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1. Introduction

The numerical scheme which is often used to solve systems
of nonlinear equations is Newton's method. It has a quadratic
rate of convergence, But in order that it may converge, ini-
tial estimates of the solution are required to be close to the
solution. Furthermore, at each iteration, a Jacobian whose
value must be other than zero has to be evaluated. These are
indeed severe drawbacks of this method especially when a large
system of nonlinear equations is to be solved. On the other
hand, simpler schemes of iterations are the functional itera-
tions, namely, Jacobi iterations and Gauss-Seidel iterations.
These could be easily applied to large systems, but their
rates of convergence are linear. In this paper, attempts are
made to develop a simple functional 1iterative scheme having
a quadratic rate of convergence with respect to other func-
tional iterations.

The method has been derived by perturbing nonlinear Jacobi
iterations. Its effectiveness is established through several
applications. Some of them are discussed in section 6. It has
been proved mathematically and verified computationally that
the perturbation parameters control the mode of convergence of
iterations. Also, because of these perturbations, since the
iterates undergo displacements, it is expected that in some
cases these perturbed iterations may converge to the solution
whereas nonlinear Jacobi iterations will fail. This has been
verified through examples in section 6.
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2 S.K.Dey

Various perturbation methods to solve systems of equations
can be found in [1] - [4]. Hence the basic concept in this
work is not new. However, since the algorithm of this method
is much simpler than the previous methods, when applied to a
large system of nonlinear equations, it should take less
computer time and computer memory storage.

2. Formulation of the algorithm
The problem before us is to solve a system of nonlinear
equations

(1) fi(x,]’X2,.oo,xn) = O’ i = 1,2,.0-,11 ')

in a domain D which is a subspace of Rn, where R 1is the
n-dimensional real space.

Let x be a vector in D, given by x = (x1,x2,...,xn)T,
where the superscript T denotes the transpose of a matrix.
Let F 3 DeRP— Rn, then (1) may be expressed as

(2) F(x) = 0.

It is assumed that there exists a solution X = x'€ D of (2,
where x* = (x?}xz,...,xz)T. Thus F(x*) = 0. Let us

express the system (1) as
(3) Xy = Gi(x1,x2,...,xn), i =1,2,0e.,0),
These equations may be expressed as

(4) X = G(X),

where G : FcR®—=R®. Since x = x* is a solution of (4),

thus x* is a fixed point of the operator G,
Let x'© € D, be an initial estimate of x*. The non-
linear Jacobi iteration at some k-th iteration may be express-

ed as

(5) xik) = Gi<x§k-1),xék'q),...,x(k—q)), i=1,2,,..,0,



Numerical solution 3

where xik) is the value of Xy at the k-th iteration. We

will now introduce a perturbed iterative scheme as follows
k k k-1 k-1 k-1

(6) xi ) = w§ ) 4 Gi(xg ),xé ),...,xé )),

where W{k) are the elements of the perturbation vector

wk) - (wfk),wék),...,wék))Te;Rn; and will be computed in
terms of quantities obtained at the (k-1§—th iteration,
Let us assume that, for all k, x(k €D and g(k)e D,

where
g (k) = <G§k),G§k),...,G§k>) with (%)< Gi<§§k),x§k),...,xék)>.

wék)
small such that terms containing their squares may be neglect-
ed. Also the functionals Gi must be such that their first

and second derivatives at any k iteration must satisfy the
following conditions

To compute we will assume that these quantities are

2, |(X)
(7a) -55% # 1 and bounded,
i
(k)
2°a,
(7v) 5 bounded
3xi

for 1 =1,2,...,n, and k =1,2,... If the iterative schene

(6) converges to the solution x* after k-1 iterations,
xik = xik-1) = x;& for 1 =1,2,...,n0.
Thus

xik) = Gi<§§k-1),x£k-q),...,x£§;1),X£k),x§E;1),...,xék_1))

- 693 -



4 S.K.Dey

or,

k=1
Wék) + Gj(. ) =

Expanding the right-hand side of this equation by Taylor’s
series, and truncating after the second term by virtue of the
assumptions imposed upon Wik and (7b) on Gi’ we have

Gi(x(k-1),.... (k—']) ng-1)o gf‘-l")""’x

(k=1 )) gk-‘])

(8) "gk) = 38, .
1 -< ) (k-1) (k-1) (k-1) (k-1) (k-1)

’ooo’ i=1 o X i+1 ’oo~,x

The equations (6) and (8) form the required algorithm which
we will apply to solve systems of nonlinear eguations numeri-
cally.

3. Convergence theorems

We will now analyze the convergence properties of the
algorithm. In the vector form the equation (6) may now be
expressed as ‘

(9) (&) o glE) G(x(k"1 )).

(cf, [4] section 13.1.4), may now be developed as follows
T
Let |x]|= (.|x,]|,|x2 s |Xy l)

Theorem 1: Let G : D < R*—=R® be such that,

(10) la(1) - alz)] < Aly-2|

V ¥y, z€D, where A is an isotone matrix (nxn) and its
spectral radius ¢(A) < 1. Furthermore, if

(11) o [w®) | -

k-.oo
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the iterative scheme (9) will converge to the solution x*

and x* 1is the unique solution in D.
Proo f: Ix() x*|<lwk)] +|G(x(k1)) G(x*)|<

SIW(k)I + Alx(k'1) - x*| ...< Z k- JIW(J)I +Ak|x (0) -x*l.

Since ¢(A)<1, we can choose a norm sucb that [A| < 1.
Let e(k) = xzk).- x*[ and v(a) = W J) I From (11) for
some J > k, ||v(3)||<a Thus
K k
Kesi - (
[|e(k)"<||Ake(°)" + J§O“A JV(J)" + j:%o;'l | Iy J)"<
( page”
k
IR O + g oy ) we il

Since |A| <1, as k =e=, Ile(k)"—* O. This establishes
convergence of iterations to the solution.

To prove unigueness, let us assume that y* is another
fixed point of G in D. Then,

[x* - y*| = |6(x*) - az*)| < Alx* - 3%,

Thus, (I - A)|x™ - y*| < 0. Since ¢(4) <1, then
[~ -]

(1 - 4y =Z AP > o.
p=o

Hence, Ix*'- y | 0. Therefore, x¥* = y*.

It is rather easy to establish that the condition (11) is
a necessary condition for convergence of the iterative
scheme (9).

Theorem 2. If the mapping G satisfies (10),
the condition (11) is a necessary condition for convergence
of the iterative scheme (9) to the solution x* in D.

Procof: From (9)

lw(k)l - |x(k) - G(x(k-'l ))lé | <& _ =+ A|x(k-1) - x¥|.
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If y, zeR are two vectors, |y| < |z| implies that
[7]| < ||z]ls Thus we get,

IR PR I Y Bt

If the iterations converge to x¥, for some k)k  + 1,

||x(k) - x*]l{ € /2 and Hx(k-1) - x*| < e/(2)al).
Thus, HW(k”|< €. This proves the theorem.
4, Criterion for convergence of iteratlons

In most iterative schemes, convergence of iterations is
accepted if after some k 1terations,

(12) |x§k) - xik_1)|< 3

for 1 =1,2,e..4,n, where & 1s a small positive gquantity
chosen arbitrarily. Although mathematically the validity of
this condition is understandable, in a computer program it is
merely a necessary condition for convergence. Thus it is
conceivable that a slowly converging iterative scheme may
satisfy (12) and converge to a wrong solution even when -

€ = 0,0001.

In the present scheme, the mode of convergence is
asymptotic and directly depends on the values of the perturba-
tion vector W k). This consistent with (11) the convergence
criterion is set as

(13) max

3y
WSk'| <t,
1 o

where (in a computer program) we generally chose & <1074, 1
the assumptions imposed upon the operator G are satisfied,
then atcording to the theorems 1 and 2, the condition (13) is
both necessary and sufficient for convergence. This was
verified by computer experimentations.

- 696 -



Numerical solution Vs

5. Computational procedure

Let us consider an illustration showing thereby the
computational procedure of the algorithm.

Example. Solve: x; - cos(x1,x2) +1 =0,
x5 - sin(xq,xz) = 0. ]

This system has a unique solution: x =0, %= 0. Let
Gq(x1,x2) = cos(x1,x2) ~ 1 and G2(x1,x2) = sin(x1,x2).
aGi
A, ¢
9Ky

Let Pi(x,],xz) = i=1,2.

Step 1. Choose some (xéo), xéo)) to be the initial

estimate of the solution. Then at some k-th iteration we
compute

(k=1) _(k=1) (k-1)
(G1 » X5 ) - G

E=) (k-1 ’
1= (e, £51)

G2<x§k-1)’ Gék—ﬂ)) R Gék—1)

1 - Pz(x§k—1)’ Gék—1)) ,

Gy

Step 2. w§k) -

wék)

where Gik'q) = Gi(xgk-q), xék-q)), i=1,2,

Now compute
Step 3 Xi(k) Swle) 4 oy s,

Step 4. If max ‘Wék)l < 107%, the last computed

values of x§k) will give the solutions. If this inequality
is not satisfied, the steps 2 - 4 will be repeated.

This procedure may now be extended to any large system.
I Pi = O for some 1, +the value of the perturbation
parameter will be zero, and the effectiveness of the method
will be reduced., If Pi =1 for some i, the method will
fail,

For the above system of equations when we started itera-
tions arbitrarily with xqo), xéo) equal to (999.0, -999.0),
(~999.0, 999.0) and (-999.0, -999.0) respectively, the method

converged to the solution (O, O) within 4 iterations.

- 697 -



8 S.K.Dey

We will now con&ider few more applications of this method
and compare its effectiveness with that of the other well-
~known nonlinear functional iterations, namely Picard, Jacobi
and Gauss~Seidel iterations.

6. Comparison with other functional iterations

A comparative study between the effectiveness of this
method with that of other functional iterations, namely,
Picard, Jacobl and Gauss—Seidel iterations will now be studied
by virtue of applications. Equations with one, two, and three
variables will be considered for solutlion. The criterion for
convergence of iterations in Picard, Jacobl and Gauss—Seidel
iterations is given by (12) with ¢ = 10'4, whereas that for
the present scheme is given by (13) with &= 10"+,

(&) Equations with one variable

Jn this case, the present scheme will be compared with
Picard’s iterations.

Example 1. Solve: x + lnx = O, Choose x(o) =
= 0.5 and G(x) = exp(-x). Picard?s scheme took 14 itera-
ftions and the present scheme took 3 iterations to converge to
the solution x = 0.56712.

Example 2. Solve: x5 - 3.714 + '7.4x3 - 10.8x2 +
+ 10.8x - 6.8 = 0. Choose x'°) = 0,05 and
G(x) = (6.8 + 10.8%° - 7.4 + 3.7x" - x°)/10.8.

Picard?s scheme took 14 iterations and the present scheme
took-5 iterations to comnverge to the solution x = 1.7.

Example 3. BSolve:t x - 2.9 tan x = O, Choose
x(o) = =999.0 and G(x) = 2,9 tan x. Picard’s scheme did
not converge (even when x 0) = 0.05), whereas, the preseﬁt
scheme converged to the solution x = 0.0 after 3 iterations.
(B)Equations with two variables

Example 4., Solve: x + y2 = sin(xy) and
=+ y+ 1= cos(xya). Choose x(o = y(o) = 0.1; and
G, (x,5) = sin(xy) - y2, G, (x,5) = cos(xy‘z) -1 - %%
Nonlinesr Jacobi scheme took 4, nonlinear Gauss-Seidel took 3
iterations and the present method took 4 iteratioms to con-
verge to the solution x =y = 0.0.
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Exanmnple S Solve: x = 0.8542 cos x + Q.7194 siny
and y = 0.9764 sin x + 0.4597 cos y. - Choose (x\°7, y{®) -
= (1.0, 0.0). Nonlinear Jacobi failed, nonlinear Gauss-Seidel
took 13 and the present scheme took 9 iterations to converge
to the solution x = 1.053% and y = 1.0695.
(c) Equations with three variables
Example 6. BSolve: x - sin(xyz) = O, y - cos(xyz) =0
and z - tan(xyz) = O. Choose x'°/ = y(o) = z(o = 2,03
and G, (x,¥,2) = sin(xyz), G2(x,y,z) = cos(xyz) and G3(x,y,z) =
= tan(xyz). Nonlinear Jacobi iterations failed. Nonlinear
Gauss~Seidel took 5 and the present scheme took 3 iterations
to converge to the solutiom x = 0.0, y = 1.0 and 2z = 0.0,
Example 7. Solve: x = tan(xyz),
y = tan(2x + 2y + 2z) and z = tan x tan y tan z. With
x(o) = y(o = z(0 = 1,0, Dboth nonlinear Jacobi and Gauss—
-Seidel iterations failed to converge. The present scheme
converged to the solution x =y = z = 0 after 4 iterations.
Even with x o) . v = z(o) = 0,0001, nonlinear Jacobi and
Gauss-Seidel 4id not converge within 1000 iterations.

7. Discussions

Like any other numerical method, the present method has
its limitations. It is applicable only to systems of nonlinear
equations. For a linear system,

ng)\ =0 for all 1 =1,2,s.eyn and k = 1,2,...

Hence this scheme reduces to linear Jacobi iterations. Also

by computer experimengations it was found that, whenever for
G

a particular system. 75

%, =0, W. =0 and the rate of con-

i
vergence slows down.

The method is found to be not quite effective to solve
systems of equations having multiple roots. For example: the
system of equations x=sinx cosy and y=1.5708 cosx sin y
has solutions which are: (0, 0), (0, 1.5708) &nd (0, -1.5708).
When (x(o , 7'°/) were chosen as follows: (0.1, -2.0),
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(0e1, 0.1) and (0.5, 2.1), the method converged to the
solutions (0, -1.5708), (0, 0) and (0, 1.5708) respectively.
However, when the initial estimates were arbitrarily chosen
as (999.0, 999.0), (333.9, -444.9} and (24,5, -45.9) it
converged to (0, 0), (0, 1,5708) and (0, -1,5708) respecti-
vely. Indeed it was found consistently that whenever good
initial estimates of a particular solution are chosen, the
method invariably converged to that solution within few
iterations; and if the initial estimates are chosen at random,
it usually converges to one of the multiple roots. The cause
for this has not yet been found mathematicalily.

For systems of equations with unique solutions, it was
verified computationally that the method exhibits a global
convergence property. In the example 3 (of the previous sec~
tion), when the initial estimates were arbitrarily chosen as
-50.0, 999,0, and 85.0 respectively, it converged to the so-
lution x = 0,0 within 5 iterations, In the example 5, it
converged to the solution x = 11,0534 and y = 1. 06?5 within

10 iterations when the initial estimates (x o) were

arbitrarily chosen as: (-1.02, 2.0), (5.24, 9. 14), (0. 01
8.42), (~3,05, =9,21) and (501.2, 32,05). In the example 7y
with arbitrary values assigned +to the initial estimates
) ) 2(0)y g9 ro110ms: (0.1, 0.1, 0.1), (-555.8,
897.0, -876.9), (999.0, -999.0, -999.0), (-999.0, 999.0,
999.0), (-999.0, -999.0, =999.0); (999.0, -999.0, 999.0)

the present scheme converged systematically to the solution
(0.0, 0.0, 0.0) within 10 iterations. It is needless to say
that both nonlinear Jacobi and Gauss-Seidel iterations
failed.

In several applications it was found that while Jacobi
iterations failed to converge, the new scheme converged to
the solution within few iterations, We will now study the
probable cause for this. Let

b(k—1) _ 1
it ";“:'_ﬁz?ﬁf'
Pii
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where

. 3G
(k1) _ ("1
(14)  pgy "<9xi>x(k-1) xiﬁq‘). ng-1)’ ng;1)’

(1)L conpxE)
Then from (6) and (8),
9 ol ) o)
+ o (&) Gi<x§k'1),...,xifq1), o), x§f;“),...,xék'1)),
where, Gik_q) = Gi(xgk_q),...,xék—q)).

It béf‘q) is replaced by zero, the present scheme redu-
ces to nonlinear Jacobi iterations. Thus it is clear that the
sequence of iterates generated by the present scheme are
different from those given by Jacobi .iterations. However, it
can be proved that if both techni?ues generate the sequence
of iterates {x(k)} such that =x k)e D for .all k and the
mapping G 4is contractive in D satisfying (10), then Jacobi
iterations will converge to x*} and if furthermore, the
perturbation vector W k) satisfies (11), the present method
will also converge to the solution x¥, But in general,
nonlinear Jacobi iterations wlll generate iterates
{x(k)} €D,, where D CR® and D, # D. Thus both techniques
may not simultaneously converge to the solution. This has been
verified in the examples 3, 5, 6 and 7 of section 5.
Although no example was found yet, where present scheme of
iterations diverged and the nonlinear Jacobi scheme converged
to the solution, such a possibility cannot be ruled out.

A large number of applications studied so far have indicated
that whenever both the present scheme and nonlinear Jacobi
iterations converged simnltaneously, the former converged
faster than the latter in zeneral., The possible cause for this
will now be the topic of our discussion.

FPirst, we will assume that the method is converging to
the solution so that,
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k
|x§ ) x;I <1 for all i
2" - =

2G
Since we did not assume the exlistence of axi for 1 # J,

let us assume that for all x(k)e D,

(15) Gi<x,(]k_1),...,xglf,-‘1),G§k'1),x§$;1),...,xr(lk'1)) e (xt .. x)s

n

-1 -1 (k=1 -1
2o (< <)o (o) o)
3#

2
452
axy x,(lk'”,...,egk"]) - e(egk"‘) - x’{),. ..,xf!k"‘)

(0 - 2

where 0<6<1, pi%‘q) is given by (14) and qé?’q)

numbers depending on Gi and x. It may be observed that

are real

qég_q) may be chosen such that (15) will represent the con-
tractive property of G.
Now, from (6) we get

(16) xik) - x} =

-1 k-1 * .
= Wj(_k>+Gi(x’€k )No.,xr(l ))-xi’ i=1,2,c.050, k =1,2,...

Recalling that x* = G(x*,...,x*) and applying the contrac-
ive property of G as given by the inequality (10) we get,

n
<+ e

where aij are the elements of A,
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Now if we replace Wék) in (16) by applying (8) and make
use of the equation (15), we may get after some simplificationms

n

00 [=f8)-af | (of - ) 2 [als ] <-4

Jj=1
where
(k=1) (k—1)
|qi > 11 ’
and
G
tizma.x _2'1
|\ e Ll o (D L), )
i .

Evidentiy ‘q§§'1)\ are elements of an isotone matrix for

all k. Without any loss of generality let us define

max Iq§k -1) = aid’ 1, = 1,24e00,n.
This indeed is in conformity with the comtractive property
of G. gence from (18) we get
n
* t - - =
o9 (=5} < 3 (e f o 2w fofe) - o
The inequalities (17) and (19) are both derived from the same
equation (16). Only contractive property of the operatof G
was used in (17), whereas the value of Wik as well as
contractive property of G were used in (19). Thus recalling
the assumption (7b) (which shows that the elements t; are
bounded for all i = 1,2,...,n) and the assumption imposed
on W§k) (that they ar:s small quantities whose squares may
be neglected) we may conclude that, near the solution (where
|G£k"1) - *|<‘1) Iwik l is proportional to (ng_q) xi)2
for i =1,24...,0. Since in the present scheme, whenever
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*

convergence takes place, (k) approaches x* as fast as
(W approaches zero, the rate of convergence is proportio-
nal to ( k=1) _ xi) for i =1,2,...,0. This was syste-
matically verified by computer experimentations. In the
absence of perturbations Gik"1 are the nonlinear Jacobi

iterates, However, since W(k) are small near the solution
’ i ’

under the present scheme, G§k_1) will approximate the Jacobil

iterates. Thus we may conclude that the rate of convergence
of the present method 1s almost quadratic with respect to that
of the nonlinear Jacobil iterations.

8. Conclusion

The method deveined in this paper is & form of functional
iteration and hence it is simple both in theory and in prac-
tice. Although it is obtained by simply adding a perturbation
vector to the nonlinear Jacobl iterations, it has demonstrated
so far better convergence properties with respect to other
exlsting functional iterations. A large number of applications
studied so far indicate that the method is effective.

Finally, works are on progress at present to study both
theoretically and computationally the properties of a combined
iterative scheme consisting of a successive over/under relaxa-
tion technique and perturbed Jacobi/Gauss-Seidel iterations.
Theoretically or computationally no conclusive results have
yet been obtained. However, by computer experimentations it
was found so far that the perturbed Jacobi and the perturbed
Gauss~Seidel are almost equally effective and the introduction
of an arbitrary over/under relaxation parameter in the per-
turbed iterations does not improve its convergence properties.
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