

Urszula Sztaba

SOME PROPERTIES OF SOLUTIONS
 OF DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENTS

1. We shall consider equations of the form

$$(E) \quad y^{(n)}(t) + F(t, y(\tau(t)), y'(\tau(t)), \dots, y^{(n-1)}(\tau(t))) = 0$$

and

$$(E_g) \quad y^{(n)}(t) + g(t)f(t, y(t), y(\tau(t))) = 0,$$

where g belongs to a family of functions G having some property W . By a solution of equation (E) (resp. (E_g)) we shall understand every function of class C^n satisfying (E) (resp. (E_g)) for sufficiently large t . Let S_E denote the set of solutions of equation (E) , and S_{E_g} the set of solutions of (E_g) . We assume that $S_E \neq \emptyset$ and $S_{E_g} \neq \emptyset$. Let P_y be a propositional function defined on $S_E \cup S_{E_g}$ and let

$$g_y(t) \stackrel{\text{df}}{=} \frac{F(t, y(\tau(t)), y'(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{f(t, y(t), y(\tau(t)))}$$

Staicos and Sficas [1] have formulated the following theorem.

Theorem 1.1. We have

$$\left[\forall_{g \in G} \forall_{y \in S_{E_g}} P_y \right] \wedge \left[\exists_{\Sigma \subset S_E} \forall_{x \in \Sigma} \sim P_x \Rightarrow g_x \in G \right] \Rightarrow \forall_{x \in \Sigma} P_x.$$

The present work is based upon Theorem 1.1. In Section 2 we give sufficient conditions for the oscillation of all solutions of equation (E), in Section 3 sufficient conditions for the oscillation of all bounded solutions of equation (E). The following theorem ([3], [4], [5]) plays an essential role in our considerations.

Theorem 1.2. If q and τ are continuous for $t \geq 0$ such that $q(t) \geq 0$, $0 \leq \tau(t) \leq t$, $\lim_{t \rightarrow \infty} \tau(t) = \infty$ and

$$\int_{\tau(t)}^{\infty} [\tau(t)]^{\alpha} q(t) dt = \infty \text{ where } \alpha = \begin{cases} \gamma(n-1) & \text{for } 0 < \gamma < 1 \\ n-1-\varepsilon, 0 < \varepsilon < n-1 \text{ for } \gamma = 1 \end{cases}$$

or τ is non-increasing and $\int_{\tau(t)}^{\infty} [\tau(t)]^{n-1} q(t) dt = \infty$ for $\gamma > 1$, then every solution of the equation

$$y^{(2n)}(t) + q(t) |y(\tau(t))|^{\gamma} \operatorname{sgn} y(t) = 0$$

is oscillating.

In Section 4 we investigate the properties of non-oscillating solutions of some second order differential equation. The following theorem is very helpful for this aim.

Theorem 1.3. ([2] p. 37). If $a(t)$, $t_0 \leq t < \infty$, is a continuous monotonic function and $\lim_{t \rightarrow \infty} a(t) = c > 0$, then every solution of the equation $y''(t) + a(t)y(t) = 0$ is bounded.

2. Let $F(t, u_1, \dots, u_n)$ be defined and continuous in $D = \{(t, u_1, \dots, u_n) : t \geq t_0, -\infty < u_i < \infty, i = 1 \dots n\}$ such that $F(t, u_1, \dots, u_n) u_1 > 0$ for $u_1 \neq 0$. Let $\tau(t)$ be defined, non-increasing and continuous for $t \geq t_0$ such that $\tau(t) \leq t$ and $\lim_{t \rightarrow \infty} \tau(t) = \infty$. We assume that n is even.

For convenience we formulate further assumptions in the form of the following hypotheses.

Hypothesis H_1 . There exists a number $\alpha < 1$ such that for every function $y(t)$ defined and continuous on $[t_y, \infty)$, $t_y \geq t_0$ with the properties

$$(i) \quad \lim_{t \rightarrow \infty} y(t) \neq 0$$

$$(ii) \quad y(t)y^{(n)}(t) \leq 0 \text{ for sufficiently large } t$$

we have

$$\int_{[t_y, \infty)} [\tau(t)]^{\alpha(n-1)} \frac{F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{|y(\tau(t))|^\alpha \operatorname{sgn} y(t)} dt = \infty.$$

Hypothesis H_2 . There exists ϵ , $0 < \epsilon < n-1$, such that for every function $y(t)$ defined and continuous on $[t_y, \infty)$, $t_y \geq t_0$, with properties (i), (ii), we have

$$\int_{[t_y, \infty)} [\tau(t)]^{n-1-\epsilon} \frac{F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{|y(\tau(t))|^\epsilon} dt = \infty.$$

Hypothesis H_3 . For every function $y(t)$ defined and continuous on $[t_y, \infty)$ with properties (i), (ii) we can select $\beta > 1$ such that we have

$$\int_{[t_y, \infty)} [\tau(t)]^{n-1} \frac{F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{|y(\tau(t))|^\beta \operatorname{sgn} y(t)} dt = \infty.$$

Now we are going to prove the following theorem.

Theorem 2.1. If any one of the hypotheses H_1 , H_2 , H_3 holds, then every solution of equation (E) oscillates.

Proof. We apply Theorem 1.1. Let P_y mean: y oscillates. Suppose that H_1 holds. Let us denote

$$f(t, y(t), y(\tau(t))) = |y(\tau(t))|^\alpha \operatorname{sgn} y(t), \quad 0 < \alpha < 1,$$

$$G = \left\{ g(t) : g(t) \text{ defined and continuous on } [t_g, \infty), \right.$$

$$\left. g(t) \geq 0, \int_{[t_g, \infty)} [\tau(t)]^{\alpha(n-1)} g(t) dt = \infty \right\}.$$

The validity of the first term of the predecessor of the implication results from Theorem 1.2. Assume that $\Sigma = S_E$. Observe that if $y(t) \in S_E$ and $y(t)$ does not oscillate, then $y(t)y^{(n)}(t) \leq 0$. Since n is even, this implies $\lim_{t \rightarrow \infty} y(t) \neq 0$. From H_1 it follows that

$$g_y(t) = \frac{F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{|y(\tau(t))|^{\alpha} \operatorname{sgn} y(t)} \in G$$

which ends the proof of Theorem 2.1. in the case where H_1 holds.

Next assume that H_2 holds. We then take

$$f(t, y(t), y(\tau(t))) = y(\tau(t))$$

and

$$G = \left\{ g : \text{the function } g(t) \text{ is defined and continuous on } [t_g, \infty), g(t) \geq 0, \exists_{0 < \varepsilon < n-1} \int_{t_g}^{\infty} [\tau(t)]^{n-1-\varepsilon} g(t) dt = \infty \right\}.$$

If H_3 holds, then we take

$$f(t, y(t), y(\tau(t))) = |y(\tau(t))|^{\beta} \operatorname{sgn} y(t), \beta > 1$$

and

$$G = \left\{ g : \text{the function } g(t) \text{ is defined and continuous on } [t_g, \infty), g(t) \geq 0, \int_{t_g}^{\infty} [\tau(t)]^{n-1} g(t) dt = \infty \right\}.$$

In both cases we conclude the proof using Theorem 1.2, similarly as in the case $0 < \alpha < 1$.

Remark 2.1. If we assume that n is odd, then under the same assumptions we obtain that all solutions of equation (E) oscillate or tend to 0 together with all derivatives up to the order $(n-1)$. If either H_1 or H_2 holds, we do not have to assume that the function τ is non-increasing.

R e m a r k 2.2. The class of equations to which Theorem 2.1. applies is wider than the class considered in [1], as the theorems of Staicos and Sficas cannot be applied in the case where for any $0 < a \leq 1$, we have $\lim_{t \rightarrow \infty} t^{-a} \tau(t) = 0$. Theorem 2.1 implies Theorem 3.1 of [7] and Theorems 1 and 2 of [6].

3. Hypothesis H_4 . For every function $y(t)$ defined and continuous on $[t_y, \infty)$, $t_y \geq t_0$, with properties (i), (ii) we have

$$\int^{\infty} [\tau(t)]^{n-1} F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t))) dt = \infty.$$

Theorem 3.1. If Hypothesis H_4 holds, then every bounded solution of equation (E) is oscillating.

P r o o f. Let

$$f(t, y(t), y(\tau(t))) = |y(\tau(t))|^{\beta} \operatorname{sgn} y(t), \quad \beta > 1$$

$$G = \left\{ g(t) : g(t) \text{ defined and continuous on } [t_g, \infty), g(t) \geq 0, \right.$$

$$\left. \int^{\infty} [\tau(t)]^{n-1} g(t) dt = \infty \right\}.$$

We define Σ to be the set of bounded solutions of the equation (E). Let $y(t) \in \Sigma$ and assume that $y(t)$ is not oscillating. From H_4 it follows that

$$[\tau(t)]^{n-1} \frac{F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{|y(\tau(t))|^{\beta} \operatorname{sgn} y(t)} dt \geq$$

$$\geq \frac{1}{A^{\beta}} \int^{\infty} [\tau(t)]^{n-1} F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t))) dt = \infty,$$

$$A = \operatorname{const} \neq 0.$$

Hence the function $\frac{F(t, y(\tau(t)), \dots, y^{(n-1)}(\tau(t)))}{|y(\tau(t))|^{\beta} \operatorname{sgn} y(t)}$ belongs to G , which was to be proved.

4. We shall consider the equations

$$(E') \quad y''(t) + F(t, y(\tau_1(t)), y'(\tau_2(t))) = 0,$$

$$(E'_g) \quad y''(t) + g(t)y(t) = 0.$$

We make the following assumptions concerning the functions $F(t, u, v)$ and $\tau(t)$:

(1) $F(t, u, v)$ is defined and continuous in the set

$$\{(t, u, v) : t \geq t_0, -\infty < u, v < +\infty\}.$$

(2) $F(t, u, v)$ has the property that every solution of equation (E') is extendable over the interval $[t_y, \infty)$.

(3) For every function $y(t)$ defined and continuous on $[t_y, \infty)$ which is not bounded and not oscillating we have

$$\lim_{t \rightarrow \infty} \frac{F(t, y(\tau_1(t)), y'(\tau_2(t)))}{y(t)} = c_y > 0$$

and $\frac{F(t, y(\tau_1(t)), y'(\tau_2(t)))}{y(t)}$ is monotonic for sufficiently large t .

$$(4) \quad \tau_i(t) \in C[t_0, \infty), \quad i = 1, 2.$$

Theorem 4.1. If assumptions (1) - (4) hold, then every non-oscillating solution of equation (E') is bounded.

Proof. We apply Theorem 1.1 to equations (E') and (E'_g) . Let P_y denote: y is bounded on $[t_0, \infty)$. Let

$$g_y(t) \stackrel{\text{df}}{=} \frac{F(t, y(\tau_1(t)), y'(\tau_2(t)))}{y(t)},$$

$G \stackrel{\text{df}}{=} \{g(t) : g(t) \text{ is defined, continuous and monotonic on}$

$$[t_g, \infty), \lim_{t \rightarrow \infty} g(t) = c_g > 0\}.$$

Let Σ denote the set of all non-oscillating solutions of equation (E). The validity of the predecessor of the implication in Theorem 1.1 results from Theorem 1.3. Let $y(t) \in \Sigma$ and assume that $\sim Py$. The function $g_y(t)$ is continuous for sufficiently large t , hence from (3) it follows that $g_y(t) \in G$.

Definition 4.1. A function $h(t, u, v)$ is said to be almost monotonic in a set D provided that

$$\begin{aligned} t_1 &\leq t_2, |u_1| \leq |u_2|, |v_1| \geq |v_2|, u_1 u_2 > 0, \\ v_1 v_2 &> 0, (t_i, u_i, v_i) \in D, \\ i = 1, 2 \Rightarrow h(t, u_1, v_1) &\leq h(t, u_2, v_2) \end{aligned}$$

or

$$\begin{aligned} t_1 &\leq t_2, |u_1| \leq |u_2|, |v_1| \geq |v_2|, u_1 u_2 > 0, \\ v_1 v_2 &> 0, (t_i, u_i, v_i) \in D, \\ i = 1, 2, \Rightarrow h(t, u_1, v_1) &\geq h(t, u_2, v_2). \end{aligned}$$

Corollary 4.1. If

(5) $h(t, u, v)$ is defined, continuous, almost monotonic and non-negative in $D = \{t \geq t_0, -\infty < u, v < +\infty\}$,

(6) $uh(t, u, v) \leq A_0 t + A_1 |u| + A_2 |v|$, $A_i = \text{const} \neq 0$, $i=0,1,2$,

(7) for every $a \in \mathbb{R}$ we have

$$\lim_{\substack{t \rightarrow \infty \\ |u| \rightarrow \infty \\ v \rightarrow a}} h(t, u, v) = h_a > 0,$$

(8) $\tau(t) \in C[t_0, \infty)$, $\tau(t) \geq 0$, $\tau'(t) \geq 0$, $\lim_{t \rightarrow \infty} \tau(t) = \infty$

then every non-oscillating solution of the equation

$$y''(t) + y(t)h(t, y(\tau(t))), y'(\tau(t))) = 0$$

is bounded.

Proof. The accepted assumptions guarantee the existence of the solution on the positive semi-axis. Observe that if $y(t)$ is a non-bounded non-oscillating solution, then $y(t)y'(t) > 0$ and $y(t)y''(t) < 0$ for $t \geq t^* \geq t_0$. This implies that if $t_2 \geq t_1 \geq t^*$ then

$$|y(\tau(t_1))| \leq |y(\tau(t_2))|$$

and

$$|y'(\tau(t_1))| \geq |y'(\tau(t_2))|, h(t, y(\tau(t)), y'(\tau(t)))$$

is monotonic for $t \geq t^*$. Since $\lim_{t \rightarrow \infty} |y(t)| = \infty$, from (7) it follows that $h(t, y(\tau(t)), y'(\tau(t))) = c > 0$.

REFERENCES

- [1] V.A. Staicoss, Y.G. Sficas: Oscillatory and asymptotic behavior of functional differential equations, J. Differential Equations, 12 (1972) 426-437.
- [2] L. Cesari: Asymptotic behavior and stability problems in ordinary differential equations. New York 1971.
- [3] B.M. Shevelo, N.B. Vorokh: Pro kalivальності розв'язків лінійних диференціальних рівнянь вищих порядків із запізненням аргументу, Ukrains. Mat. Ž. 24 (1972) 511-518.
- [4] B.M. Shevelo: О некоторых свойствах решений дифференциальных уравнений с запаздыванием, Ukrains. Mat. Ž. 24 (1972) 807-813.
- [5] B.M. Shevelo: О влиянии запаздывания аргумента на колеблемость решений дифференциальных уравнений высшего порядка, Труды пятой международной конференции по нелинейным колебаниям. Kijev (1970) 553-557.
- [6] R.S. Dahiya, B. Singh: On oscillatory behavior of even order delay equations, J. Math. Anal. Appl. 42 (1973) 183-190.

[7] G. Ladas: Oscillation and asymptotic behavior of solutions of differential equations with retarded argument, J. Differential Equations 10 (1971) 281-290.

INSTITUTE OF MATHEMATICS, SILESIAN UNIVERSITY, KATOWICE

Received July 30, 1975.

