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DETERMINISTIC COMPUTABILITY 

A number of approaches t o computation theory has been de-
veloped which base on c h a r a c t e r i z i n g a computer by the se t of 
i t s poss ib l e computation runs (Pawlak [1] , Kwasowiec [ 2 ] ) . 
I t has been remarked a l so t h a t the same idea app l i e s t o com-
p u t e r s ac t ing in a continuous way (Konikowska [4] , Zakowski 
[5 ] ) • The aim of t h i s paper i s to examine those genera l p ro -
p e r t i e s of s e t s of computation runs of computers (computable 
s e t s ) , which are v a l i d f o r a l l types of computers. To t h i s 
end a genera l time se t i s introduced t o r ep resen t var ious time 
ax i s and computable s e t s are def ined as i n f e c t i v e ones and 
closed under s h i f t s along time ax i s . The i n a c t i v i t y means 
t h a t any computation of a computer i s uniquely determined by 
some i t s i n i t i a l p a r t . The closedness means t h a t toge the r 
with every computation a l l i t s p a r t s corresponding t o r i g h t 
segments of the time a x i s , when s h i f t e d to the o r i g i n of the 
time a x i s , are computations as wel l . In t h i s paper i t i s 
shown t h a t such genera l computable s e t s have bas ic p r o p e r t i e s 
s imi l a r t o those discussed in [ l ] , [ 2 ] , [ 3 ] , [4]., [5] and [6], 

1. A genera l time se t 
Let T be an a r b i t r a r y i n f i n i t e s e t and ^ an ordering 

r e l a t i o n ( l i n e a r ) in T. The p a i r ( T , < ) i s ca l l ed an 
ordered s e t . For any element a e T by T we denote the se t 
{ t e T : a-s: t}. The r e l a t i o n 4 r e s t r i c t e d to any set T 
we denote a lso by .< . 
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2 I.Nabialek 

D e f i n i t i o n 1.1. An ordered set (T, < ) is 
called a homogenously ordered set i f f for any element a e T 
the ordered set (T&, < ) is similar to (T, < ). 

Every homogenously ordered set ( T , 4 ) has a f i r s t ele-
ment, which we denote by 0. 

Let A be the set of a l l similarity mappings a (an iso-
morphism) such that <*(T) = for some a e T. oL 

Let o( • fi be the composition of the functions <x and p 
such that p is the f i r s t mapping. • 

D e f i n i t i o n 1.2. Let (T, 4 ) be an ordered 
set. Any function 8 s T - »A such that 

is called a function of movements in ( T , 4 ) . 
D e f i n i t i o n 1.3. A monotonously ordered set 

(T, < } is called a uniformly ordered set i f f there exists a 
function of movements in ( T , < ) . 

D e f i n i t i o n 1.4. A tr iple (T, < ,G) is called 
a general time set i f f ) is an uniformly ordered set 
and 0 is a function of movements in ( T , < ) . 

l we denote the identity mapping. 
T h e o r e m 1.1. I f ( T , < , 8 ) is a general time 

set, then 9(0) = t . 
P r o o f . Let 6(0) = <x. By (1.2) we have «. e 8(T). 

Since o< (0) = 0 and o<[o<.(0)] = 0, we have ot ° o( = ot by 
Definition 1.2. Let a t T and cx(a) = b. Since «.•cx = o{, 
we have o< [<*(a)] =o<(b) = oc(a), hence a = b. For every 
a 6 T we have c<(a) = a, thus cx = t . 

2. Partial functions 
— X Let X, Y, Y* be non-empty sets and 57 ^V we 

denote the set of a l l functions f : X —»-Y. 

(1.1) 
a „ j. 

(1.2) 
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Deterministic computability 3 

Y 
D e f i n i t i o n 2.1. For any functions f,ge Ŷ  

we define a relation Y as follows: 

(2.1) (f = g ) * = > V j [ f ( p ) £ l v g ( p ) 6 l ] ^ [ f ( p ) = g(p)] l • 
pex i J 

Y X The relat ion = i s an equivalence relat ion in Y„. 
x 

D e f i n i t i o n 2.2. For any f6Y£ the equiva-
lence class [ f ] y is. called a par t i a l function from X to Y. 

We denote by f : X-^Y the par t i a l function [ f j y 6 ^ ^ ' 

D e f i n i t i o n 2.3. A function f : X Y i s 
called the empty function i f f \/ [f(p)XY]. 

pfcX 
The empty function i s denoted by & . 
For any function f : X—""Ŷ  and for any set QEX we 

denote by f|Q the restr ict ion of the function f to Q. 
D e f i n i t i o n 2.4. For any [fl^eY^/y the 

equivalence class [f|Q]y c a l l e d "the restr ict ion of the 

par t i a l function [ f ] y to Q. 

3. Informative functions 
Let ( T , , 9 ) be a general time set and X, Y - arb i t ra-

ry non-empty sets . 
D e f i n i t i o n 3.1. A function a : T * X —T_ * X OL 

i s called an extension of a s imi lar i ty mapping <x e 6(T) on 
T * X i f f 

(3.1) V V £ ( t , x ) = (<x(t),x) . 
teT xeX 

We denote by J ' the set of a l l par t i a l functions 
f : T * X-^Y. 

D e f i n i t i o n 3.2. Any function f | Z, where t i l ' 
and Z£T*X, i s called an informative function with domain 
of information Z. 
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4 I.Nabialek 

For any a6 T and f c T we write f & = f»o(, where 
ot e 6(T) and cx(O) - a. For any aeT and f e ST the function 
f a |Z is an informative function with domain of information Z. 

4. Computable sets 
Assume that the following sets are arbitrary but f ixed: 

a general time set (T,<J,6), non-empty sets X, Y and a 
domain of information Z e i *X, Hence the following system 
is fixed (T ,< ,e ,X,I ,Z ) . 

D e f i n i t i o n 4.1. A set PeJ" i s called a Z- in-
jective set i f f 

(4.1) V [ ( f|Z = glZ) (f = g ) ] . 
f .seF1 

D e f i n i t i o n 4.2. For any set I S J " by the 
*-closure of F we mean the set F* = j * (p = £a for some 
f € F and a e T } . 

D e f i n i t i o n 4.3. A set F £ T is called a 
*-closed set i f f F * = F. 

D e f i n i t i o n 4.4. A set F£!T is called a com-
putable set i f f F is Z-injective and * -c losed. 

D e f i n i t i o n 4.5. A function f 6 7 is called 
a computable function i f f there exists a computable set F 
such that f 6 F. 

5. Properties of * -closure ^ 
T h e o r e m 5.1. The operation H , where H^T, 

is a topological closure 
P r o o f . Definition 4.2 implies the following condi-

tions 

(5.1) 0* = 0, (0 - the empty set) , 

(5.2) V h £ H * , 
H£3" 
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Deterministic computability 5 

(5.3) V ( L u H / = H%H2. 
h 1 , H 2 ^ ? ' 1 d ' ^ 

Since fo r any a , b e T we have ( f a ) b = ( f " « ) ° ji = f ° ( * °jS) , 
where oc,j3eG(T) and cx(0) = a , / J ( 0 ) = b and ct °fl = y e G(T) 
we infer that ( f a ) t , = f c f o r some c e l . Thus we have 

(5.<0 V (H*)* = H*. 

The conditions (5 .1 ) , (5 .2 ) , (5.3) and (5.4) imply Theorem 
5.1. 

Prom Theorem 5.1 we immediately obtain the following 
coro l l a r i e s . 

C o r o l l a r y 5.1 . If G ^ H ^ T , then H*. 
C o r o l l a r y 5 .2 . For any H ^ H ^ f , ( H ^ H g ) * ^ 

C o r o l l a r y 5.3 . Any f i n i t e union of * - c l o s e d 
se t s i s a * - c l o s e d set . 

C o r o l l a r y 5.4. Any intersection of * - c l o s e d 
se t s i s a * - c l o s e d set . 

T h e o r e m 5.2. I f for every s e S the set F„ i s s 
computable, then the set F = ' U P i s a lso computable. 

s t o s 
P r o o f . I f H i s a Z-injective set and G£H, then 

G i s a Z-injective se t . Hence i f the s e t s F g are compu-
tab le , then the set F = O j P„ i s Z-inject ive . By Corollary 5 c O S w 5.4 the computability of the se t s FQ implies F = F. s 
Hence the set F i s computable. 

T h e o r e m 5.3. For any F £ J" the following condi-
t ion holds 

(5:5) » * = £ i f f 

P r o o f . Since fo r any f e F we have ^ { f j E F , by Co-
rol lary 5.1 we infer that for any f 6 F , { f } £ F * , hence 
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6 I.Nabiaiek 

fVjP { f } * G I 1 ' 1 1 S e I 1*» then there exist a e T and f g F 

such that g = f a , thus g6 { f } * . Hence F ^ f U ^ j f } . 

Theorem 5.3 implies the fol lowing corollary 
C o r o l l a r y 5.5. Any union of * - c l o s ed sets i s 

a * - c losed set. 
T h e o r e m 5.4. I f the set F = i s Z-injjec-

tive and f o r every s e S the set F_ i s * - c losed , then the 
set F i s computable. 

P r o o f . The set F i s * - c l o sed by Corollary 5.5. 
Since the set F is Z-ingective, i t i s computable. 

6. Fundamental properties of computable functions 
T h e o r e m 6.1. A function f 6 SF i s computable i f f 

<6 -1> a^beT < f a l Z = f b l Z > = 

P r o o f . I f the function f e-f i s computable, then 
there exists a computable set F such that f e F. Any com-
putable set i s * - c l o sed , hence f o r any a e T , f & e J. Any 
computable set i s Z - in ject ive , thus i f (p,yeF, then 
(cp|z=i|J|Z)=£(<p=yO. Let c/>= f a and yj= f ^ . We see 
that condition (6.1) holds. I f f s a t i s f i e s condition (6 .1 ) , 
then the set F = j f j * i s Z- inject ive and * - c losed . Thus 
the set F i s computable. Since f 6 F, f is a computable 
function. 

D e f i n i t i o n 6.1. A function f e 7 i s called 
Z- in ject ive i f f 

<6 -2> a , M [ ( a ^ b ) ^ ( f a | Z ^ f b | Z ) ] . 

C o r o l l a r y 6.1. I f a function f e 7 i s Z - in j ec -
t ive , then f o r any a e T the function f i s also Z - in j ec -
t ive . 

C o r o l l a r y 6.2. Any Z- inject ive function i s com-
putable. 
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Deterministic computability 7 
A 

Let c e T , ? e 0(T) and i (0) = c. We denote: 1 = tf, 
2(n = 7f - Tf11-'' f o r any natural number n > 1. I f de T and 
3 n ( 0 ) '= d, then we write d = n»c, and i f e e T , 
4 ^ ( 0 ) ] = e and cx(0) = e , then we write e = a 0 n« c . 

D e f i n i t i o n 6 .2 . A funct ion £ e <T i s ca l l ed 
Z-periodic i f f 

(6 .3 ) a^T Ojteel neN ( f a l Z = f a © n - c l Z ) -

C o r o l l a r y 6.3« I f there e x i s t s a e T such that 
the funct ion f & i s Z-periodic , then the function f i s 
a l so Z-periodic. 

T h e o r e m 6 .2 . I f a funct ion f e i s computable 
and not Z - i n j e c t i v e , then i t i s Z-periodic. 

P r o o f . I f a funct ion f e T i s not Z- in j ec t ive , then 

a , ^ T [ (a ¿ D ) A ( f a | Z - f b | Z ) ] . 

Let a < b and cx,/3ee(T), oc(0) = a , / J ( 0 ) = b . Let c e T 
be such that ot(c) = b and 2 f£9 (T) , ^(O) = c * have 
c<.[y(0)] =ot (c ) = b. Since a ^ b , we have ^ t t, . Hence 
b = a © c and from (6 .4) i t fol lows that f & | Z = f a @ 0 | Z . 
The funct ion f e W i s computable, thus from (6 .1) i f 
f a l Z = f a @ c l Z t h e Q f a = f a © c a Q d V l = f a © c -
Consequently f a 0 c = f a @ 2 c , hence f & @ I Z = f & @ 2 I Z. 
Analogously, i f f & | Z = f & @ c | Z = . . . = f & @ k . c | Z , then 
f a © c | Z = f a © 2 c | Z = f a © ( k + 1 ) . c | Z ' T h u s i f f a | Z = 
= f a © k . c | Z ' t h e n f a Z = f a ® ( k + 1 ) . c | Z - H e n c e condition 
(6 .3) holds. ' 

T h e o r e m 6 .3 . For any funct ion f £ 1 the set 
r 1* 
| f } i s computable i f f the funct ion f i s computable. 

P r o o f . Since f e { f } * , we i n f e r that i f the set 
{ f } * i s computable, then the function f i s computable. I f 
the funct ion f i s computable, then from (6 .1) i t fo l lows 
that the se t { f } i s Z- inJect ive and the set { f } * i s 
^ - c l o s e d , thus i t i s computable. 
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8 I.Nabialek 

T h e o r e m 6.4. If g,he{f}*, then ge{h}* or 

P r o o f . If g,he{f} , then there exist a,b£T such 
that g = f & and h = f^. Let a< b and oi,/5e0(T), 
cx.(0) = a, fi (0) = b. Let c €T be such that oc(c) = b and 
i e e(T), fl(0) = c. We have (fa)n = (f • 3) • 7 = i • (« • l) = 
= f°jj, because otf̂ f(0)1 = b = 0(0). Thus (f ) = fv, hence 

r ̂  r "I* h = gc and h e {g} • Analogously, if b^a, then g€|hj . 

7. Conclusions 
The concept of detenainistic computability seems to pro-

vide a base for uniform approach both to discrete and conti-
nuous computability. To get the notions of discrete computa-
bility as those in [1] and [3] it suffices to consider the 
system (T,,0,X,Y,Z) with: T - the set of all non-negative 
integers, ^ - the natural ordering of T, 0(T) - the set of 
all isometrical mappings from T to T, X - an arbitrary 
one-element set, Y - an arbitrary non-empty set, Z = jo} 
(Pawlak»s computability in [1]) or Z = { 0,1,... )} 
(Grodzki's computability in [3]). To get the notions of con-
tinuous computability like those in [4] and [5] it suffices 
to consider the system (T,4»6»XtY,Z) with: T - the set of 
all non-negative real numbers, - the natural ordering of 
T, 9(T) - the set of all isometrical mappings from T to 
T, X - an arbitrary one-element set and Z = < 0;t) (the 
'C-computability of [4] ) or X - (n-1^-dimensional Euclidean 
space and Z - an arbitrary non-empty set such that Z E T * X 
(the Z-computability of [5]), Y - an arbitrary non-empty set. 
Moreover, to get the notions of computability of[l], [3],[4] 
and [5] it suffices to assume that the computation is a func-
tion f : T 

Having introduced partial functions we may as well examine 
hybrid computations. A hybrid computation can be defined as 
follows. Let, for any (p £ T, Z^, = •[ (t ,x) 6 Z : (f(t,x)6 l}. 
A computable function f is called a hybrid computation iff 
there exists a e r: such that Zf ^ Z^. Because the enpty 
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Deterministic computability 9 

function <y is computable, it is possible to examine also 
computations which are finite- in time (a computation f is 
said to be finite in time iff there exists ae T such that 
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