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SOME PROPERTIES OF SOLUTIONS
OF DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENTS

1. We shall consider equations of the form

B 3 ™) + B,y ),y (706) ).y N (x(5))) = 0

and

(2) 7™ @)+ g2,y (x) =

where g Dbelongs to a family of functions G having some
property W. By a solution of equation (E) (resp. (bg/;’we
shall understand every function of class c? satisfying (E)
(resp. (E_)) for sufficiently large t. Let S; denote the
set of soiutions of eguation (E), and Sy the set of solu-

g
ticns of (Eg). We assume that S; £ @ and SE # @, Let
g
Py be a propositional function defined on SE v SE and let

,t.t "Ut (n"'/l)

daf F(t
gy(t) - £it,y(t),y T (%

Staicos and Sficas [1] have formulated the following

theorem.
Theoren 1.17. We have

[VSeG yeSg P-V /\[ sy Vxez ~Px#gxee}=>\leesz
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2 U.Sztaba

The present work is based upon Theorem 1.1. In Section 2
we give sufficient conditions for the oscillation of all
solutions of equation (E), in Section 3 sufficient conditions
for the oscillation of all bounded solutions of equation (E).
The following theorem ([3], [4], [5]) plays an essential role
in our considerations.

Theorem 1.2, If q and 7T are continuous for
t 2> O such that q(t) >0, 0gv(%) < t, 1;1:1.1‘1:0%‘(1:) = oo and

3(n=1) for O<y<1

oo

/[’U(t)]dq(t)dt = oo where o =
n-1-§, 0<g¢< n-1 forgyg =1

[> -4
or T is non-increasing and f['v(t)] =1

then every solution of the equation

q(t)dt = oo fory > 1,

y(2n)(t) + q(t),y(T(t))lv sgn y(t) = 0

is oécillating.

In Section 4 we investigate the properties of non-oscil-
lating solutions of some second order differential equation.
The following theorem is very helpful fer this aim,

Theorem 7.3 ([2]p. 37). If a(t), T, < B < oo,
is a continuous monotonic function and 1lim a(t) =¢ > O,

— 00

then every solution of the equation y"(t) + a(t)y(t) = 0 is
bounded.

2. Let F(t,u,],...,un)~ be defined and continuous in
D= {(t,u,],...,un):t > tyy —oo < uy<oe, i = ’I...n) such
that F(t,u,',...,un) uqs> 0 for u, Z0., Let v(t) be de-
fined, non-increasing and continuous for + > t_., such that

(o]

v(t) < t and 1lim ¥(t) =oo . We assume that n is even.
t +>oo

For convenience we formulate further assumptions in the form
of the following hypotheses.
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Some properties of solutions 3

Hypothesis H,]. There exists a number o < 1
such that for every function y(t) defined and continuous on
[ty,oo), ty P t, with the properties

(1)  1lim y(t) £ 0

t—+oco

(i1) y(t)y(‘n)(t)< 0 for sufficiently large +

we have
oo o{n~1) (n=1)/_;
Flt,y(t(t)),e..,¥ (v(t)))
£ X X ? dt =co .
/‘['U( ) |y (e (£))|™ sgn y (%)

Hypothesis H,. There exists ¢ 0<e<n,
such that for every function y(t) defined and comtinuous on
[ty,oo), ty> t,s with properties (i), (i1), we have

oo -1
f['c(t)]n‘1'€ F(t,y(fc(t)):;r.(%.(%a)fgn ) (e(%))) at = oo .

Hypothesis HB' For every function y(t) defined
snd continuous on [ty, o= ) with properties (i), (ii) we can
select ﬁ >1 such that we have

fof’b’(t)]n-q F(t,Y(’U(t))’-..,y(n‘,])(’c’(t))) it =
[7(x(6))|? sgn y(t)

Now we are going to prove the following theorem.
Theorem 2.1. If any-one of the hypotheses H,‘,
H,, H; holds, then every splution of equation (E) oscillates.

Proof. We apply Theorem 1.1. Let Py mean: y oscilla-

tes. Suppose that H,] holds. Let us denote
(5,5 (6),5(x(£))) = |37(x(6))]™ sgn y(t), 0 <<,

G = {g(t): g(t) defined and continuous on [tg,oo ),

8+ >0, f [w®)] " Vg(e)ar = ],
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4 U.Sztaba

The validity of the first term of the predecessor of the
implication results from Theorem 1.2. Assume that 2 = Sge
Observe that if y(t)e Sp and y(t) does not oscillate,
then y(t)y(n)(t)écx Since n 1is even, this implies

1im y(t) # 0. From H, it follows that

g o0

F (5,5 (T(5)),e 0,5 2 (2(4))) c G

() =
& [7(v($))]™ sen ¥(t)

which ends the proof of Theorem 2.1. in the case where H,l
holds. .
Next assume that H, holds. We then take

£(6,y(6),y(v(x))) = y(x(t))
and

G = {g ¢ the function g(t) 1s defined and continuous on

[tgr=)s 8(8) >0, 3o 5 pq [IEGN2" " a(0)at =oo} .

It H3 holds, then we take

£(t,y(t), y(v(£))) = I:;r('c(t))lf3 sgn y(t), P >1
and

G =<{g : the function g(t) is defined and continuous on

oo

tg,00), g(t) >0, [ )2 Ng(t)dt =ca}.
[

In both cases we conclude the proof using Theorem 1.2, simi-
larly as in the case 0< « < 1. '

" Remark 2.1. If we assume that n is odd, then
under the same assumptions we obtain that all solutions of
equation (E) oscillate or tend to O together with all deri-
vatives up to the order (n-1). If either H; or H, holds,
we do not have to assume that the function ¥ is non-increasing
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Some properties of solutions 5

Remark 2.2, The class of equations to which
Theorem 2.,1. applies is wider than the class considered in
[1], as the theorems of Staicos and Sficas cannot be applied
in the case where for any 0 < a 1, we have 1lim t'ar(t)=0.

t oo

Theorem 2.7 implies Theorem 3.1 of [?7] and Theorems 1 and
2 of [6].

3. Hypothesis H. For every function y(t)
‘"defined and continuous on [ty,cc), ty > to' with properties
(1), (ii) we have

/Er(t)]n"'F(t,y(r(t)),... O ((5)))at =oe.

Theorem 3.1, If Hypothesis H4 holds, then
every bounded solution of equation (E) is oscillating.
Proof. Let

£(,3(8),3((0))) = [7(w(6))|" sen 763, p > 1

4
G = ig(t) : g(t) defined and continuwous on [tg,oo),g(t);.o,

[ =]

/' [’t(t)] 2=1g (+ )at =<>o}.

We define L to be the set of bounded solutions of the equa-
tion (E). Let y(t)e 2 and assume that y(t) 1is not
oscillating. From H4 it follows that

[o60] 21 By ()o@ 0500))) gy
[v(xt))]F sgn y(t)

oo

> 5 ] 230600y B ((6)))at = oo
A

A = const #£ O.
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6 U.Sztaba

Flo,y @ (8))ye o0y B (x(4)))
|y (v(+))|F sen 3(¢)
G, which was to be proved.

Hence the function

belongs to

4, We shall consider the equations

(') y"(t) + F(t,y@,(£)),5' (T5(t))) = 0,

(Eg) v"(£) + g(t)y(s) = 0.

We make the following assumptions concerning the functions
F(t,u,v) and T(t): ‘
(1) PF(t,u,v) 1is defined and continuous in the set

{(t,u,v) st 2t

o? -0 (u,v < +°O}.

(2) F(t,u,v) has the property that every solution of equa-
tion (E') 1is extendable over the interval [t,, oo ).

(3) For every function y(t) defined and continuous on
[ty,OO) which is not bounded and not oscillating we have

F(t,}'(T,] (t))’y' (172(13)))
o =

R (%) = 05>
F(t,5((8)),5' (T,(%)))
and 7 (%) is monotonic for sufficiently
large t.
(4) T, (6)e C[tgs00)s i=1,2.

Theorem 4.1, If assumptions (1) - (4) hold, then
every non-oscillating solution of equation (E ) is bounded.-
Proof. We apply Theorem 1.1 to equations (E') and

(Eé). ‘Let Py denote: y is bounded on [to,cO). Let

Ft,y(7(t)),y' (15(¢)))
7 (%) ’

s..),(t)d=f
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Some propertlies of solutions 7

G g{g(t) : g(t) is defined, continuous and monotonic on

[bgso0)s  Lim g(t) = o > of.

Let 2 denote the set of all non-oscillating solutions of
equation (E ). The validity of the predecessor of the implica-
tion in Theorem 1.1 results from Theorem 1.3, Let y(t) €%
and assume that ~Py. The function gy(t) is continuous for
sufficiently large t, hence from (3) it follows that
gy(t) £ G. '

Definition #4.1. A function h(t,u,v) is said
to be almost monotonic in a set D provided that

1< by, !u,]| < 1u2|, lv,]| >/|v2|, wu, > 0,
V.V > 0, (ti,ui,vi)eD,
i=1,2= h(t,uq,v,]) < h(t,ua,vz)
or
5, < to, Iu,]| < !ual, |v,|‘ > Iv2|, uquy > 0,
VaVs > c, (t4,u5,v;)€D,
i=1,2,=h(t,uy,v4) 2 bt,u,,v,).

Corollary 4,1, If
(5) h(t,u,v) is defined, continuous, almost monotonic and
non-negative in D ={t > Tor —o° <u,v < +C>c} ’
(6) uh(tyu,v) < Ayt + Aqfu] + Ay|v], 4, = coust # 0, i=0,1,2,
(7) for every a€R we have
lin h(t,u,v) = by > O,
t —eoe
Iul-ooo

v—ea
(8) 'u(t)ec[to,oo), t(t) >0, () >0, tlim T(t) =oo

then every non-oscillating solution of the eguation
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8 U.Sztaba

v"(&) + y(&)alt,y(r(t)), y' (v(t))) =0

is bounded.

Proof. The accepted assumptions guarantee the
existence of the solution on the positive semi-axis. Observe
that if y(3) is a non-bounded non-oscillating solution,
then y(t)y'(t) >0 and y(t)y"(t) <O for t 2> t* >t,.
This implies that if %, > t,> t" then

|7 (6,)| < |o(Tis,))]

and
7' ()| 2 |3 (w6004 B,y E®), ¥ (2()))

is monotonic for t 2 t*X. Since 1lim Iy(t)l =oco, from (7)
-0
it follows that h(t,y(v(t)), y'(zv(t))) =2 > 0.
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