

Jadwiga Łubowicz

SOLUTION OF THE FIRST FOURIER PROBLEM
FOR THE GENERALIZED HEAT EQUATION
AND ITS RELATION WITH LAPLACE EQUATION

Introduction

In this paper we construct a solution G for the equation

$$(1) \quad L(x, D, D_t)u \equiv \Delta u - D_t u - V(x)u = 0,$$

where $x \in \mathbb{R}_N$, $N > 2$, $t > 0$, and $V \in L^\infty(\mathbb{R}_N)$ has a compact support. We investigate some properties of this solution and we solve the Fourier problem of the first kind for the equation

$$(1') \quad L(x, D, D_t)u(x, t) = F(x, t).$$

1. The construction of the fundamental solution of the equation (1)

In a paper of Arseniev [1], a method analogous to one of E.E. Levi is presented for the construction of the fundamental solution $G(x, y, t)$ for the equation (1) under the assumption that $V(x)$ is a function of class $A^-(\alpha, R)$. Namely, the function G satisfies the integral equation

$$(2) \quad G(x, y, t) = G_0(x, y, t) + \int_0^t d\tau \int_{\mathbb{R}_N} G_0(x - \xi, t - \tau) V(\xi) G(\xi, y, \tau) d\xi,$$

where G_0 is the fundamental solution of the heat equation and has the form

$$(3) \quad G_0(x - y, t) = (4\pi t)^{-N/2} \exp \left[- \frac{|x - y|^2}{4t} \right].$$

We seek a function G of the form

$$(4) \quad G(x, y, t) = G_0(x-y, t)\omega(x, y, t),$$

where $\omega \in L^\infty(\mathbb{R}_N) \otimes L^\infty(\mathbb{R}_N) \otimes L^\infty[0, T]$.

Then we obtain the following integral equation

$$(5) \quad \omega(x, y, t) = 1 + (A\omega)(x, y, t)$$

in which

$$(6) \quad (A\varphi)(x, y, t) =$$

$$= G_0^{-1}(x-y, t) \int_0^t d\tau \int_{\mathbb{R}_N} G_0(x-\xi, t-\tau) V(\xi) G_0(\xi-y, \tau) \varphi(\xi, y, \tau) d\xi.$$

The solution ω of (5) can be represented as the limit of a uniformly convergent sequence $\{\omega_n\}$, where

$$(7) \quad \omega_n = \omega_0 + A\omega_{n-1} = \omega_0 + A\omega_0 + A^2\omega_0 + \dots + A^n\omega_0, \quad \omega_0 = 1.$$

In [1] it is shown that this solution of (5) is unique and satisfies the inequality

$$(8) \quad \sup_{\substack{x, y \in \mathbb{R}_N \\ \tau \in [0, T]}} |\omega(x, y, \tau)| \leq C(T, \|V\|_\infty),$$

where the constant C is finite for $T \in [0, \infty)$, for the finite norm $\|V\|_\infty$.

In the present paper we shall find the fundamental solution for the equation (1) under the assumption that $V \in L^\infty(\mathbb{R}_N) \in A^-(\alpha, R)$.

First we are going to prove the following lemmas.

Lemma 1 (cf. [1], Lemma 1.1). If

- 1° $V \in L^\infty(\mathbb{R}_N)$ and has a compact support,
- 2° $\sup_{x, y \in \mathbb{R}_N} |\varphi(x, y, t)| \leq C_0 t^\alpha, \quad \alpha > 0,$

then we have

$$(9) \quad \sup_{x,y \in R_N} |(A\varphi)(x,y,t)| \leq \frac{C_0}{\alpha+1} \|v\|_{\infty} t^{\alpha+1}.$$

P r o o f. From (3) and (6) in view of the hypothesis of the lemma it follows that

$$|(A\varphi)(x,y,t)| \leq C_0 \|v\|_{\infty} G_0^{-1}(x-y,t) \int_0^t \tau^{\alpha} [4\pi(t-\tau)4\pi\tau]^{-N/2} d\tau \cdot \int_{R_N} \exp \left[-\frac{|x-\xi|^2}{4(t-\tau)} - \frac{|\xi-y|^2}{4\tau} \right] d\xi.$$

Substituting

$$s_j = \left(\frac{t}{4(t-\tau)\tau} \right)^{1/2} (\xi_j - y_j) + \left(\frac{\tau}{4(t-\tau)t} \right)^{1/2} (y_j - x_j), \quad j = 1, 2, \dots, N$$

we obtain

$$\int_{R_N} \exp \left[-\frac{|x-\xi|^2}{4(t-\tau)} - \frac{|\xi-y|^2}{4\tau} \right] d\xi = \tau^{N/2} \left[\frac{4(t-\tau)}{t} \right]^{N/2} \cdot \exp \left[-\frac{|x-y|^2}{4t} \right] \int_{R_N} \exp(-|s|^2) ds$$

and consequently we have

$$|(A\varphi)(x,y,t)| \leq C_0 \|v\|_{\infty} \int_0^t \tau^{\alpha} d\tau = \frac{C_0}{\alpha+1} \|v\|_{\infty} t^{\alpha+1}$$

for every $x \in R_N$ and $t \in [0, T]$. This ends the proof of the lemma.

L e m m a 2. If v belongs to $L^{\infty}(R_N)$ and has a compact support, then ω belongs to

$$L^{\infty}(R_N) \otimes L^{\infty}(R_N) \otimes L^{\infty}[0, T] \cap C^1(R_N \times R_N \times (0, T]), \quad T > 0.$$

P r o o f. According to A.A. Arseniev (cf. [1], p.10) $\omega \in L^\infty(R_N) \otimes L^\infty(R_N) \otimes L^\infty[0, T]$. Observe that from (4) it follows that ω is in the class $C^1(R_N \times R_N \times (0, T))$ with respect to the variable y . It is known (see [4], p.82) that the function

$$G(x, y, t - \tau) = G_0(x - y, t - \tau)\omega(x, y, t - \tau)$$

is, as a function of the variables y, τ , the fundamental solution for the adjoint equation

$$\Delta_y v + D_\tau v - V(y)v = 0.$$

Hence this shows that G is of class $C^1(R_N \times R_N \times (0, T))$ with respect to y , and consequently ω is of the same class $C^1(R_N \times R_N \times (0, T))$ with respect to y .

2. The first Fourier problem for the equation (1')

We seek a function $u(x, t)$ satisfying the equation

$$(10) \quad L(x, D, D_t)u \equiv \Delta u(x, t) - D_t u(x, t) - V(x)u(x, t) = F(x, t)$$

at every point $(x, t) \in \Omega_T \equiv \Omega \times (0, T)$, with the boundary condition

$$(11) \quad \lim_{x \rightarrow \xi} u(x, t) = k(\xi, t), \quad (\xi, t) \in S \times (0, T) = \partial_T,$$

(where S is the boundary of Ω) and with the initial condition

$$(12) \quad \lim_{t \rightarrow 0^+} u(x, t) = f(x), \quad x \in \Omega.$$

We seek the solution $u(x, t)$ of class $C^2(\Omega_T)$ continuous in the closure $\bar{\Omega}_T \equiv \bar{\Omega} \times [0, T]$. We take the following assumptions:

1) The function $F(x, t)$ is defined and continuous in the domain $\Omega \times (0, T]$ and it satisfies Hölder's condition with respect to the space variable.

2) The function $k(\xi, t)$ is defined and continuous on the cylinder $\bar{\Omega}_T \equiv S \times [0, T]$, where S is a Lapunov surface.

3) The function $f(x)$ is defined and continuous in the domain $\bar{\Omega}$.

3. The solution of the problem

We seek the solution of the problem (10) - (12) in the form of a sum of three potentials

$$(13) \quad u(x, t) = u_1(x, t) + u_2(x, t) + u_3(x, t),$$

where

$$(14) \quad u_1(x, t) = - \iint_0^t \Omega G(x, t; y, \tau) F(y, \tau) dy d\tau,$$

$$(15) \quad u_2(x, t) = \int_{\Omega} G(x, t; y, 0) f(y) dy,$$

$$(16) \quad u_3(x, t) = \iint_0^t S \frac{\partial G(x, t; \eta, \tau)}{\partial n_{\eta}} \varphi(\eta, \tau) d\eta d\tau,$$

and n_{η} denotes the normal at the point η to the surface S directed to the interior of the domain. The existence of the directional derivative $\frac{\partial G}{\partial n_{\eta}}$ under the sign of integral in formula (16) is secured by Lemma 2.

By formulas (4), (14), (15), (16) we can write the above integrals in the form

$$(17) \quad u_1(x, t) = - \iint_0^t \Omega G_0(x-y, t-\tau) \omega(x, y, t-\tau) F(y, \tau) dy d\tau,$$

$$(18) \quad u_2(x, t) = \int_{\Omega} G_0(x-y, t) \omega(x, y, t) f(y) dy,$$

$$(19) \quad u_3(x, t) = \iint_0^t \frac{\partial}{\partial n_\eta} [G_0(x-\eta, t-\tau)] \omega(x, \eta, t-\tau) \varphi(\eta, \tau) d\eta d\tau + \\ + \iint_0^t G_0(x-\eta, t-\tau) \frac{\partial}{\partial n_\eta} [\omega(x, \eta, t-\tau)] \varphi(\eta, \tau) d\eta d\tau = J_1(x, t) + J_2(x, t).$$

We have the following lemma.

Lemma 3. If the density $\varphi(\eta, \tau)$ is a continuous function in the domain $S \times (0, T]$, then the integral $u_3(x, t)$ defined by (16) has the following boundary value

$$(20) \quad \lim_{x \rightarrow \xi \in S} u_3(x, t) = u_3(\xi, t) + \frac{1}{2} \varphi(\xi, t),$$

where the interior point x tends to ξ along to the normal passing through x , and $t \in (0, T]$.

P r o o f. The density $\omega \varphi$ in the integral J_1 satisfies the assumption of the theorem on jump (see [3], th. 3 p.15) and $\omega(\xi, \xi, 0) = 1$. Hence the integral J_1 has the following property

$$(21) \quad \lim_{x \rightarrow \xi \in S} J_1(x, t) = \\ = \iint_0^t \frac{\partial}{\partial n_\eta} [G_0(\xi-\eta, t-\tau)] \omega(\xi, \eta, t-\tau) \varphi(\eta, \tau) d\eta d\tau + \frac{1}{2} \varphi(\xi, t).$$

Next we have

$$(22) \quad \lim_{x \rightarrow \xi \in S} J_2(x, t) = \\ = \iint_0^t G_0(\xi-\eta, t-\tau) \frac{\partial}{\partial n_\eta} [\omega(\xi, \eta, t-\tau)] \varphi(\eta, \tau) d\eta d\tau.$$

From (21) and (22) we obtain the thesis (20).

Assuming that the function $u(x, t)$ satisfies the boundary condition (11) we obtain the integral equation

$$(23) \quad \varphi(\xi, t) + 2 \iint_{\partial S}^t \frac{\partial}{\partial n_\eta} G(\xi, t; \eta, \tau) \varphi(\eta, \tau) d\eta d\tau = g(\xi, t),$$

where we denote

$$(24) \quad g(\xi, t) = 2k(\xi, t) + 2 \iint_{\partial \Omega}^t G(\xi, t; y, \tau) F(y, \tau) dy d\tau + \\ + 2 \iint_{\Omega} G(\xi, t; y, 0) f(y) dy.$$

The function $g(\xi, t)$ is bounded and continuous on $\bar{\Omega}_T$ (by th. 7 and part 4 of the paper [3] and by lemma 2). Hence there exists a unique solution of the integral equation (23) defined by the formula

$$(25) \quad \varphi(\xi, t) = - \iint_{\partial S}^t \mathcal{N}(\xi, t; \eta, \tau) g(\eta, \tau) d\eta d\tau + g(\xi, t),$$

where the solving kernel

$$(26) \quad \mathcal{N}(\xi, t; \eta, \tau) = N(\xi, t; \eta, \tau) + \sum_{\nu=1}^{\infty} (-1)^\nu N_\nu(\xi, t; \eta, \tau)$$

is the sum of a series of iterated kernels defined by the recurrence formula

$$(27) \quad N_{\nu+1}(\xi, t; \eta, \tau) = \iint_{\partial S}^t N(\xi, t; z, \zeta) N_\nu(z, \zeta; \eta, \tau) dz d\zeta, \\ (N_0 = N); \quad \nu = 0, 1, \dots,$$

where we have denoted

$$(28) \quad N(\xi, t; \eta, \tau) = 2 \frac{\partial G(\xi, t; \eta, \tau)}{\partial n_\eta}.$$

The series (26) is absolutely and uniformly convergent for $\xi \in S$ and $t \in (0, T)$. Hence taking into account the

properties of heat potentials, it follows from (24) and (28) that the function $\varphi(\xi, t)$ is continuous with respect to ξ of S and to t (in agreement with part 6 of [3], formula 162). Substituting the function $\varphi(\xi, t)$ to the formula (13) we obtain the solution $u(x, t)$ of the problem (10) - (12).

4. A remark on the relation to Laplace's equation

Concluding this note we formulate the following problem.

Let u be a solution of the initial problem for (1) with the condition

$$(29) \quad u(x, 0) = f(x),$$

where f is a function fast decreasing at infinity (i.e. $f \in \mathcal{S}(R_N)$, cf. [2] p. 424).

If the fundamental solution G allows to integrate the function u with respect to t in the interval $(0, \infty)$, then we obtain a function of x . We state some property of this function.

In case $V = 0$ the equation (1) has the form

$$(30) \quad \Delta u(x, t) - D_t u(x, t) = 0.$$

For $N > 2$ the solution $u(x, t)$ of the problem (30), (29) can be integrated in the interval $(0, \infty)$ with respect to t . Then we obtain the following relation

$$(31) \quad \int_0^\infty u(x, t) dt = \iint_0^\infty G_0(x, t; y, 0) f(y) dy dt = \int_{\Omega} E(x, y) f(y) dy,$$

where $E(x, y)$ is the fundamental solution of Laplace's equation expressed by the formula

$$(32) \quad E(x, y) = \frac{1}{(N-2)\theta_N |x-y|^{N-2}}, \quad \text{for } N > 2,$$

where

$$\Theta_N = \frac{2(\sqrt{\pi})^N}{\Gamma(\frac{N}{2})}$$

is the area of the N-dimensional unit sphere.

BIBLIOGRAPHY

- [1] А.А. Арсеньев: Сингулярные потенциалы и резонансы. Изд. Москов. Унив., Москва 1974.
- [2] Л.Д. Кудрявцев: Математический анализ. Т.II. Москва 1973.
- [3] W. Pogorzelski: Własności potencjałów cieplnych w teorii równania przewodnictwa, Biuletyn WAT, nr 29. Warszawa 1957.
- [4] А.М. Илин, А.С. Калашников, О.А. Олейник: Линейные уравнения второго порядка параболического типа, Uspehi Mat. Nauk, 17 (1962) 82-83.

INSTITUTE OF ORGANIZATION AND MANAGEMENT, TECHNICAL UNIVERSITY OF WARSAW

Received February 25, 1975.

