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CONTINUITE ET DERIVABILITE DES PROBABILITES
DE TRANSITION D’UN PROCESSUS NON-MARKOVIEN
A L’ESPACE DES ETATS DENOMBRABLE

Soient: J - ensemble des naturels et T = [O,+oo[. Dé-
k+1
signons: gle+1) _ 1x J,
=1

T(k+1) =4d(t,,t Lt )ek;;1 T:0 Lty b« £t
= 490090009019 11 10« I 72 0 SRt

Pour un k naturel fixe, on définit une famille de fonctions

(1) g

pj (k+1)

aux indices §1) ¢ JO41) oy ooticretcant aux conditions
sulvantes

(k+1
(a) 0« pj(k+']) <t + )>< 1,

(v) 2.

(k+1)
: p . . % ’ =1
Is1€Y <3 (k)'3k+’l>< )

quels que soilent j(k), t(k+1),
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((t(k)’tmz)):

(¢)
( )’Jk+2)

- E (k)
= Pr(x) . «% )b »"
Jie1®Y (5( )’kaq> e
(k
) <(k) 5 ) <t )’tk+’l’tk+2)> pour  fy < by g < o
1Yk 'Y k+2

(k1) _ |0 pour G 4# 3y
‘@ <(t ’t“’t")) =9 Jer e

(k) . s

’3k+1)

g4q " Pgr pour un se [1,k-1], on a:

) ((t(S)’ts+2""’tk+1)> =

p(a(s)’3s+2""’3k+ﬂ
(( )v3k+’l)(t (kﬂ)).

Toute famille de telles fonctions (dites probabilités de
transition) satisfaisant aux conditions (a) - (e) sera nommée
le processus au sens plus large & quantité dénombrable
a'états. La définition, étant analogue & celle des processus
markoviens au sens plus large ([1]), devient, cette fois-ci,

( (k+’l))

plus générale, englobant les fonctions D (k+1) qui
d

dépendent pas seulement de i ,Jy 420t
.(k-'l) t(k-’l ),

K+ ? mais aussi de

clest-a-dire du passé du processus, avant le
moment tk.

Le travail ci-présenté contient trois théorémes générali-
sant des résultats obtenus pour les processus markoviens a
1?’espace des états dénombrable ([1], [2]) ainsi qu’un exemple
qui servira & illustrer nos considérations.
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Continuité et dérivabilité des probabilités 3

Des problémes liés avec des systémes d’équations diffé-
rentielles pour les processus non-markoviens ont été considé-
rés dans les travaux [3], [4].

Théoréme 1. Pour %K) fixe, la fonction
" k .
]tk’+°°]a“_’pj(k+1)((t( ),t)) est continue.

Démonstration. Pour h arbitraire positif, ona

pj(k+’1 ) ((‘U(k),t+h)) - p;;(k+1 ) ((t(k),t )) _

-2

&5 p(j(k),“)((t(k)’t))p(j(k)’q ((t(k),t,t+h)) _

! jk+1)

oy (50 -

= - [1 - p(j(k),jk*_,],jk;’_—ﬂ) ((t(k),t',t+h))]xpj(k+1) ((t(k),t))+

ol€Ed

(de417
.,.Z ke+1 p(j(k),o() ((t(k),t)) p(j(k) )((t(k),t,t+h))

1% 'jk+’l

Z(jkm) )
la somme s’etendant sur tous les x e€dJ -~ {'jk+'l}'
oL€EJ

On a en outre

-(1-p, _ . (t(k),t,t+h) <p £(&) £an ) -
< (3(k)’3k+1’3k+1)( ) 3(k+1)<( ))

(jk+1)

_ (k) < (k) -
Pj(k+1)((t ,t)>\ dze:]_ p(j(k),“,jk_m ((17 ,t,t+h)> =
=1-9, o) ()5, t4n)

(J(k)’3k+’l’3k+’l)( )
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ou encore

<

P(e+1) «t(k)'t+h5) T Pyle) «t(k)’t»

<1-p (t(k),t,t+h)>.

(k) . .
(3 ’Jk+1’3k+1)

Si h <0, la dernidre inégalité entralne

ij(k+1) «t(k)'t+h-» - Pj(km)((t(k)""))lS

((t(k),t-|h|,t)).

Faisant h tendre vers O, en vertu de la condition (d), on
obtient la thése.

Lemme. On suppose qu’il existe jk"jk+1’H >0, >0
tels que les conditions suivantes soient satisfaites

€1 =P, (k) . .
(3 '3k+1'3k+{>

1 - P(j(k_q )

’jkv Jk) ((t(k—1 )’tk’tk+t)> <&

1D, eny .. Ct(k‘1),t Brt)) < €y
(3(k 1)’3k+1’3k+1) \ o )

oll 1’on a OKt<H., Dans ce cas, si nhgt<H (n - naturel),
1?inégalité

) n(1—35)pj(k+1) Qt(k),tk+h)) < P (k1) «t(k)'tk+t»

est juste.

Démonstration. On observe les états du
systéme aux moments b, b +h,...,t tnh  (avec nh¢t), Dé-
signons par Pg la probabilité pour que le systéme, sorti de
1'état J, au moment t,, entre, et c’est pour la premidre
fois, & 1'état j,,, au moment sh, sous l’hypothése qu’au
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Continuité et dérivabilité des probabilités 5

moment by _, (1 = 1,25000,k=1) 1l se trouvait -a 1?état
Jgqe Omoa

2P (ke1) (69 0ee)) >

n
> 2 o (k)

2 (t(k"'),tk,tkn-sh)) > (1-&)p,

23410 3141)

n

donc Z ps

S=

Désignons maintenant par Qs la probabilité pour que le
systéme, sorti de 1'état jk, le regagne au moment sh, sans
€tre entré aux moments rh (r = 1,2,...,8-1) & 1'état
Jieqs Sous l’hypothése gu’au moment ty_, (1=1,2,...,k=1)
11 se trouvait & 1'état J,_,. Dans ce cas

s-1
k1) S €
t 4 ' - )1 = = A 3
%2 p( (k_/l)oa ’Jk)(( " tk+Sb)) i= Py € i—¢€
On aura donc
n

P (k+1) ((t(k)’tk+t )) z Z:; Q1P _ (k) ((t (k):tk“b))x
’ o= (3777 3x41)

(t(k‘”,tk,t - sn)) >

P - . .
(d at s dan 1Jic41)

>u(l=e)(1 - £ - 5-) £ & upn)).
o T-€ /P, 41) (( x* )

La thése (1) en résulte aussitdt.
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Théoréme 2. Sipour t> s 30

(2) p(j(k) ((t(k)»’tkm,tkw)) >

’jk’jk>
(k)

>7, oM b et-s ),

(3(k)~3k)( « )

alors il existe des limites (finies ou non)

(k)
t 5,4, +h )) -0,
p(j(k)9jk+1)(( k+ )) ak’ak+'|

- (k) _
(3) gj(lm)(JG )‘ﬁ%

dites intensités de transition. Si encore Jk+1 # jk, alors

(t(k)) est fini, g(.(k). ()  étant £ini
e,

Ix)

& . .
(3 (k)’ak+’l)

ou égal a Meoo",
Dans tous ces cas, on a

()

% D e

Jan€? (3 8 2Ji41)

(t(k))'

(k)) ¢ -
(t ) é g(j(k),,jk)

Démonstration, Soit Jisq = Jy3 posous

LT, )((t(k)'tk“h))

J 1Jx
ug o £ +oo.
>

g—o[’l - p(j(k),jk) ((t(k)'tk“'ho))] > c,

h
alors, pour -Ef% £ t-<-7;-, utilisant & guelques reprises la

condition (c), on obtiendra les inégalités suivantes

by
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Continuité et dérivabilité des probabilités

c < ;—O I:'] -p J(k),jk) ((‘G(k),tk+ho)>]<

(
<"'<1% [1 - p(J(k)’Jk»J'k) ((t(k)’t(k)mf,tkmo))x

n

X E p(j(k)rjkvjk)(( t(k),tk+(i—’l )'v,tk+i'u ))]<

L & ()

bo[‘ - P(j (k)’jk’jk) (( 1 By +0 T, by thy ))] +

1 - p(j(k),jk,j ((t(k),tk+(i-’l )'C,tk+i'r))

+i" k)’r

i=1

En utilisant l’hypothése (2), on aura

c < 1_[] - (t(k) % h.—
hO 1% J(k),ak)( 1 Bty n'l:)) +

(

1 (509,00)

Comme, en vertu de la condition (d), on a

. _ (k)
nlfi [1 p(j <k)n‘3k) ((t » by +hy-ntT ))] =0

il existe donc, quel que soit ¢ < s, un § tel que pour
7 <6 on ait
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1oyt )
c < (J ks o < s,
Il en résulte que
1-D () . ((t(k),tk+'r))
s = lim (3 ,Jk) .
740 T

Supposons maintenant que jk+1 # jk.' Choisissons un H
positif, assez petlt pour que les suppositions du lemme soient
satisfaites. Soient t,h ¢]O,H] et nt g h < (n+1)t.

Alors, en vertu du lemme, on a

(k)
K ¢ 4n
p(j (k) 11c41) (( o ))

h -t 1T-3¢

'Jk+1)

Q't(k),tk+t » P, (k)
(§
<

Faisant tendre t vers O, on obtient

p(j(k) ;) )((t(k),tk+t)>
(14.) ]E 1Yk+1 <
£ -0
(k)
P _ (t'<) 4, +h)
(j(k)'ka)( £ ) 1
L h 1 -3¢
305y ((t(k).tkﬂz»
lim 2kt .
b =0 h 1-3¢

Le nombre ¢ étant arbitrairement petit, l?'inégalité (4)
entraine 1'égalité des limites supérieure et inférieure du
gquotient

) (UMY

P (k)
(3
n sy (h>0)

29k41

ce qui établit la thése (3).
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Contiruité et dérivabilité des probabilités 9

Soit un ensemble fini J,< J avec J, ¢ J. Alors

P (k) . ((t(k),tkn;) () ((t(k),tkn:D
@ 9Jk) S, . ( ’JK+1 .
> & %

418 91

Faisant tendre t vers O, on obtient

k
(99,3 ("\ ) 2 ey
Jk+1€J (

()

’jk+1>

et la thése (37) en découle.
Remar qgue. Dans le cas des processus markoviens
homogénes, 1’inégalité (2) devient une égalité de la forme

t— = Y : t“ L]
pjk!jk( s) ka’Jk( s)
Le théoréme quil suit concerne une généralisation du pre-
mier systéme d’équations ditférentielles de Kolmogorov pounr
les processus markoviens a l?éspace des états fini.

Théoréme 3, Soit un ensemble fini e J. 8%l
existe des limites finies

(%) e ) =
s(j(k)"’jkm) « k+1)>

k .
(3%, o8y, @t( )"’kn'tkm“")) =0 Jia1
= 1lim AL -

ht0 h

et, pour t(k) fixe, les fonctions

[t “[at*s(d(k),o«,a’km) ((t(k),t))
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10 0. PUSZ

sont continues, alors les probabilités de transition sont
dérivables et elles vérifient le systéme d'éguations diffé-
rentielles

1d k+1
0%y,

p(j.(k) : ) < tk’*"]))

Z p( (k) ><(t ,tk”)) ( () i 1><(t(k),tk+‘,|>>

O(G,I

avec une condition initiale

bt @

( k“)) Jk'3k+1

’jk+1)

Démonstration. Soit h>C, Suivant Iz con-
dition (c), on &

1
—p
h[ @ (k)’jk+’l)

k+1

1 by +) - p@-(k)’j )«t(k)'tkm))] )

(k)
56 g ) x
bea,” (30 ( k1)

La somme ci-dessus est finie; par conséguent, faisant
tendre h vers O, on obtient
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11 Continuité et dérivabilité des probabilités 11

3p GREH
(3 (k)’jkm,) ( k+’l>

atk+’l

) <(t (k)’tk+1» )

En vertu du théoréme 1 et compte tenu de la continuité

2 (k)
= 25,8, ) 8
ueJqP(j(k)’q)« L+'l> (j(k)’“’jkm

admise pour les fomctions (%), on déduit que la dérivée a
droite est continue, ainsi que la fonction p (k) «t(k),»
J

(37 9 d4q)
elle-méme. Par conséquent, la dérivée a droite existant, on

en déduit l’existence de la dérivée ainsi que 1’égalité entre
elles. Ainsi, le théoréme 3 est démontré.

Exemple. Soient des fonctions 1,11,12,...,2r
continues et dérivables sur T. Considérons un processus pois—
sonien composé dont les repartitions & k+1 dimensions sont
de la forme:

(t(k+1)) -

Pj(k+1)

[ d x  qdged
[ace,0] " (e ,,) - a(e )] S+ ©s
i ewl-a)] D QECAICE B x

xexp[~(Albgq) = A(5))] 81 0<3€3p< +er <Igpn »

0] pour tous les autres cas.

Soit A un processus stochastique tel que, guelque soit i
(1<€1i<r), on ait

P(X(t,w) = Al(t)) = Ci, Ci > O, Z Ci = 1.

I
i

1
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Dans ce cas

=<

(k+1)
Pj(k+q)(t\ * ‘) =

J o~
L Iy eyl ’
- X
i=1 %) (Jgyq = 35!
xexp[-(li(ts+1)-ﬂi(ts))] pour 0(31<32<---<jk+1s
0 pour tous les autres cas.

La famille de fonctions p ( )(ﬁ(k+1)) sera définie

comme suit

(6)

avec

(k+1)
(k+1)) - Pj(k+1)(t ) _

Pj(k)(t(k))

PJ.(m)(t

r
A (t
Z a ( (k) (k)) e k+1 [A (tk+1) A (t )] k+'l jk

1 i=1 23U
(g pq=3 0t 5%; ) ( (), (k)e LA EW)
pour 0< J, € Jp€ oee Cdpyq s
0 pour tous les autres cas
a (j(k)'t(k)) -
3 k-1 3
ci[}i(tq)] [3 (tgq)-25(t )] s+1° 5, (1 = 1,24000,7)s

TLes fonctions (6) satisfaisant aux conditions (a) ~ (e),

constituent une famille de probabilités de. . transition.
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On supposera encore gque l'on a

I
(7) n§1 ai(d(k)'t(k)) ah('j(k)’t(k))x

x[;-li(tk+t) _ e-li(tk+3)e-ln(tk+t-s)] >0

pour t> 8> 0, Dans ce cas-ci, la condition (6) équivaut & (2).
"Pour que 1’inégalité (7) soit satisfaite il suffit que 1l’on
alt par exemple

(8) zi(tk+t) < Zi(tk+s) + An(tk+t-s), (i,0 = 1,2,00.,T).

On peut demontrer que les fonctions 21 de la forme 2 (%) =
= (at + by ) , avec a >0, by » 0, d naturel, verifient
l’inégalite (8) et par conséquent 1?inégalité (7). Il est bien
facile de voir que, si d =1, by =0, (1=1,2,...,r), les
fonctions (6) sont des probabilités de transition dans un pro-
cessus poissonien homogéne & un paramétre a. Les intensités
définies par les formules (3) sount, dans cet exemple-ci, de

la forme

—9(;]' (k)vt(k)) [ si jk+1 = 'jk
(
( ’Jk+1) '
0 y 8L Jpq F e+

A rd
ou on a posé

r
> e, (50,5 A ),
e(j(k)it(k)) 1=1r1( e ik

Z (509, 4000) "R (%)
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