s. spaces which admit a tangentially regular
s-structure {5} with (sx)2 = identity.

The group of transvections of a generalized affine symme-
tric space (M, ) is the group Tr(M) of all affine trans-
formations ¢ of (M, 6) with the following property:

For each xé&éM +the tangent map Pux § Mx—“ M‘P(x)
coincides with the parallel transport along a broken geodesic
from x to p(x).

The following theorem shows the connection between the
transvection group Tr(M) and the admissible s-structures on
(M, V).

Theorem C. The transvection group Tr(M) is a
connected Lie subgroup of A(M) acting tramsitively on
(M,%). For each admissible s-structure {sx} on M, Tr(M)
is generated by all transformations of the form Sy ° s; ’
x,y€M, and it is a normal subgroup of the corresponding
automorphism group Aut (M, {sx}).

Finally, the Lie algebra 1+ of Tr(M) can be obtained
in the following way: 1let V be the tangent space at an
arbitrary point oeM, and let g’ be the Lie subalgebra of
g8l(V) generated by all curvature transformations ﬁo(X,Y),
X,YeV., Then t =V + h' with the multiplication given as
in Formula (5).
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Representation of symmetric spaces 11

It is easy to see that a g.a.s. space (M,G) satisfies
T =0 4if and only if it is locally symmetric. On the ovther
hand, we have the following theorem.

Theorem D, A generalized affine symmetric space
(M, V) satisfies R = O if and only if dim Tr(M) = dim M.
Moreover, if R = 0, then the group Tr(M) is solvable.

IV. On admissible s—structures

M. Berger, [1] has worked out a complete list of local
structures of all affine symmetric spaces admitting a transi-
tive semisimple group of automorphisms. He has set aside the
spaces of "solvable" and "mixed" type; for such spaces only
a topological structural theorem has been proved.

As Theorem D suggests, in the case of generalized affine

symmetric spaces the solvable groups play even more important
part than in the classical situation. Hence we can guess that
the classification of local structures of g.a.s. spaces is a
very difficult problem. In this section we shall develop some
technical means which can heip us to solve the classification
problem for the small dimensions, at least. (Tbe method is
similar to that used in the classification of generalized
symmetric Riemannian spaces of dimension 3,4 and 5, see

(51, [8]-

First of all, we shall limit ourselves to the primitive
g.a.8., spaces, i.e. those which are not products of g.a.s.
spaces. Secondly, we can represent the local structures of
g.a.S. spaces by the simply connected g.a.s. spaces (of Theo-
rem 2).

Finally, for our purpose, it is inevitable to represent
e84 S spaces'by certain s-manifolds first (so that we could
use the algebraic characterization given in Theorem 5). Yet,
it is not necessary to give a list of all s-manifolds of a
given dimension to obtain a complete list of g.a.s. spaces of
this dimension. Namely, we are golng to show ‘that it is quite
sufficient to find certain "privileged" s-manifolds.
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12 S.Wegrzynowski

Definition 4. An s-manifold (M, {sx}) is
. 1 2
called the product of s-manifolds (M, {s,}), (Mé,_{sv}) if
M = My xM,, and if for every (u,v), (p,q) €M we have

S(y,y)(Pra) = (s}(p), s5(a)).
(M, {sx}) is called reducible or irreducible according
to as it is a product or not.
. 1
Proposition 1. Let (M, {sx})=(M1,{su})x

*x(Myy {ss}), and denote by V, v’l’ '72 the canonical connec-
tions on M, My, M,, respectively. Then (M, V) = (M’l’ \71)"
x (i, ¥ )

Proof. We can show by means of Theorem B, 1) that
product connection ﬁ,]x V2 on M is the canonical one.
Definition 5. An infinitesimal s-manifold
(v, s, ﬁ, T) 41s called the direct sum of infinitesimal
s-manifoldg (Vi,S%,Ri,Ti), i=1,2 iﬁ V=V,+7V, (direct

sum) and E(x) = ;z;si(xi), B(x,Y)Z = ;E;ﬁi(xigyi)zi
L= i=

T(X,Y) = igrﬁi(xi,Yi), where. the indices denote the corres-
i=
ponding components of a vector with respect to the decomposi-
tion V = V1 + V2.

An infinitesimal s-manifold (V,S,ﬁ,ﬁ) is called re-
ducible or irreducible according to as it is a direct sum or
not.

Proposition 2, A simply connected s-manifold
(M, {sx}) is reducible if and only if its infinitesimal type
is reducible.

The proof follows easily from Proposition 1 and Theorem 5.

Definition 6. Let (M, {sx}) be an s-mani-
fold and (v,so,Ro,@;) its infinitesimal type. The symmetries
s, are called semi-simple if S0 is completely reducible on
the complexification Ve of V. The eigenvalues of the
s-structure {sx} are defined to be the eigenvalues of So.

Theoren 7. Let M be a simply connected mani-

fold. Each admissible s-structure {s, .} on the space (M,ﬁ)
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Representation of symmetric spaces 13

can be replaced by an admissible s-structure sé} having the
same eigenvalues (including the multiplicity) and such that
the symmetries sé are semi-simple.

Proof. Let {sx} be an arbitrary admissible s-struc-

ture on (M, V); let (V,8,,8 ,% ) be the infinitesimal type
of (M, {s,}). Consider the Lie algebra g =7V + h defined
by formula (5). According to the proof of Theorem 5, the
affine manifold (M,V) is uniquely determined by g,h and
V. Let us decompose the complexiffication ve intd_tEe
eigenspaces corresponding to mutually different eigenvalues
of §,, say V° =Zv(d). (We always have o # C,1). Thus,

x€ed
each V(d)_ is the subspace of all Z €V® such that
(So -<xI)kZ = O for some k. Consider the automorphism §_

of the Lie algebra g defined by S+ = So + idb. The we can

s : c _
write, with respect to S+,_§ —dég'v(“) + V(q), where

V(q) = h® Now, it is well-known that [v(q), v(m]c Vi)
whenever cx-ﬂ is an eigenvalues of S+, and ['V(d), V(ﬁ)]=0
otherwise (Cf. [2], p. 26). Hence we get the following

relations:
( T (V (o) Vipy) = O if o, ped, o fgd
ﬁo(v(d), v(ﬂ))c Vwp) I %y Py AP I
(6) < R,(Vigys V(/s)) =0 1If ofed, B £
_ﬁo(V(o().V(ﬂ))C h° 1f o,pe7, LB =1
A(V(o())C V() if A < nC.

Let us define a new linear transformation Sé on V° as
follows:

S,(Z) = «,Z whenever ZeV(iyr €T

Because S5, is a real transformation, we have Z¥5V(a) for

zev(u) and hence Sé is a real transformation as well.
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14 S.Wegrzynowskl

Further more, Sé is completely reducible on V® because
all vectors of the eigenspaces V( ),u.e J are eigenvectois
of Ss. Now, from relation (6) we can see that T and Ro
are invariant witk respect to Sé, and h < h ' where h'
is the subalgebra of all endomorphism A of V such that
A(s)) =0, A(ﬁo) = 0, A(ﬁo) = 0. Hemce (V, S} Ro, To)
is en infinitesimal s-manifold.

Let (M, {s’}) be the corresponding simply connected
s-manifold as in Theorem 5. Here for our construction we have
used the Lie algebra g’ =7V + h ., According to Theorem 6
(where we interchange the meaning of h and h') we come to
the same s-manifold (M', {si}) using in our construction
the Lie algebra g = V + h. On the other hand, we have seen
that the Lie algebra g =V + h determines the affine
manifold (M, V). Hence M\ = M, end the s-structure {sé}
determines the canonical connection V. This completes the
proof.

Definition 7. Let A% be the set of all
n-tuples (ei) of complex numbers such that

a) 61 f 0,17 for i=1,s..,n

b) there is a permutation @ of the indices 1,...,n such

that ¢2 = identity and Oo(1) = 83 for 1= 1,...,n.
The elements (ei)e AD will be called systems of eigenvalues.

Let us remark that the condition b) is equivalent to the
following: if © 1is among 61,...,6n with the multiplicity
m, then so is © (the reality condition). It is obvious that
a family of all eigenvalues of an n-dimensional s-structure
belongs to AT, Such a family will be called a system of
eingenvalues of the s-structure. Thus, a system of eigenvalues
of an s-structure is uniquely determined up to a permutation.

Definition 8. The following relations:
©;°65 = O, 1#4; 0,8, =1; 8, = 6, satisfied by the
numbers 61""’6n’ (61,...,eu) € AR are called the charac-

teristic relations, We shall denote by 3 (ei) the set of all
characteristic relations satisfied by an element (Gi) of AL,
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Representation of symmetric spaces 15

Lemma 2. Each relation of the form 6y = ej, 1£3,
is an algebraic consequence of the characteristic relations

of & (8 ).

Proof. We always have characteristic relations of the

form B3y = 85y Og(y) = éj where ¢ is a permutation.
Now, ei = 6j ylelds the new characteristic relations

ee(i) = 53, eg(j) = 51. Consequently, the equality ei==ej
is an algebraic consequence of the characteristic relations
®e(1) = %1 Oe(y) = %0 %e(1) = Oyr Og(y) = Oy
Definition 9. A system of eigenvalues
(6;)eA" is called reducible if there is an index k < n
and a permutation § of 1,...,n such that 2(61,...,6:1) =
(05(1)""'0F(k)) and (9€(k+1)""’66(n)) are considered as

elements of AX and A0k respectively).
Theorem 8, If a simply connected s-manifold
(M, {sx}) possesses a reducible system of eigenvalues (ei)
then it 1s reducible.
Proof., We can choose our system of eigenvalues in

such a way that

2(0g100048y) = 201400 e O ) UZ (B3 qyseen48y)-

Consider now a permutation ¢ such that QE = identity, and

Bo(1) = 6, for i =1,...,0. Then g decomposes into

Qq ¢ {1,...,kl;j: {1,...,k} and ¢, :{k+1,...,n} = {k+1,...,n}.
Let (V,S5,R,T) be the infinitesimal type of (M, {sx})

and let {U,...,U } be a basic of V° such that, for each

n
i=1y.004n, Uj€Vgy ( = the full eigenspace of ;).
i

Moreover, we can suppose that UQ(i) = ﬁa for 1 =1,...,n.
Then the subspace Vﬁ(: ve generated by U',],...,Uk and the

subspace Vg generated by Uk+1""'Un are complexifications

of certaln subspaces V1 and V2 of V, respectively. In
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16 S. Wegrzynowski

fact, we have (V:) = Vg, (Vg) = Vg in V. According to
Lemma 2, we can see that each eigenspace Ve < v® 1is con-

tained either in V: or in Vg. Hence we get a decomposition
V = V1 + V2, where V1, V2 are invariant subspaces with
respect to &S,

From Formula (6) it follows that @(Vi,vi)CZ Vs

R(V;,Vy)V4& ¥y for 1,§=1,2; and f(v,,v,) = 0, R(v,,V,)=0.

J
Thus the infinitesimal s-manifold (V, S, R, T) is reducible
and consequently, the simp.y connected s-manifold (M, {sx})
is also reducible.

Now we shall define two relations on W%,

N . N !
Definition 10. We write (ei)——g (ei) if and
only if Z(Gi) = 2(9&) after a possible re-numeration of

the numbers 6%. Further, denote (6,) ~'(e£) if and only
if (ei)—%(e;) and (ei)—%(ei).

Theorem 9. Let M be a simply connected n-di-
mensional manifold. If the space (M, V) admits an s-struc-
ture {sx} with a system of eigenvalues (8;), and if

(6{)5——(9i) in J{n, then (M, V) admits an s-structure
{sé} with the system of eigenvalues (ei).

Proof. Let (V,S,R,T) denote the infinitesimal type
of (M, {sx}). We can re-numerate the numbers (8&) in such

a way that ZE(Gi)C: 25(9{). We can also suppose that S is
completely reducible (Theorem 7). Let Q be a permutation
such that 2 = id and Og(4) =63 for i=1,...,n. Then
V? possesses a basis U,l,...,Un of eigenvectors corresponding
o 91,...,6 respectively, and such that U%(i) = Ui’
i= ’],...,n.

Let us define a transformation Sé of V¢ by S;Ui =
= e; Uy for i =1,...,n. First of all, the relations _
Og(y) = 6; are characteristic relations and hence Gé(i) =0

n?

for each 1.
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Representation of symmetric spaces 17

Then séﬁi = SéUg(i) = ek(i)Uq(i) = G&Ue(i) = §%ﬁi = 6;3& =

= 8'U.
0”1 0
To(Ui’Uj) =Z'i'ia.Uk. Because SO(TO) = T , we can have

. 1i.e, Sé is a real transformation. Further, let

! Iy
Tig £ 0 only if ei-ej = 6., or else, only if 6;-63 = 6&.

Hence

S (Eo(Ui,Uj)) = sé (%1-1‘§Uk) = 'KZT'ig(ngk)

1]

KAt K ¢ 4 Al Kk
= E TijekUk = E Tijeierk = eiej Z TijUk
PN~ ~ / ' ot ’ ’
= 6,6,T (Uy,U5) = T (6}Uy, 04U5) = T (s,U,,8,0) ,

i.e Sé(i"o) = "fo.
Now, let A be an endomorphism such that A(So) = 0.

Then A leaves invariant the eigenspaces of So corresponding

to the mutually different eigenvalues among 61,...,6n.

According to Lemma 2 if ei has the multiplicity m, then

6{ has the multiplicity at least m. Hence each eigenspace

of Sé is a direct sum of certain eigenspaces of So. Conse-

quently, A leaves invariant the eigenspaces of Sé and thus

A(8{) = 0. _
Particularly, RO(X}Y)SO

0 implies ﬁo(X,Y)Sé = 0, The
relations S (R)) = R, and RO(X,Y)S0 = 0 yield RO(SOX,SOY):
= RO(X,Y). Now, Ro(Ui’Uj) Z 0 ounly if ei-ej =1, or else,
. ’ 1 _ st ’ ’ .3 ! ’ _

only if ei-ej = 1. Hence Ro(SoUi’ Son) = Ro(eiUi, erj) =

’ [ g . = ’ 1 ~
= ei-ejRo(Ui,Uj) = Ro(Uin), i.e. RO(SOX, S,1) = RO(X,Y),
and thus Sé(Ro) = R,. We conclude that (V,Sé,ﬁB,To) is an
infinitesimal s-manifold. For the Lie algebras h and &'
we obtain the inclusion h<h'.

Quite similarly as in the proof of Theorem 7 we can show
that the simply connected s-manifold (M {sé}) coressponding
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18 S.Wegrzynowski

to  (V,8{,R,T.) yields the affine manifold (M,V). Thus
{s};} is an admissible s-structure on- (M,V ) with the
system of eigenvalues (61).

Definition 11. A system of eigenvalues
(6;) € A" is called maximal, if for any (e;)edl“ the rela-

tion (83) & (6;) 1implies (8)) ~ (8,).

From Theorem 8 we obtain the following corollary.

Corollary. A simply connected generalized affine
symmetric space (M,‘ﬁ) always admits an s-structure {sx}
with a maximal system of eigenvalues.

If (ei)e AD ig an "admissible" system of eigenvalues

for (M, V), then all system (ei)edtn such that (ei)~(91)
are admissible for (M, V). A
Definition 12, An s-structure {sx} on M

is called of order k (k > 1 being an integer) if '(sx)k='ld
for all xeM, and if k 1s the least integer with this
property. If such an integer k does not exist, then {sx}
is said to be of infinite order.

Obviously, if (ei) is a system of eigenvalues of {sx},
then the relation (s, )X = 14, xeM, 1is equivalent to the
relation (ei)k =1, 1i=1,0..,0

Definition 13. A generalized affine symmetric
space (M, V) is called of order k if it admits an
s-structure of order k, and it does not admit any s-strue-
ture of order 1 < k. (M, 6) is called of infinite order if
it admits only s—structures of infinite order.

Theorem 10. Let (M,V) be a generalized affine
symmetric space which is simply connected and of finite order.
Then (M,V) admits a structure {sx} of finite order and with a
maximal system of eigenvalues.

To prove this theorem, we shall need some lemmas bofore-
hand.

Lemma 3. Each relation of the form |6 =1 sa~-
tisfied by a system of eigenvalues (ei)eoﬁn is an algebraic
consequence of the characteristic relations.
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Representation of symmetric spaces 19

Frootf., Let ¢ be a permutation of {1,...,n} such
that By =8 for i=1,...,0. Then |eJ| = 1 implies
SQ(J)'ej = 1, Conversely, the characteristic relations
8o(4) = ’éj, 9¢(3)°®3 = 1 imply |Gj| = 1.

Lenmma 4. Let (V, g) be a vector space with a po-
sitive scalar product, and let us denote by O((V,g) the
group of all orthogonsl transfcrmations of (V,g). For
seo(v,g), let CL(S) denote the least closed subgroup of
0(V,g) generated by S. Then for each Se O(V,g) without
uon-zerc fixed vector there is a periodic transformations
s¥e C1(S) without non-zero fixed vectors.

Proof is the same as that of Lemma 3, [5].

Proof of Theorem 40. Letn_{sx} be an
admissible s-structure of finite order on (M,V ). In case
that the‘eigenvalues 8, of {sx} do not form & maximal
system let us conslider a maximel system of eigenvalues
(8y) — (ei). Let {sé} be a corresponding s-structure on

(M,e). We can suppose that {s{} is of infinite order
(otherwise the theorem obviously holds).
Since {Bx} is of £inite order, the system (ei) is also

of finite order, i.e., (8,)* =1 for 1 =1,...,n. Particu-
larly, we have |6;] =1 for i = 1,...,n, and according to
Lemma 3 we obtain |6 =1 for 1 =1,...,0. Let (V,8,R,T)
be the infinitesimal type of (M, {s;}). Then the least
closed subgroup C1l(S’) of GL(V) generated by S’ is com-
pact, and hence it admits an invariant scalar product g.
Obviously, Cl1(S8’)< 0(V,g). According to Lemma 4, C1(S’)
contains a periodic transformation S* without non-zero fixed
vectors. Thus, the corresponding system of eigenvalues (ef)
belongs to A% ang it is of finite order. It suffices to
prove that (6}) & (8y). ‘

Obviously, in the natural topology of O0(V,g), we can
. n
write S* = lim (S' J), where {nj} is a subsequence of the

N} ~>~o0
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20 S. Wegrzynowski

sequence 1,2,... Here the seguence { nj} can be selected in
' n
such a way that all s’ J are transformations without non-
n
-zero fixed vectors. Consequently, (6; dye AR for each

n.
njy. It is obvious that (Gi J) 5"(6&) for all ny and

n [
hence (9;5 = lim (9& J) ?—-(ei). This completes the proof.
n:eo0

Resuming the results of Theorem 9 and 10, we obtain
Theorem 11. In each dimension n, the set AR
possesses a finite subset £2 of 8, elements (sn = the

number of equivalence classes of maximal elements of ALY with
the following propertys

Each simply connected generalized affine symmetric space
(M,v)- of dimension n admits an s-structure {sx} with a
system of eigenvalues (9;) € £%. Particularly, of (M,V)
is of finite order, then {sx} can be chosen of finite order.

Applying results of th present paper we shall in 1] s
[12] the classification of generalized affine symmetric
spaces of dimension n £ 4. There will be exactly 3 families
of g.a.s8. spaces of dimension 3 and 15 families of g.a.s.
spaces of dimension 4. All of them being simply connegcted,
irreducible and not locally symmetric. We shall show, that
g.8.8, spaces of dimension 2 are usual affine symmetric
spaces,
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