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DETERMINISTIC COMPUTABILITY

A number of approaches to computation theory has been de-
veloped which base on characterizing a computer by the set of
its possible computation runs (Pawlak [1], Kwasowiec [2]).

It has been remarked also that the same idea applies to com-
puters acting in a continuous way (Konikowska [4], Zakowski
[5]). The aim of this paper is to examine those general pro-~
perties of sets of computation rumns of computers (computable
sets), which are valid for all types of computers. To this
end a general time set is introduced to represent various time
axis and computable sets are defined as injective ones and
closed under shifts along time axis. The injectivity means
that any computation of a computer is uniquely determined by
some its initial part. The closedness means that together
with every computation all i%ts parts corresponding to right
segments of the time axis, when shifted to the origin of the
time axis, are computations as well. In this paper it is
shpwn that such general computable sets have basic properties
similar to those discussed in [1], [2], [3], [4], [5] and [6}

1. A general time set

Let T be an arbitrary infinite set and £ an ordering
relation (linear) in T. The pair (T,<) 4is called an
ordered set. For any elemenvs ae€T by Ta we denote the set
{teT : a<t}. The relation < restricted to any set QST
ve denote also by £ .
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2 I.Nabiatek

Definition 1.1. An ordered set (T, ) is.
called a homogenously ordered set iff for any element aeT
the ordered set (Ta’ < ) is similar to (T, < ).

BEvery homogenously ordered set (T,< ) has a first ele-
ment, which we denote by O.

Let A be the set of all éimilarity mappings o (an iso-
morphism) such that o (T) = T, for some a € T.

Let o °f be the composition of the functions o and [‘
such that S is the first mapping,.

Definition 1.2, Let (T,<) be an ordered
set. Any function © ¢ T —A such that

(1.1) a\Y/T[e(a) = =« (T) = Ta]’
(1.2) o("}Z’(m)[(cﬂ-ﬁ)ee(T)]

is called a function of movements in (T,< ).

Definition 1.3 A monotonously ordered set
(T, <) is called a uniformly ordered set iff there exists a
function of movements in (T, <).

Definition 1.4. A triple (T,<,0) is called
a general time set iff (T,< ) 4is an uniformly ordered set
and © 1is a function of movements in (T,< ).

By .t we denote the identity mapping.

Theoremn 1.1. If (7,£,0) is a general time
set, then ©(0) = t.

Proof. Let ©(0) =«. By (1.2) we have ceo € 6(T).
Since «(0) =0 and «[at(0)] = O, we have ol *ox= ot by
Definition 1.2. Let ae¢T and afa) = b. Since K cor= o,
we have o [a(a)] =«(b) = x(a), hence a =b. For every
a€cT we have o(a) = a, thus o =1.

2. Partial functions
Tet X, Y, Yy Dbe non-empty sets and YE¥,. By Y_E we
denote the set of all functions f : X —1Y.
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Deterministic computability 3

Definition 2.1. For any functions £,g€ Y}
we define a relation I as follows:

(2.1) (£

=Y, fewervemrer] o [z = 5]} -

The relation L is an equivalence relation in Yff.
Definition 2.2, For any eri the equiva-
lence class [f]Y is. called a partial function from X to Y.

We denote by_ f : XY the partial function [f]Yer/I.

Definition 2.3, A function f : X—3Y is
called the empty function iff ‘¢ [£(p)gY].
ex

The empty function is denotgd by ¢.

For any function £ ¢ X—Y  and for any set QEX we
denote by f|Q the restriction of the function £ to Q.

Definition 2.4, For any [f]I(iY,z(/Y the
equivalence class [le]Y is called the res:b.rictign of the

partial function [f]y to Q.

3. Informative functions

Let (T,<,8) be a general time set and X, Y - arbitra-
ry non-empty sets. '

Definition 3.1. A function a3z TxX—~T, *xX
is called an extension of a gimilarity mapping <« € ©(T) on
TxX iff

(3.1) YV YV &(t,x) = (a(t),x) .
teT xeX

We denote by F the set of all partial functions
£ DxX—>Y.

Definition 3,2, Any function f|Z, where fe¥F
and Z&T*xX, 1s called an informative function with domain
of information 7Z,
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4 I.Nabiatek

For any a€T and fe¢¥ we write f, = foo, where
% €0(T) and o{(0) = a. For any ae€T and f e F the function
fa|z is an informative functicn with domain of information Z.

4, Computable sets

Assume that the following sets are arbitrary but fixed:
a general time set (T,<,0), non-empty sets X, ¥ and a
domain of information Z<T xX, Hence the following system
is fixed (T,<,9,X,Y,2).

Definition 4.1. Aset FETF is called a Z-in-
jective set iff

(41) Y [(212 = g12) = (¢ = g)].
f,ecF

Definition 4.2. For any set FESF by the
*-closure of F we mean the set F* ={(p: ¢=1£, for some
f¢F and a€T}.

Definition 4.3. Aset FET is called a
%-closed set iff F¥ = F.

Definition 4.4. A set FESF is called a com—
putable set iIff F 1is Z-injective and % -closed.

Definition 4.5 A function f£e€ F 1is called
a computable function iff there exists a computaeble set F
such that fePF.

5. Properties of ¥ —closure
Theorem 5.,1. The operation H'—->H*, where HET,
is a topological closure

Proof, Definition 4.2 implies the following condi-
tions

(5.1) 9% =9, (¢ - the empty set),

(5.2) Y ner®,
HET
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Deterministic computability 5

(5.3) \vd (Hyv )™ = BYUES.
Hy H= F

Since for any a,b€T we have (fa)b = (fe&)e f.’; =f o (& °r5) ’
where o,pe €(T) and «(0) =a, P(0) =b and xePf=7ye &(T)
we infer that (fa)b = £, for some c€T. Thus we have

(504) Y @** = u*,
HE T

The conditions (5.1), (5.2), (5.3) and (5.4) imply Theorem
5.1,

From Theorem 5.1 we immediately obtain the following
corollaries.

Corollary 5.1. If G=He¥, then G'c HY,

Corollary 5.2, Forany HyH,SF, (H,nH,)"s

< By nH. |

Corollary 5.3, Any finite union of *-closed
sets 1is a *-closed set.

Corollary 5.4, Any intersection of x-closed
sets is a % -=closed set.

Theorem 5.2. If for every se€S thesgt Fs is
computable, then the sej: F = seS Fs is also computable.

Proof. If H 1s a Z-injective set and G=H, +then
G 1s a Z-injective set. Hence if the sets ]3‘s are compu-
table, then the set F = SQS Fs is Z—injective. By Corollary
5.4 the computability of the sets F_ implies F* = F.
Hence the set F 1s computable.

Theorem 5.,53. For any F £3F the following condi-

tion holds
*
(5:5) A AR\

Proof, Since for any f€F we have *{f}EF, by Co-
rollary 5.1 we infer that for any feF,{f] S F*, hence
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6 I.Nabiatek

o&Zp {£YeP. 1 geF¥, then there exist a€T and feF

such that g = £,, thus g¢ fké)F {f}* . Hence F'c fLeJF {f}*
Theorem 5.3 implies the following corollary
Corollary 5.5. Any union of *-closed sets is

a *x-closed set.

Theorem 5.4, If the set F = ské)S FS is Z-injec~
tive and for every seS the set Fs is *-closed, then the

set F 1s computable.
Proof. The set F is %-closed by Corollary 5.5.

Since the set F 1is Z-injective, it is computable.

6. Fundamental properties of computable functions
Theorem 6.1. A function f € § is computable iff

(6.1) a,\z/et[‘ (fa|Z = fb|Z) = (fa = fb).
Proof. If the function f &% is computable, then
there exists a computable set F such that f£e F., Any com-
putable set is *-closed, hence for any a€T, f e F. Any
computable set is Z-injective, thus 1f @,yeF, then
(plz =v|2) =2 (p=y). Let @=1£, and w=£,. We see
that condition (6.1) holds. If f satisfies condition (6.1),
then the set F = {f}* is Z-injective and X -closed., Thus
the set F 1is computable, Since feF, £  1is a computable
function.
Definition 6.1, A function f£eF is called

Z-injective iff

(6.2) a,\im [(a #0) =2 (g2 # £, [2)] -

Corollary 6.1, If a function feF is Z-injec~
tive, then for any a€eT the function fa is also Z-injec-

tive.
Corollary 6.2. Any Z-injective function is com-

putable.



Deterministic computability 7

Iet ceT, ye 6(T) and y(0) = ¢c. We denote: 751 =%,

o= °1n_1 for any natural number n > 1. If deT and
y®(0) = 4, then we write d = nec, and if eeT,
d\['xn(O)] =e and o(0) = e, then we write e = a (@ n.c.
Definition 6.2. A function £e€J is called
Z-periodic iff
(6.3) a—L_E-IT O;é:cdle.T :\XN (242 = fa@ n.cl2)
Corollary 6.3. If there exists a€¢T such that
the function fa is Z-periodic, then the function f is
also Z—periodic.
Theorem 6.2, If a function fedJ 1is computable
and not Z-injective, then it is Z-periodic.
Proof, If a function f£€F is not Z-injective, then

B

(6.4) alDer [(a £B)A(£,]2 = fb|z)].

Let a<b and «,B€6(T), «(0) =a, f(0) =b., Let ceT
be such that o(c) =b and ye©(T), y(0) = c. We have
o«[}(o)] =a(c) = b. Since a #b, we have 7Y#ti. Hence
b=a®c and from (6.4) it follows that faIZ = fa@ cIZ.
The function fe&F is computable, thus from (6.1) if
2,02 = £, g ol% then £, =2, 5 and f,0Y =2 4.
Consequently fa@ o = fa@ ogs hence fa@ °|Z = fa@ 2c|Z°
Analogously, if f£_|Z = fa@ cIZ = ee. = fa@ k-cIZ’ then
faeclz = fa®20lz =.. I (k+1).clz . Thus if £,|Z =
= fa@k-clz’ then f 7 = fa@ (k+'1)-c|Z‘ Hence condition
(6.3) holds.
Theorenmn 6.3. For any function f € F the set
{f}* is computable iff the function f is computable.
Proof. Since £ e{f}*, we infer that if the set
{f}* is computable, then the function f is computable. If
the function f 1is computable, then from (6.1) it follows
that the set {f}* is Z-injective and the set {f}* is
%~closed, thus it is computable. ‘
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8 I.Nabiatek

Theorem 6.4, If g,he{f}¥, then ge{h}* or
*

he{g} . «

Proof., If g,he{f} y ‘then there exist a,be€T such
that g =f, and h = f,. Let a<bd and o, ped(T),
o(0) =a, fA(0) =b, Let ceT Dbe such that o«(c) = b and
4€6(r), 9(0) = c. We have (fa)c'_' (fed)ey =fe(X°y) =
= fe+f, Dbecause u[j(o)] =Db = p(0). Thus (fa)c = £y, hence

M %
h =g, and he{g} . Analogously, if b<a, then ge{h} .

7. Conclusions

The concept of detemiinistic computability seems to pro-
vide a base for uniform approach both to discrete and conti-
nuous computability. To get the notions of discrete computa-
bility as those in {1] and [3] it suffices to consider the
system (T,<,9,X,Y,Z) with: T - the set of all non-negative
integers, - the natural ordering of T, 6(T) -~ the set of
all isometrical mappings from T to T, X - an arbitrary
one-element set, Y —~ an arbitrary non-empty set, 2Z = {0}
(Pawlak’s computability in [11) or 2 ={0,1,...,3-1)}
(Grodzki's computability in [3]). To get the notions of con-
tinuous computability like those in [4] and [5] it suffices
to consider the system (T,<,9,X,Y,Z) with: T — the set of
all non~-negative real numbers, < - the natural ordering of
T, 8(T) - the set of all isometrical mappings from T to .

T, X - an arbitrary one-element set and 2 = < 0;%) (the

T —computability of [4]) or X - (n-1)-dimensional Euclidean
space and Z - an arbitrary non-empty set such that Z&€TxX
(the Z-computability of [5]), Y - an arbitrary non-empty set.
Moreover, to get the notions of computability of '[1], [3],[#]
and [5] it suffices to assume that the computation is a funec-
tion f ¢ TxX—YX,

Having introduced partial functions we may as well examine
hybrid computations., &4 hybrid computation can be defined as
follows. Let, for any @ed, Zg= {(t,x)e Z :@p(t,x)e Y}.

A computable function £ 1is called a hybrid computation iff
there exists ae ™ =such that Zfa # Zf. Because the empty
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Deterministic computability 9

function ¢ is computable, it is possible to examine also
computations which are finite in time (a computation f is
salid to be finite in time iff there exists aeT such that
f, =0).
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