

Ewa Stankiewicz

(Z, Q)-MACHINES AND (Z, Q)-COMPUTATIONS

Introduction

The notions of a (Z, Q) -machine and a (Z, Q) -computable function are introduced in [6]. The notion of a (Z, Q) -machine is a generalization of the notions of Pawlak's machine [1], of a k -machine [2], of a simple continuous machine [3,4] and of a continuous simple Z -machine [5]. In this paper some basic properties of (Z, Q) -machines and (Z, Q) -computable functions are examined. In the second part dependence of (Z, Q) -computability upon (Z_a, Q) -computability of a function f , $f \in X_Q^Q$, $a \in T_Q$, are investigated.

1. Basic notations and definitions

Let \mathcal{R} be the set of all real numbers, and \mathcal{R}^+ - the set of all non-negative real numbers. Let us denote the set of all non-negative integers by \mathcal{N}_0 and the empty set by \emptyset .

Let n be an arbitrary, but fixed, positive integer. By (t, x) we denote the point $(t, x_2, \dots, x_n) \in \mathcal{R}^n$ if $n \geq 2$, and the point $(t) \in \mathcal{R}$ if $n = 1$. A subset Ω_n of \mathcal{R}^n we define as follows: $\Omega_n = \{(t, x) : t \in \mathcal{R}^+ \wedge x \in \mathcal{R}^{n-1}\}$ if $n \geq 2$ and $\Omega_1 = \mathcal{R}^+$.

U_a denotes the set $\{(t, x) \in \Omega_n : (t-a, x) \in U\}$ for any $a \in \mathcal{R}^+$ and $\emptyset \neq U \subseteq \Omega_n$. If $S \subseteq \Omega_n$, then by T_S we denote the set $\{t \in \mathcal{R}^+ : \exists_{x \in \mathcal{R}^{n-1}} (t, x) \in S\}$ for $n \geq 2$, and S for $n = 1$.

Denote by Q an arbitrary subset of Ω_n which satisfies the following

$$(1) \quad 0 \in T_Q$$

$$(2) \quad T_Q - \{0\} \neq \emptyset$$

$$(3) \quad Q_a \subseteq Q \text{ for any } a \in T_Q.$$

The set Q which satisfies the following condition

$$\bigvee_{(t,x) \in \Omega_n} [(t,x) \in Q \Rightarrow (0,x) \in Q]$$

is called a T_Q -steady set. We say that the set T_Q is closed under subtraction if $b-a \in T_Q$ for any $a, b \in T_Q$ such that $a < b$.

Let Z be an arbitrary non-empty subset of Q and X denotes arbitrary but fixed non-empty set. By $\mathcal{A}_{Z,Q}$ we denote a set of all operators such that $\emptyset \neq DA \subseteq X^Z$ and $RA \subseteq X^Q$. Assign to every mapping $f : Z_a \rightarrow X$, where $a \in T_Q$, the mapping $f^* : Z \rightarrow X$ such that $f^*(t,x) = f(t+a,x)$ for any $(t,x) \in Z$. We shall use the following notations: $f_{Z_a} = (f|Z_a)^*$ and $f_{Z_0} = f_Z$.

Definition 1. An operator $M \in \mathcal{A}_{Z,Q}$ is called a n -dimensional (Z,Q) -machine iff

$$(4) \quad \bigvee_{f \in DM} [(Mf)|Z = f]$$

and

$$(5) \quad \bigvee_{f \in RM} \bigvee_{a \in T_Q} [f_{Q_a} \in RM].$$

The set of all n -dimensional (Z,Q) -machines is denoted by $\mathcal{M}_{Z,Q}$. If $M \in \mathcal{M}_{Z,Q}$, then the elements of the set DM are called initial functions of the machine M , and the elements of the set RM - the computations of this machine.

E x a m p l e. Let $n = 1$. For an arbitrary positive integer m and $a \in \mathbb{R}^+ - \{0\}$ we define the following finite sequences $\{A_k\}$, $\{B_k\}$ of subsets of \mathbb{R}^+ .

$$A_k = \begin{cases} \emptyset, & \text{for } k = 1 \\ \left(ka + \frac{a}{m}; \quad ka + \frac{ka}{m}\right), & \text{for } k = 2, \dots, m \end{cases}$$

$$B_k = \left(ka + \frac{a}{2m}; \quad ka + \frac{a}{m}\right), \quad \text{for } k = 1, \dots, m.$$

The family of these subsets satisfies the following condition

$$\forall_{1 \leq i, j \leq m} \forall_{s_j \in A_j \cup B_j} \left\{ \begin{array}{l} \left[i+j \leq m \implies (A_i \cup B_i)_{s_j} \subseteq A_{i+j} \right] \vee \\ \left[i+j > m \implies (A_i \cup B_i)_{s_j} \subseteq (a(m+1); +\infty) \right] \end{array} \right\}.$$

Hence, the set Q defined as follows

$$Q = \{0\} \cup \bigcup_{k=1}^{2m} S_k \cup (a(m+1); +\infty),$$

where

$$S_k = \begin{cases} \frac{A_{k+1}}{2} & \text{for } k = 2l-1, \quad l = 1, \dots, m \\ \text{an arbitrary finite subset of the set } \frac{B_k}{2}, & \text{for } k = 2l, \\ l = 1, \dots, m. \end{cases}$$

satisfies the conditions (1) - (3).

Thus, the (Z, Q) -machine we may mean as an abstract model of a hybrid machine.

2. Some properties of n -dimensional (Z, Q) -machine

At the beginning we shall quote some results from [6].

L e m m a 1. [6] Any machine $M \in \mathcal{M}_{Z, Q}$ is a bijection.

Theorem 2. [6] If $M \in \mathcal{M}_{Z,Q}$, then $f_{Z_a} \in DM$ and $M(f_{Z_a}) = f_{Q_a}$ for any $f \in RM$, $a \in T_Q$.

Lemma 3. [6] If $M \in \mathcal{M}_{Z,Q}$, $f, h \in RM$, $a, b \in T_Q$ and $f_{Z_a} = h_{Z_b}$, then $f_{Q_a} = h_{Q_b}$.

Definition 2. Let Z be an arbitrary non-empty subset of Q . By a diameter of the set T_Z in the set T_Q (in symbols $|Z|_T$) we mean a number

$$|Z|_T = \sup_{t \in T_Z} t - \inf_{t \in T_Z} t.$$

Lemma 4. If $M \in \mathcal{M}_{Z,Q}$ and $|Z|_T = \omega \in T_Q$, then $f_{Q_t} = (Mf_{Z_{t-\omega}})_{Q_\omega}$ for any $f \in RM$ and for any $t \in \mathbb{R}^+$ such that $t-\omega \in T_Q$.

Proof. Observe, that for any $t \in \mathbb{R}^+$ such that $t-\omega \in T_Q$ we have $t = \omega + (t-\omega) \in T_Q$. Let (t_0, x_0) be an arbitrary point of Q . Since $t_0 \in T_Q$, then $t_0 + \omega \in T_Q$, $t_0 + t \in T_Q$. By Theorem 2 we get

$$(Mf_{Z_{t-\omega}})_{Q_\omega}(t_0, x_0) = f_{Q_{t-\omega}}(t_0 + \omega, x_0) = f(t + t_0, x_0) = f_{Q_t}(t_0, x_0)$$

proving that $(Mf_{Z_{t-\omega}})_{Q_\omega} = f_{Q_t}$.

Lemma 5. If Q is a T_Q -steady set, $|Z|_T = \omega \in T_Q$ and $M \in \mathcal{M}_{Z,Q}$, then the value $f(t_0, x)$ is uniquely determined by values of function f within set $Z_{t-\omega}$ for any $f \in RM$ and for any point $(t_0, x) \in Q$ such that $t_0 - \omega \in T_Q$.

Proof. Let us choose (t_0, x_0) such that $t_0 - \omega \in T_Q$. Note that $(0, x) \in Q$ and $(\omega, x) \in Q$. By Lemma 4 we obtain

$$f(t_0, x) = f_{Q_{t_0}}(0, x) = (Mf_{Z_{t_0-\omega}})_{Q_\omega}(0, x) = (Mf_{Z_{t_0-\omega}})(\omega, x)$$

this completes the proof.

Example 2. Let $n = 1$, $X = \mathbb{R}^+$, $Q = \{0, 1\} \cup \langle 2; +\infty \rangle$, $Z = \{0, 1\}$ and set $f(t) = t$ for any $t \in T_Q$. An operator M defined by the formula

$$DM = \left\{ f_{Z_a} : a \in T_Q \right\}, \quad M(f_{Z_a}) = f_{Q_a}$$

is (Z, Q) -machine. Since $|Z|_T = \omega = 1$, then for $t = \frac{5}{2}$ we get $t - \omega = \frac{3}{2}$, so $t - \omega \notin T_Q$. Moreover $f(\frac{3}{2}) = \frac{3}{2}$ and $f(\frac{3}{2}) \notin R_{f_{Q_t}}$ for any $t \in T_Q$, $t < \frac{3}{2}$.

Theorem 6. For any machines $M_1, M_2 \in \mathcal{M}_{Z, Q}$ the following conditions are equivalent

$$(6) \quad \bigvee_{f \in DM_1 \cap DM_2} [M_1(f) = M_2(f)]$$

$$(7) \quad \bigvee_{f, g \in RM_1 \cup RM_2} [f_Z = g_Z \implies f = g].$$

Proof. Let $M_1, M_2 \in \mathcal{M}_{Z, Q}$ and assume Condition (6) is satisfied. Let $f, g \in RM_1 \cup RM_2$ and $f_Z = g_Z$. If both f and g belong to the same set RM_1 or RM_2 , they must be equal, since they are computations of some machine. Suppose now, $f \in RM_1 - RM_2$ and $g \in RM_2 - RM_1$ and $f_Z = g_Z$. Then $g_Z \in DM_1 \cap DM_2$ and Condition (6) implies $g = f$, contrary to the equality $(RM_2 - RM_1) \cap (RM_1 - RM_2) = \emptyset$.

For the converse, let (7) holds for M_1, M_2 and let $f \in DM_1 \cap DM_2$. There exist $g \in RM_1$ and $h \in RM_2$ such that $g_Z = f = h_Z$. Consequently, by (7), $g = h$. On the other hand

$$g = M_1(g_Z) = M_1f = M_2(h_Z) = M_2f = h$$

proving (6).

3. (Z, Q) -computable functions

Definition 3. [6] A function $f \in X^Q$ is said to be (Z, Q) -computable iff there exists $M \in \mathcal{M}_{Z, Q}$ such that $f \in RM$.

Theorem 7. [6] A necessary and sufficient condition for a function $f \in X^Q$ to be (Z, Q) -computable is

$$(8) \quad \bigvee_{a, b \in T_Q} [f_{Z_a} = f_{Z_b} \Rightarrow f_{Q_a} = f_{Q_b}]$$

Definition 4. A function $f \in X^Q$ is said to be Z -injective iff

$$(9) \quad \bigvee_{a, b \in T_Q} [a \neq b \Rightarrow f_{Z_a} \neq f_{Z_b}].$$

By Definition 4 any Z -injective function $f \in X^Q$ is (Z, Q) -computable.

Definition 5. A function $f \in X^Q$ is said to be periodic with respect to the variable t (or simply: a periodic function) of period τ , $\tau \in T_Q - \{0\}$ iff

$$(10) \quad \bigvee_{(t, x) \in Q} [f(t+\tau, x) = f(t, x)].$$

Lemma 8. For any $f \in X^Q$ and any $a, b \in T_Q$ such that $b-a \in T_Q - \{0\}$ the following conditions are equivalent

$$(11) \quad f_{Q_a} = f_{Q_b},$$

$$(12) \quad f_{Q_a} \text{ is a periodic function of period } b-a.$$

Proof. Let $f \in X^Q$, $a, b \in T_Q$, such that $b-a \in T_Q - \{0\}$ and $f_{Q_a} = f_{Q_b}$. Given a point $(t, x) \in Q$ we have

$$f_{Q_a}(t+b-a, x) = f(t+b, x) = f_{Q_b}(t, x) = f_{Q_a}(t, x)$$

proving (12). Conversely, suppose that $a, b \in T_Q$, $b-a \in T_Q - \{0\}$ and f satisfy Condition (12). Then, for any $(t, x) \in Q$ we get

$$f_{Q_a}(t, x) = f_{Q_a}(t+b-a, x) = f(t+b, x) = f_{Q_b}(t, x)$$

verifying that $f_{Q_a} = f_{Q_b}$.

Corollary 1. If the set T_Q is closed under subtraction, then for any $f \in X^Q$ and $a, b \in T_Q$, $a < b$, the following conditions are equivalent

$$(11') \quad f_{Q_a} = f_{Q_b},$$

$$(12') \quad f_{Q_a} \text{ is a periodic function of period } b-a.$$

Theorem 9. If $f \in X^Q$ is (Z, Q) -computable, then exactly one of the following conditions is satisfied

$$(13) \quad f \text{ is } Z\text{-injective}$$

$$(14) \quad \text{there exist } \alpha, \beta \in T_Q, \alpha < \beta, \text{ such that}$$

$f_{Z_\alpha} = f_{Z_\beta}$ and for any $a, b \in T_Q$ such that $b-a \in T_Q - \{0\}$,

$f_{Z_a} = f_{Z_b}$ implies that f_{Q_a} is a periodic function of period $b-a$.

The proof is obvious by Definition 4, Theorem 7 and Lemma 8.

Corollary 2. If the set T_Q is closed under subtraction, then a function $f \in X^Q$ is (Z, Q) -computable iff exactly one of the following conditions is satisfied

$$(13') \quad f \text{ is } Z\text{-injective}$$

$$(14') \quad \text{there exist } \alpha, \beta \in T_Q, \alpha < \beta, \text{ such that}$$

$f_{Z_\alpha} = f_{Z_\beta}$ and for any $a, b \in T_Q$ such that $a < b$ $f_{Z_a} = f_{Z_b}$ implies that f_{Q_a} is a periodic function of period $b-a$.

Theorem 10. If $\bar{X} \geq 2$, then for every set $Z \subseteq Q$ there exists a function $f \in X^Q$, which is not (Z, Q) -computable.

P r o o f. Since $\bar{X} \geq 2$, there exist $y_1, y_2 \in X$ such that $y_1 \neq y_2$. Let $(t_0, x_0) \in Q - Z$. If $t_0 \neq 0$, let a function f be defined as follows

$$f(t, x) = \begin{cases} y_1 & \text{for } (t, x) \in Q - \{(t_0, x_0), (2t_0, x_0)\} \\ y_2 & \text{for } (t, x) \in \{(t_0, x_0), (2t_0, x_0)\}. \end{cases}$$

It can be easily verified that $f_{Z_{t_0}} = f_{Z_{2t_0}}$. On the other hand

$$f_{Q_{t_0}}(t_0, x_0) = f(2t_0, x_0) = y_2 \neq y_1 = f(3t_0, x_0) = f_{Q_{2t_0}}(t_0, x_0)$$

and $f_{Q_{t_0}} \neq f_{Q_{2t_0}}$, proving that f is not (Z, Q) -computable.

For $t_0 = 0$ a function f is defined by the following formula

$$f(t, x) = \begin{cases} y_1 & \text{for } (t, x) = (0, x_0) \\ y_2 & \text{for } (t, x) \in Q - \{(0, x_0)\}. \end{cases}$$

Let $a \in T_Q - \{0\}$. Thus, since $f_Z = f_{Z_a}$ and $f \neq f_{Q_a}$, f is not (Z, Q) -computable.

T h e o r e m 11. If $\bar{X} \geq 2$, then there exists a function $f \in X^Q$ which is not (Z, Q) -computable for any set

$$Z \in \mathcal{Z} = \{Z : Z = (0; \omega) \times \mathbb{R}^{n-1} \cap Q \wedge \omega \in \mathbb{R}^+\}.$$

P r o o f. Let $y_1, y_2 \in X$ such that $y_1 \neq y_2$, $a \in T_Q - \{0\}$ and $(a, x_0), (0, x_0) \in Q$. Consider the function

$$f(t, x) = \begin{cases} y_1 & \text{for } (t, x) = (k^2 a, x_0) \text{ } k \in \mathbb{N} \\ y_2 & \text{for } (t, x) \in Q - \bigcup_{k \in \mathbb{N}} \{(k^2 a, x_0)\}. \end{cases}$$

Let $Z \in \mathcal{Z}$ and $\omega \in \mathbb{R}^+$ such that $Z = (0; \omega) \times \mathbb{R}^{n-1} \cap Q$. We must check two cases

1) $0 \leq \omega < a$. Then $f_Z = f_{Z_{2a}}$ and $f \neq f_{Q_{2a}}$.

2) $\omega \geq a$. There exists a natural number n such that $n^2a \leq \omega < (n+1)^2a$. Then we conclude

$$f_{Z_{k_2^2a}} = f_{Z_{k_1^2a}} \text{ and } f_{Q_{k_2^2a}} \neq f_{Q_{k_1^2a}}, \text{ where } k_1, k_2 \geq \frac{n(n+2)}{2}, k_1 \neq k_2.$$

It follows, from (1) - (2), that f is not (Z, Q) -computable.

Lemma 12. [6] If $f \in X^Q$ is (Z, Q) -computable, then for every set G such that $Z \subseteq G \subseteq Q$, f is (G, Q) -computable. These last two results have an important corollary

Corollary 3. If $\bar{X} \geq 2$, then there exists a function $f \in X^Q$ which is not (Z, Q) -computable for any $Z \subseteq Q$ such that $|Z|_T < +\infty$.

In the next part we shall give a few results concerning dependence of (Z, Q) -computability upon (Z_a, Q) -computability of function $f \in X^Q$, $a \in T_Q - \{0\}$.

Theorem 13. If T_Q is closed under subtraction, then every (Z, Q) -computable function of period $\tau, \tau > 0$, is (Z_a, Q) -computable for any $a \in T_Q$.

Proof. Let f be a (Z, Q) -computable periodic function of period $\tau, \tau > 0$ and $a \in T_Q - \{0\}$. There exists a natural number k such that $k\tau > a$ and by assumptions, $kt - a \in T_Q$. Suppose $f_{(Z_a)_b} = f_{(Z_a)_c}$ for certain $b, c \in T_Q$. This implies $f_{Q_{a+b}} = f_{Q_{a+c}}$, since f is (Z, Q) -computable. Let $(t, x) \in Q$, then $t + k\tau - a \in T_Q$ and we obtain

$$\begin{aligned} f_{Q_b}(t, x) &= f(t+b, x) = f(t+k\tau-a+b+a, x) = \\ &= f_{Q_{a+b}}(t+k\tau-a, x) = f_{Q_{a+c}}(t+k\tau-a, x) = f(t+c, x) = f_{Q_c}(t, x). \end{aligned}$$

This completes the proof, provided that $f_{Q_b} = f_{Q_c}$.

It is easy to show that not every (Z, Q) -computable function is (Z_a, Q) -computable for $a \in T_Q - \{0\}$.

Theorem 14. If $f \in X^Q$ is Z -injective, then it is Z_a -injective for every $a \in T_Q$.

The proof is immediate from Definition 4 and Theorem 7.

Of course, if $f \in X^Q$ is Z -injective, then f is (Z_a, Q) -computable for every $a \in T_Q$.

Theorem 15. If T_Q is closed under subtraction and $f \in X^Q$ is (Z, Q) -computable and Z_a -injective for certain $a \in T_Q$, then f is Z -injective.

Proof. Assume that f is Z_a -injective for certain $a \in T_Q$. Thus f_{Q_a} is Z -injective. Suppose that $f_{Z_b} = f_{Z_c}$ for $b, c \in T_Q$, $b < c$. By Corollary 3 f_{Q_b} is a periodic function of period $c-b$. It is impossible, since the formula $[f_{(Q_a)_{b-a}} = f_{Q_b}] \vee [f_{(Q_b)_{a-b}} = f_{Q_a}]$ is true for any $b, a \in T_Q$. Consequently, $f_{Z_b} \neq f_{Z_c}$ for $b \neq c$.

Example 3. Let $n = 1$, $\bar{X} \geq 2$, $Z = \langle 0; \tau \rangle \cap Q$, $\tau \in T_Q - \{0\}$ and $T_Z - \{0\} \neq \emptyset$. Let $y_1, y_2 \in X$ such that $y_1 \neq y_2$. We define a function f as follows

$$f(t) = \begin{cases} y_1 & \text{for } nt \leq t < (n + \frac{1}{n-1})\tau, t \in T_Q, n \in \mathbb{N} - \{1\} \\ y_2 & \text{for } 0 \leq t < 2\tau \vee (n + \frac{1}{n-1})\tau \leq t < (n+1)\tau, \\ & t \in Q, n \in \mathbb{N} - \{1\} \end{cases}$$

f is $Z_{2\tau}$ -injective. It is not (Z, Q) -computable, since $f_Z = f_{Z_\tau}$ and $f \neq f_{Q\tau}$.

This example shows that f may be Z -injective for certain $a \in T_Q - \{0\}$ and not (Z, Q) -computable at the same time.

In the last part we shall give few properties of (Z, Q) -computable functions which are generalizations of adequate results obtained previously for Z -computable functions [5].

Theorem 16. If $f \in X^Q$, $(t_0, x_0) \in Z$ and $\bar{X} \geq \mathcal{L}$, then there exists a (Z, Q) -computable function g such that $g(t, x) = f(t, x)$ for any $(t, x) \in Q - A_{(t_0, x_0)}$, where

$$A(t_0, x_0) = \{(t, x) \in Q : x = x_0 \wedge t \in \langle t_0; +\infty \rangle \cap T_Q\}.$$

P r o o f. It follows, from the definition of $A(t_0, x_0)$, that $\overline{A(t_0, x_0)} = \overline{T_{A(t_0, x_0)}}$ and $\overline{A(t_0, x_0)} \subset \mathcal{L}$. Then there exists a subset $Y \subseteq X$ such that $\overline{A(t_0, x_0)} = \overline{Y}$. Consequently, there exists an one-to-one mapping $h : A(t_0, x_0) \rightarrow Y$. Define a function g as follows

$$g(t, x) = \begin{cases} f(t, x) & \text{for } (t, x) \in Q - A(t_0, x_0) \\ h(t, x) & \text{for } (t, x) \in A(t_0, x_0), \end{cases}$$

g is Z-injective, so it is (Z, Q) -computable.

C o r o l l a r y 4. If $f \in X^Q$ and $\overline{X} \geq \mathcal{L}$, then for every $Z \subseteq Q$ there exists a (Z, Q) -computable function g , whose values differ from values of f at most in a set $A(t_0, x_0)$, where (t_0, x_0) is an arbitrary point of Z .

T h e o r e m 17. If X is a metric space, $(t_0, x_0) \in Z$, $f \in X^Q$ is continuous on a set $A(t_0, x_0)$ and $\overline{X} \geq \mathcal{L}$, then there exists a (Z, Q) -computable function g such that

$$f(t, x) = g(t, x) \text{ for any } (t, x) \in Q - A(t_0, x_0)$$

and

$$f(t, x) = \lim_{(t, u) \rightarrow (t, x)} g(t, u) \text{ for any } (t, x) \in A(t_0, x_0).$$

P r o o f. Denote by g - a function defined in the proof of Theorem 16. It is (Z, Q) -computable. Since f is continuous on $A(t_0, x_0)$, then for any $(t, x) \in A(t_0, x_0)$ we have

$$f(t, x) = \lim_{(t, u) \rightarrow (t, x)} f(t, u) = \lim_{(t, u) \rightarrow (t, x)} g(t, u)$$

and

$$f(t, x) = g(t, x) \text{ for } (t, x) \in Q - A_{(t_0, x_0)}.$$

Corollary 5. If X is a metric space, $f \in X^Q$ is a function continuous on Q , $n \geq 2$ and $\bar{X} \geq \mathcal{L}$, then for every $Z \subseteq Q$ there exists a (Z, Q) -computable function g such that

$$\lim_{(t, u) \rightarrow (t, x)} g(t, u) = f(t, x) \text{ for } (t, x) \in Q.$$

REFERENCES

- [1] Z. Pawłak: Stored program computers, *Algorytmy* 10 (1969) 5-19.
- [2] Z. Grodzki: The k -machines, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.* 18 (1970) 399-402.
- [3] R. Konikowski: Continuous machines, τ -computations and τ -computable sets, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.* 19 (1971) 525-529.
- [4] B. Konikowski: *Maszyny liczące o czasie ciągłym*, Warszawa, 1973.
- [5] W. Żakowski: Continuous simple Z -machines, Z -computations and Z -computable sets, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.* 22 (1974) 1063-1067.
- [6] W. Żakowski: The (Z, Q) -machine, *Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.* 23 (1975) 205-208.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received February 13, 1976.