DEMONSTRATIO MATHEMATICA
Vol IX No4 1976

Jadwiga Lubowicz

SOLUTION OF THE FIRST FOURIER PROBLEM
FOR THE GENERALIZED HEAT EQUATION
AND ITS RELATION WITH LAPLACE EQUATION

Introduction
In this paper we construct a solution G for the equation

1) L(x,D,Dy)u = Au - Dyu ~ V(x)u = 0,

where xeRy, N>2, t>0, and VeL“(RN) has- a compact
support. We investigate some properties of this solution and
we solve the Fourier problem of the first kind for the
equation

(1) L(x,D,Dy)u(x,t) = F(x,t).

1. The comnstruction of the fundamental solution of the
equation (1)

In a paper of Arseniev [1], a method analogous to one of
E.B. Tevi 1is presented for the construction of the fundamen-
tal solution G(x,y,t) for the equation (1) under the assump-
tion that V(x) 4is a function of class A™ («¢,R). Namely, the
function G satisfies the integral equation

t
(2)  G(xy3,%) = Gy (x,5,t) +fdt/ Gy (x=2,t=)V (5)G(%,y, )k,
o R

where G° is the fundamental solution of the heat egquation

and has the form
2
(3) Gy (x-7,%) = (4at) V2 oxp [_ x-y| ]
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2 J. Iubowicsz

We seek a function G of the form
(4) G(x,y,t) = Go(x-y,t)w(x,y,t) ’

where weL (Ry) @ L™(R;) ® T [0,1].
Then we obtain the following integral equation

(5) w(X,y,5) = 1 + (Aw)(x,y,t)
in which
(6) (A(P)(x,y,t) =

t
= G;1(x—y,t)/Qhu/Go(x—&,t—t)V(g)Go(g—y,t)q(g,y,t)dg,
0 Ry

The solution w of (%) can be represented as the limit of a
uniformly convergent sequence {wn}, where

+-Aw°4-A2w + ees + A% w. =1,

)) = =
(7) o, =w tho 4 =w o 0 Yo

n (0] o]

In [1] it is shown that this solution of (5) is unique
and satisfies the inequality

(8) sup |w(x,y,%)| < o, [V]_),
X,¥ € Ry
7 ¢ [0,T]
where the coustant C 1is finite for Tea[O,cﬂ), for the fi-
nite norm HV”OG.
In the present paper we shall find the fundamental solu-
tion for the equation (1) under the assumption that
Ve I (Ry)e A7 («,R).
First we are going to prove the following lemmas.
Lenma 1 (cf. [1], Lemma 1.,1). If
1° ve L°°(RN) and has a compact support,
2% sup I@(x,y,t)l < Cotd, a > 0,
x,yt‘:l?.br
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Solution of the first Fourier problem

then we have

(9)

C
sup  |(a0) (x,3,8)] < 2 v+,
x,yeRN

Proof., From (3) and (6) in view of the hypothesis of
the lemma it follows that

¢
| (a¢) (x,7,8) | < COI|V "ng1 (X-y,t)/'td[%r(t-'r)tmr-r]_N/adfr-
0

- fore |- Bl - Bl
N

Substituting

h (mf—r)?)q/z“j‘yj)* e )1/2

we obtain

fexp[— |x-312

J 4(t=-1) ~ Euz ]dt, =</ [Mtt T} )
N

-ex'p[- Ix;ztla]fexp(- Is|?)as

N

(yj-xj), j = 1’2,...,N

and consequently we have

¢ ;
|(A‘P) (xyy,t)l < Covv““frddf = dio'] "V“wtq+1
0

for every xeRN and t e [O,T].
lemma.

This ends the proof of the
Lenmmna

2. If V belongs to L (Ry) and has a com-
pact support, then w belongs to

L™(Ry) @ L(Ry) ® T7[0,T] ~ ¢M(RyxRyx(0,T]), T > 0.
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4 J. tubowicz

P r oo f, According to A.A. Arseniev (c¢f., [1], p.10)
wel (R Y® L (RN) ® 1>o,T]. Observe that from (4) it
follows that w is in the class C e xRN"(O T]) with
respect to the variable y, It is known (see [4], p.82) that
the function

G(x,¥,5=-7) = Go(x-y,t-t)w(x,y,t-t)

is, as a function of the variables y,t, the fundamental
solution for the adjoint equation

Ayv + DV - V(y)v = 0.

Hence this shows that G 1is of class C1(RNXRNX(O,T]) with
respect to y, and consequently w is of the same class
o7 (RyxRy*(0,7]) with respect to .

2. The first Fourier problem for the equation (1')
We seek a function u(x,t) satisfying the equation

(10) L(x,D,Dt)u EAu(x,t)-—Dtu(x,t)-V(x)u(x,t) = F(x,t)

at every point (x,t)e¢ Qp = 2= (0,T), with the boundary
condition-

(11) linz u(x,t) = k(,t), (E,8)e 8x(0,T) = 67,

(where S 1is the boundary of ) and with the initial condi-
tion

(12) lim u(x,t) = £(x), xeR2.
t—0t

We seek the solution u(x,t) of class Cz(QT) continuous in
the closure SZT =Q X[O,T]. We take the following assumptions:
1) The function F(x,t) is defined and continuous in the

domain Q@ x(0,T7] and it satisfies Holder’s condition with
respect to the. space variable. '
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Solution of the first Fourier problem 5

2) The function k(t{,t) is defined and continuous cn the
cylinder ET =S XEO,T], where S 1is a Lapunov surface.

%) The function f(x) is defined and continuous in the
domain Q.

3, The solution of the problem
We seek the solution of the problem (10) - (12) in the
form of a sum of three potentials

(13) u(x,t) = uq(x,t) + u2(x,t) + ua(x,t),
where

t
(14) uq (x,%) = -/fG(x.t;y.t)F(y.r)dydf ’

0L

(15) up (x,8) = [ 6(x, 457,002 (7)ay

Q

¢
(16) uz (x, %) :/”/ﬁ‘d%%mﬁ(,(%t)d?dr,
03 '

and oy denotes the normal at the point » to the surface S
directed to the interior of the domain. The existence of the
directional derivative FTo under the sign of integral in
v
formula (16) is secured by Lemma 2.
By formulas (4), (14), (15), (16) we can write the above

integrals in the form

t
(17) uq(x,8) = '//Go (x-y.t-1)w(x,y,t~7)F(y, t)dydr ,
08

(18) up (x,8) =[G, (x-3,8)0(x,3,8) (7)ay
Q
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6 Je Zubowicz

t
(19)  ug(x,t) =5/:/'52—7[Go(x-r,,t—c)]w(x,V,t-q:)Lp(p,f)d?df ¥
N

t
t/)fGo(x—y,t-TO 7%; Eu(x,v,t—v)]¢(7,t)d?dr= Iy (x,8) + I5(x,%).
0s 7
Ve have the following lemma,

Lemma 3., If the density ¢(9,T) is a continuous
function in the domain Sx(0,T], then the integral u5(X,t)
defined by (16) has the following boundary value

(20) lin ug(x,t) = ug(E,t) + Lo,
x*géo

where the interior point x tends to % along to the normal
passing through x, and t ¢ (0,T].

Proof, The density w¢ in the integral Iq satisfies
the assumption of the theorem on jump (see [3], th. 3 p.15)
and m(g,g,o) = 1., Hence the integral J,I has the following
property

(21) lim J,(x,t) =
x+E€S

t
[ [o0G-nt-]uttnsemede (g, 00w + T 5,00
0S

Next we have

(22) lin J,(x,t) =
x-£€ S

=/7 Gy (E=pyt=-1) ‘a%:? [m(g,p,t-r)]cp(y,r)d?dr .
0s

From (21) and (22) we obtain the thesis (20).
Assuming that the function u(x,t) satisfies the boundary
condition (11) we obtain the integral equation
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¢
2 .
(23) p(E,t) + 2 G yt39,v)¢(p,t)dndr = g(g,‘b) ’
5{/9% 3717 (pyv)dy
where we denote

¢
(24) g(E,t) = 2k(b,t) + 2//6(&.t;y,r>F(y,v)dydfc +
0%

+ 2f6(t 457,002 (y)ay -
9 .
The function g(t,t) is bounded and continuous on ET (vy
th. 7 and part 4 of the paper [3] and by lemma 2). Hence
there exists a unique solution of the integral equation (23)
defined by the formula

t
(25) @(g,t) = -//n(z,Qt;VvT)g(?’T)dVd’V + S(E,t) ’
0S
where the solving kernel

(26) W, 55,7) = K, 659,m) + > (1)1, 39,7)
v=1

is the sum of a series of iterated kernels defined by the
recurrence formula

t
(27) N9+1 (g,t;p,t) =//N(§,t;z,g)N\,(z,g;p,T)dzd},
r$
(N, =N); vV=0,1,0..,

where we have denoted

(28) N(E,t57,7) = 2&0‘7{&&&.

7
The series (26) is absdlutely and uniformly convergent
for £e€S and t¢(0,T). Hence taking into account the
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8 J. fubowicz

properties of heat potentials, it follows from (24) and (28)
that the function ¢(k,t) 1s continuous with respect to ¢ of
S and to t (in agreement with part 6 of [3], formula 162).
Substituting the function ¢ ({,t) to.the formula (13) we
obtain the solution u(x,t) of the problem (10) - (12).

4, A remark on the relation to Laplace’s equation

Concluding thls note we formulate the following problem.

Let u be a solution of the initial problem for (1) with
the condition

(29) u(x,0) = f(x),

where £ 1s a function fast decreasing at infinity (i.e.
fe S(RN), cf. [2] p. 424).

- If the fundamental solution G allows to integrate the
function u with respect to t in the interval (0,co),
then we obtaln a function of x. We state some property of
this function.

In case V = 0 the equation (1) has the form

(30) Au(x,t) - Dyulx,t) = O.
For N > 2 the solution u(x,t) of the problem (30),

(29) can be integrated in the interval (0,o0) with respect
to t. Then we obtain the following relation

(1) fute,o)ae =f] 6 e 05,008t = f5x,9)20a8
0 0Q R

where E(x,y) is the fundamental solution of Laplace’s
equation expressed by the formula

1
N-2"’
(N-2)ey |x-y|

(32) E(x,y) = for N > 2,
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where
oy =-20"
F(—IE‘)

is the area of the N-dimensional unit sphere.
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