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NUMERICAL SOLUTION OF A SYSTEM 
OF NONLINEAR EQUATIONS BY PERTURBATIONS 

1. In t roduc t ion 
The numerical scheme which i s o f t en used to solve systems 

of nonl inear equations i s Newton's method. I t has a quadrat ic 
r a t e of convergence. But in order t ha t i t may converge, i n i -
t i a l es t imates of the so lu t ion are required to be close to the 
so lu t ion . Furthermore, a t each i t e r a t i o n , a Jacobian whose 
value must "be o ther than zero has to be evaluated. These are 
indeed severe drawbacks of t h i s method espec ia l ly when a large 
system of nonl inear equations i s to be solved. On the other 
hand, simpler schemes of i t e r a t i o n s are the func t i ona l i t e r a -
t i o n s , namely, Jacobi i t e r a t i o n s and Gauss-Seidel i t e r a t i o n s . 
These could be e a s i l y applied to large systems, but t h e i r 
r a t e s of convergence are l i n e a r . In t h i s paper , at tempts are 
made 1;o develop a simple f u n c t i o n a l i t e r a t i v e scheme having 
a quadrat ic r a t e of convergence with respect to other f u n c -
t i o n a l i t e r a t i o n s . 

The method has been derived by per turbing nonlinear Jacobi 
i t e r a t i o n s . I t s e f f e c t i v e n e s s i s es tab l i shed through severa l 
app l i ca t i ons . Some of them are discussed in sec t ion 6. I t has 
been proved mathematically and v e r i f i e d computationally t h a t 
the pe r tu rba t ion parameters cont ro l the mode of convergence of 
i t e r a t i o n s . Also, because of these pe r tu rba t ions , since the 
i t e r a t e s undergo displacements, i t i s expected t h a t in some 
cases -these perturbed i t e r a t i o n s may converge to the so lu t ion 
whereas nonlinear Jacobi i t e r a t i o n s w i l l f a i l . This has been 
v e r i f i e d through examples in sec t ion 6. 
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2 S.K.Dey 

Various perturbation methods to solve systems of equations 
can be found in [1] - [4]. Hence the basic concept in this 
work is not new. However, since the algorithm of this method 
is much simpler than the previous methods, when applied to a 
large system of nonlinear equations, it should take less 
computer time and computer memory storage. 

2. Formulation of the algorithm 
The problem before us is to solve a system of nonlinear 

equations 

(1) fi(x1,x2,... ,xQ) = 0, i = 1,2,...,n, 

in a domain D which is a subspace of Rn, where R n is the 
n-dimensional real space. 

T 
Let x be a vector in D, given by x = (x^jXg,..•,xn) , 

where the superscript T denotes the transpose of a matrix. 
Let i" i Dcfin—•» Rn, then (1) may be expressed as 
(2) F(x) = 0. 

It is assumed that there exists a solution x = x*e D of (2), 
where x* = (x*,x|,... ,x*)T. Thus F(x*) =0. Let us 
express the system (1) as 

(3) x± = Gi(x1,x2,...,xn) , i = 1,2,...,n). 

These equations may be expressed as 

(4) x = G(x), 

where G s F c E n — E n . Since x = x* is a solution of (4), 
thus x* is a fixed point of the operator G. 

Let x ^ e D, be an initial estimate of x*. The non-
linear Jacobi iteration at some k-th iteration may be express-
ed as 

(5) = G ^ ) ^ ) , . . . ^ ) } , i = 1,2,....n, 
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.00 
*i is the value of x^ at the k-th iteration. We 

wi l l now introduce a perturbed i terat ive scheme as fol lows 

(6) .00 

where Ŵ  

i 

00 

(k-1) (k-1) 
»x2 , xn 

(k-1) 

are the elements of the perturbation vector 

. . Ra; and wi l l be computed in 
terms of quantities obtained at the (k-1)-th iteration. 

(kl (k} Let us assume that, for a l l k, xv J eD and gv ; £ D , 
where 

g<k> = fe^.G^,...^) with G ^ g Y x ^ . x ^ .(k) 

(k) 
To compute Ŵ  ' we w i l l assume that these quantities are 
small such that terms containing their squares may be neglect-
ed. Also the functionals Ĝ  must be such that their f i r s t 
and second derivatives at any k iteration must sat isfy the 
following conditions 

(7a) 
3 G. 
3x. 

(k) 
£ 1 and bounded, 

(7b) 
32G, 
ci 2 

i 

(k) 

bounded 

for 1 ,2 , . . . ,n , and 

for 

k = 1 ,2 , . . . I f the i terat ive scheme 
ion x* af-

i = 1 ,2 , . . . ,n . 
(6) converges to the solution x* after k-1 iterations, 

x i ~ x i ~ x i 
Thus 

.00 _ G (X (k-1) (k-1) 
1 - 1 • 2 ' 

(k-1) j X_(k) j X (k-1) Y (k-1) 
' x i - 1 i+1 
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o r , 

W ^ + G<k"1> = 

- G f x ( k " 1 ) x ( k " 1 ) x ( k - 1 ) w ( k - 1 ) Q (k -1 ) (k-1) (k- 1)^1 

Expanding the r i gh t -hand s ide of t h i s equa t ion by T a y l o r ' s 
s e r i e s , and t r u n c a t i n g a f t e r the second term by v i r t u e of the 
assumptions imposed upon and (7b) on G^, we have 

G ( ¿ ^ x(k-1) G(k-1) (k-1) x(k-1 )\ (k-1) 
/ ON „(k) U i \ x i .»••• 'X i -1 •' * " ' n J - G1 

1 - U ^ L ( k - 1 ) x(k-1) G(k-1) (k-1) (k-1) 

The equa t ions (6) and (8) form the r e q u i r e d a lgor i thm which 
we w i l l apply t o solve systems of non l inea r equa t ions numeri-
c a l l y . 

3. Convergence theorems 
We w i l l now analyze the convergence p r o p e r t i e s of t he 

a lgor i thm. In the vec to r form the equa t ion (6) may now be 
expressed as 

(9) x ( k ) = w ( ^ + G ( x ( k - 1 ) ) . 

( c f . [4] s e c t i o n 1 3 . 1 . 4 ) , may now be developed as f o l l ows 
Let | x | = ( | x 1 | , | x 2 | , |xQ | ) T . 

T h e o r e m 1: Let G : D c Hn — Rn be such t h a t , 

(10) |.G(Y) - G(z) | < A|y—z| 

V y , z eD, where A i s an i so tone ma t r ix (n x n) and i t s 
s p e c t r a l r a d i u s q (A) < 1. Furthermore, i f 

(11) l im |w ( k ) | = 0 
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the i t e r a t i v e scheme (9) wi l l converge to the solution x * 
and x * i s the unique solution in D. 

P r o o f : | x ( k ) - x * | < | w ( k ) | + | G ( x ( k " 1 h , G (x*) | < 

+ A|x ( k " 1 ) - x * | < A k - J | w ( ^ | + A k | x ( 0 ) - x * 

Since ^(A)<1. we can choose a norm such that ||A|| < 1. 
Let e ( k ) = | x ' k ) - x*| and v ^ = From (11) f o r 
some j > kQ , ||v^||<6. Thus 

k k 

Since ||A||<1, as k -«»- , 0. This es tabl ishes 
convergence of i t e r a t i o n s to the solution. 

To prove uniqueness, l e t us assume that y * i s another 
f ixed point of G in D. Then, 

|x* - y * | = |G(x*) - G(y*)| < A|X* - y*|. 

Thus, ( I - A)|x* - y*| ^ 0. Since $(A) < 1, then 

e»o 

( I - A)"1 = Ap > 0. p=o 

Hence, | x * - y*| < 0. Therefore, x * = y*. 
I t i s rather easy to es tabl ish that the condition (11) i s 

a necessary condition for convergence of the i t e r a t i v e 
scheme (9) . 

T h e o r e m 2. I f the mapping G s a t i s f i e s (10) , 
the condition (11) i s a necessary condition for. convergence 
of the i t e r a t i v e scheme (9) to the solution x * in D. 

P r o o f : Prom (9) 

|W<k>| = | x ( k ) - G(x ( k - 1 >)|< | x ( k ) - x *| + A|x (k"1^ - x*|. 
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If y, zeH are two vectors, |y| ̂  |z| implies that 
||y|| || z||. Thus we get, 

II < - x*|| + || A || |x^k~1 ̂  - x*|| . 

If the iterations converge to x*, for some + 1, 

||x(k> - x*|| < £ /2 and ||x(k"^ - x*||< £/(2||A||). 

Thus, ||W(k)|| < £. This proves the theorem. 

Criterion for convergence of iterations 
In most iterative schemes, convergence of iterations is 

accepted if after some k iterations, 

(12) |x<k> - x{k-l)|< £ 

for i = 1,2,...,n, where e is a small positive quantity 
chosen arbitrarily. Although mathematically the validity of 
this condition is understandable, in a computer program it is 
merely a necessary condition for convergence. Thus it is 
conceivable that a slowly converging iterative scheme may 
satisfy (12) and converge to a wrong solution even when 
S = 0.0001. 

In the present scheme, the mode of convergence is 
asymptotic and directly depends on the values of the perturba-
tion vector This consistent with (11) the convergence 
criterion is set as 

(13) max|wik'|<£, i I x I 

where (in a computer program) we generally chose £ 10"\ If 
the assumptions imposed upon the operator G are satisfied, 
then according to the theorems 1 and 2, the condition (13) is 
both necessary and sufficient for convergence. This was 
verified by computer experimentations. 
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5. Computational procedure 
Let us consider an i l l u s t r a t i o n showing thereby the 

computational procedure of the algorithm. 
E x a m p l e . Solves x^ - c o s ( x ^ , x 2 ) + 1 = 0 , 

x 2 - s inCx^.x, ,) = 0. 
This system has a unique s o l u t i o n : x^ = 0 , x 2 = 0. Let 

G^Cx^.Xg) = cos ix^jXg) - 1 and G 2 ( x 1 , x 2 ) = s i n ( x 1 f x 2 ) . 
2G. 

Let P i ( x 1 , x 2 ) i = 1 , 2 . 

S t e p 1 . Choose some x 2 ° ^) to be the i n i t i a l 
est imate of the s o l u t i o n . Then at some k- th i t e r a t i o n we 
compute 

r / r ( k - 1 ) ( k - 1 ) ) P ( k - 1 ) 
o m(k) G l l G 1 ' 2 , > ~ G 1 

S t 6 P 2 ' ^ = 1 - ^ ( ^ , ^ - 1 ) ) ' 

W2 = 1 - P 2 ( x ^ > , G ^ ) ' 

where G ^ " 1 > = G ^ x ^ " 1 > , x | k ~ 1 >) , i = 1 , 2 . 

Now compute 

S t e p 3 . x i k ) = w { k ) + i = 1 , 2 . 

S t e p I f max | | 1 0 ~ \ the l a s t computed 
(k) i 

va lues of x^ ' w i l l g ive the so lu t ions . I f t h i s i n e q u a l i t y 
i s not s a t i s f i e d , the s teps 2 - 4 w i l l be repeated. 

This procedure may now be extended to any large system. 
I f P^ = 0 f o r some i , the value of the perturbat ion 
parameter w i l l be zero, and the e f f e c t i v e n e s s of the method 
w i l l be reduced. I f P^ = 1 f o r some i , the method w i l l 
f a i l . 

For the above system of equations when we s t a r t e d i t e r a -
t i o n s a r b i t r a r i l y with \ ^ equal to (999.0, -999.0) , 
( -999.0 , 999.0) and ( -999 .0 , -999 .0) r e s p e c t i v e l y , the method 
converged to the so lu t ion (0, 0) within 4 i t e r a t i o n s . 
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We wi l l now consider few more appl ica t ions of t h i s method 
and compare i t s e f f e c t i v e n e s s with tha t of the other we l l -
-known nonlinear f u n c t i o n a l i t e r a t i o n s , namely P icard , Jacobi 
and Gauss-Seidel i t e r a t i o n s . 

6. Comparison with other f u n c t i o n a l i t e r a t i o n s 
A comparative study "between the e f f e c t i v e n e s s of t h i s 

method with t h a t of o ther f u n c t i o n a l i t e r a t i o n s , namely, 
P icard , Jacobi and Gauss-Seidel i t e r a t i o n s w i l l now be studied 
by v i r t u e of app l i ca t ions . Equations with one, two, and th ree 
va r i ab l e s w i l l be considered f o r so lu t ion , ihe c r i t e r i o n foy 
convergence of i t e r a t i o n s i n P ica rd , Jacobi and Gauss-Seidel 
i t e r a t i o n s i s given by (12) with e, = 1 0 ~ \ whereas t h a t f o r 
the present scheme i s given by (13) with E, = 1 0 ~ \ 
(a) E q u a t i o n s w i t h o n e v a r i a b l e 

In t h i s case, the present scheme w i l l be compared with 
P i c a r d ' s i t e r a t i o n s . 

E x a m p l e 1. Solve: x + lnx = 0. Choose x ^ = 
= 0 . 5 and G(x) = exp(-x) . P i c a r d ' s scheme took 14 i t e r a -
t i o n s and the present scheme took 3 i t e r a t i o n s to converge to 
the so lu t ion x = 0.56712. 

E x a m p l e 2. Solves x^ - 3»7x1' + 7.4x^ - 10.8x2 + 
+ 10.8x - 6 .8 = 0. Choose x^ 0 ) = 0.05 and 
G(x) = (6.8 + 10.8x2 - 7 . 4 X 5 + 3 . 7 ^ - x 5 ) / 1 0 . 8 . 
P i c a r d ' s scheme took 14 i t e r a t i o n s and the present scheme 
took 5 i t e r a t i o n s to converge to the so lu t ion x = 1.7« 

E x a m p l e 3« Solvet x - 2 .9 t an x = 0. Choose 
x^ 0 ) = -999.0 and G(x) = 2 .9 t an x. P i c a r d ' s scheme did 
not converge (even when x ^ = 0 .05) , whereas, the present 
scheme converged to the so lu t ion x = 0 .0 a f t e r 3 i t e r a t i o n s . 
( b ) E q u a t i o n s w i t h t w o v a r i a b l e s p 

E x a m p l e 4. Solve: x + y = sin(xy) and 
x 2 + y + 1 = cos(xy 2 ) . Choose x ^ = y ^ = 0 .1 ; and p o o 
G1(x,y) = s in(xy) - y , G2(x,y) = cos(xy ) - 1 - x . 
Nonlinear Jacobi scheme toojk 4 , nonl inear Gauss-Seidel took 3 
i t e r a t i o n s and the present method took 4 i t e r a t i o n s to con-
verge to the so lu t ion x = y = 0 . 0 . 
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E x a m p l e 5. Solve: x = 0.8542 cos x + 0.7194 s i n y 
and y = 0.9764 s i n x + 0.4597 cos y . Choose ( x ^ f y ^ = 
= (1 .0 , 0 . 0 ) . Nonl inear Jacobi f a i l e d , non l inea r Gauss-Seidel 
took 13 and the p re sen t scheme took 9 i t e r a t i o n s t o converge 
t o the s o l u t i o n x = 1.0534 and y = 1.0695. 
(c ) E q u a t i o n s w i t h t h r e e v a r i a b l e s 

E x a m p l e 6. Solve: x - s in (xyz ) = 0 , y - cos(xyz) =0 
and z - t an (xyz ) = 0. Choose = y ^ = = 2 . 0 ; 
and G 1 ( x , y , z ) = s i n ( x y z ) , G 2 ( x , y , z ) = cos(xyz) and G^(x,ytz) = 
= t a n ( x y z ) . Nonl inear Jacobi i t e r a t i o n s f a i l e d . Nonl inear 
Gauss-Seidel took 5 and t h e p resen t scheme took 3 i t e r a t i o n s 
t o converge t o the s o l u t i o n x = 0 . 0 , y = 1 . 0 and z = 0 . 0 . 

E x a m p l e 7. Solve : x = t a n ( x y z ) , 
y = t an (2x + 2y + 2z) and z = t a n x t a n y t a n z. With 
x ( o ) _ y ( ° ) _ z ( ° ) _ both non l inea r Jacobi and Gauss-
- S e i d e l i t e r a t i o n s f a i l e d to converge. The p re sen t scheme 
converged t o the s o l u t i o n x = y = z = 0 a f t e r 4 i t e r a t i o n s . 
Even wi th x ^ = y ^ = z ^ = 0.0001, non l inea r Jacobi and 
Gauss-Seide l did not converge w i th in 1000 i t e r a t i o n s . 

7. Discuss ions 
Like any o the r numerical method, the p resen t method has 

i t s l i m i t a t i o n s . I t i s a p p l i c a b l e only t o systems of non l inea r 
e q u a t i o n s . For a l i n e a r system, 

W ^ = 0 f o r a l l i = 1 , 2 , . . . ,n and k = 1 , 2 , . . . 

Hence t h i s scheme reduces to l i n e a r Jacobi i t e r a t i o n s . Also 
by computer exper imenta t ions i t was found t h a t , whenever f o r 

3 G. 
a p a r t i c u l a r system ~ = 0 , W. = 0 and the r a t e of con-

0 L 

vergence slows down. 
The method i s found to be not qu i t e e f f e c t i v e t o solve 

systems of equa t ions having mu l t i p l e r o o t s . For example: the 
system of equa t ions x = s i n x cos y and y = 1.5708 cos x s i n y 
has s o l u t i o n s which a r e : (0, 0 ) , (0, 1.5708) and (0, -1 .5708) . 
When were chosen as f o l l o w s : (0 .1 , - 2 . 0 ) , 
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(0.1, 0.1) and (0.5, 2.1), the method converged to the 
solutions (0, -1.5708), (0, 0) and (0, 1.5708) respectively. 
However, when the initial estimates were arbitrarily chosen 
as (999.0, 999.0), (333.9, -444.9) and (24.5, -45.9) it 
converged to (0, 0), (0, 1.5708) and (0, -1.5708) respecti-
vely. Indeed it was found consistently that whenever good 
initial estimates of a particular solution are chosen, the 
method invariably converged to that solution within few 
iterations; and if the initial estimates are chosen at random, 
it usually converges to one of the multiple roots. The cause 
for this has not yet "been found mathematically. 

For systems of equations with unique solutions, it was 
verified computationally that the method exhibits a global 
convergence property. In the example 3 (of the previous sec-
tion), when the initial estimates were arbitrarily chosen as 
-50.0, 999.0, and 85.0 respectively, it converged to the so-
lution x = 0.0 within 5 iterations. In the example 5» it 
converged to the solution x = 1.0534 and within 

arbitrarily chosen as: (-1.02, 2.0), (5.24, 9.14), (0.01, 
8.42), (-3.05, -9.21) and (501.2, 32.05). In the example 7, 
with arbitrary values assigned to the initial estimates 
(x(o), y ( o ), Z ( o>) as follows: (0.1, 0.1, 0.1), (-555.8, 
897.0, -876.9), (999.0, -999.0, -999.0), (-999.0, 999.0, 
999.0), (-999.0, -999.0, -999.0); (999.0, -999.0, 999.0) 
the present scheme converged systematically to the solution 
(0.0, 0.0, 0.0) within 10 iterations. It is needless to say 
that both nonlinear Jacobi and Gauss-Seidel iterations 
failed. 

In several applications it was found that while Jacobi 
iterations failed to converge, the new scheme converged to 
the solution within few iterations. We will now study the 
probable cause for this. Let 

10 iterations when the initial estimates were 
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where 

(14) P i i " l ) = ( ^ 7 ) (k_D (k_i) (k-1) (k-1) (k-1) ' 

Then from (6) and (8) , 

x i k ) = " G i k ' l ) + 

4. b ( k " 1 > G f x ( k " 1 ) x ( k " 1 ) G ( k " 1 ) x ( k " l ) x ( k ~ 1 ) > l + D i i i ^ 1 » • • • » X i - 1 « » »• • • ' tl / » 

where, G { k " 1 > = g J x ^ > , . . . . x ^ 1 >) . 

(k-1 } 
I f b ^ ' i s replaced by zero, the present scheme redu-

ces to nonlinear Jacobi i t e ra t ions . Thus i t i s clear that the 
sequence of i t e r a t e s generated by the present scheme are 
d i f ferent from those given by Jacobi . i terat ions . However, i t 
can be proved that i f both techniques generate the sequence 
of i t e r a t e s { x ^ } such that x ' k ' e D fo r a l l k and the 
mapping G i s contractive in D s a t i s f y i n g (10), then Jacobi 
i t e r a t ions wil l converge to x * , and i f furthermore, the 
perturbation vector W s a t i s f i e s (11), the present method 
wi l l a l so converge to the solution x * . But in general, 
nonlinear Jacobi i t e ra t ions wil l generate i t e r a t e s 
{ x ^ } £ D 0 , where D 0 c E n and DQ ^ D. Thus both techniques 
may not simultaneously converge to the solution. This has been 
v e r i f i e d in the examples 3, 5, 6 and 7 of section 5. 
Although no example was found yet , where present scheme of 
i t e r a t ions diverged and the nonlinear Jacobi scheme converged 
to the solut ion, such a p o s s i b i l i t y cannot be ruled out. 
A large number of appl icat ions studied so f a r have indicated 
that whenever both the present scheme and nonlinear Jacobi 
i t e ra t ions converged simultaneously, the former converged 
f a s t e r than the l a t t e r in ¡jeneral. The poss ible cause f o r t h i s 
wil l now be the topic of our discussion. 

F i r s t , we wil l assume that the method i s converging to 
the solution so that , 
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i ^ - D - 4 i < 1 f o r a l 1 

Since we did not assume the existence of ^ for i ^ j , 
(kl ^ l e t us assume that for a l l xv Je D, 

» 5 ) - - <)• 

j= j/1 

1 ( 2 Gi\ 

where 0<G<1, p£k~1 ̂  i s given by (14) and k _ 1 ^ are real 
numbers depending on Ĝ  and x. It may be observed that 

^ may toe chosen such that (15) w i l l represent the con-
tract ive property of G. 

Now, from (6) we get 

(16) x(k> - x* -x i x i ~ 

' ) ~ x i » i = 1 , 2 , . . . , n , k - 1 , 2 , . . . J k - 1 ) 
' ii 

Recalling that x* = G(x* , . . . , x* ) and applying the contrac-
t i v e property of G as given by the inequality (10) we get , 

n 
( 1 ? ) - x*| < |w (k)l + £ a | x i x i I ^ I w i I jTi id 

„(k-1) _ * 
d xd 

where a ^ are the elements of A. 
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Now if we replace in (16) by applying (8) and make 
use of the equation (15), we may get after some simplifications 

where 

i (k-1) >|T)(k-1)| qii *Mpii » 
and 

t. z max 1 k 

2 3 G. 

^ i / ^ . . . . . g ^ -e(a< M> x<k"1) 

Evidently | ^ 
all k. Without any loss of generality let us define 

are elements of an isotone matrix for 

max |qi3 (k-1) = a. id" i, d = 1,2,...,n. • 

This indeed is in conformity with the contractive property 
of G. Hence from (18) we get 

(19) xi xi < (k-1) * xi 

n 
2 'Z + d=1 ^ 

.(k-1) * " X d 

The inequalities (17) and (19) are both derived from the same 
equation (16). Only contractive property of the operator G 
was used in (17), whereas the value of wjp^ as well as 
contractive property of G were used in (19)- Thus recalling 
the assumption (7b) (which shows that the elements t^ are 
bounded for all 
on W4(k> 

i = 1,2,...,n) and the assumption imposed 
(that they ara small quantities whose squares may 

be neglected) we may conclude that, near the solution (where 
,(k-1) _ | (k)| nr, M k - 1 ) N2 qva.- I / _ X » | < 1 ) |Wv-.y| i s proportional to - xj' 

for 
< 1 ) 

i = 1,2,...,n. Since in the present scheme, whenever 
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(k) * convergence takes place, xv ' approaches x as fast as 
approaches zero, the rate of convergence is proportio-

nal to - for i = 1,2,...,n. This was syste-
matically verified "by computer experimentations. In the 

(k-1) absence of perturbations ' are the nonlinear Jacobi 
iterates. However, since are small near the solution, 

(k-1 ) 
under the present scheme, ' will approximate the Jacobi 
iterates. Thus we may conclude that the rate of convergence 
of the present method is almost quadratic with respect to that 
of the nonlinear Jacobi iterations. 

8. Conclusion 
The method developed in this paper is a form of functional 

iteration and hence it is simple both in theory and in prac-
tice. Although it is obtained by simply adding a perturbation 
vector to the nonlinear Jacobi iterations, it has demonstrated 
so far better convergence properties with respect to other 
existing functional iterations. A large number of applications 
studied so far indicate that the method is effective. 

Finally, works are on progress at present to study both 
theoretically and computationally the properties of a combined 
iterative scheme consisting of a successive over/under relaxa-
tion technique and perturbed Jacobi/Gauss-Seidel iterations. 
Theoretically or computationally no conclusive results have 
yet been obtained. However, by computer experimentations it 
was found so far that the perturbed Jacobi and the perturbed 
Gauss-Seidel are almost equally effective and the introduction 
of an arbitrary over/under relaxation parameter in the per-
turbed iterations does not improve its convergence properties. 
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