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1. In t roduct ion 
The problem of determining a lgebra ic concomitants f o r 

given geometric ob jec t s occupies a c e n t r a l place in the theory 
of geometric ob jec t s . Besides the a n a l y t i c a l method [1 ] , [53» 
which cons i s t s in reducing f u n c t i o n a l equations to systems of 
p a r t i a l d i f f e r e n t i a l equations of f i r s t o rder , an a lgebraic 
method has been developed, in which one appl ies Jordan cano-
n i c a l form matr ices and group theory . In the present paper we 
s h a l l use an a n a l y t i c a l method developed by S. Golqb in [5 ] . 
Hence the r e s u l t s obtained w i l l be v a l i d f o r func t ions of 
c l a s s C . 

Let Roifa denote the curvature tensor of the space Ln 

with a l i n e a r connection Hr^ . Our aim i s to determine a l l 
' <r algebra ic concomitants of the tensor » antysymmetric 

with respect to the ind ices These concomitants are 
d e n s i t i e s with weight ( - r ) , (may be zero) . Here we s h a l l 
consider the case n = 3, but at the same time we r e s t r i c t 
our problem to one of determining a l l dens i ty concomitants 
o t the tensor R^p-/ s a t i s f y i n g some add i t iona l condi t ions . 
This paper i s a cont inuat ions of [2] and [ j ] . 

2. Density with weight i - r ) as an a lgebra ic concomitants —> — 
of the t ensor Ho<.p-y_ 

F i r s t we s h a l l give severa l bas ic symbols and d e f i n i t i o n s , 
I f in a neighbourhood U of a point ^ of the space LQ the 
t ransformat ion from the old coordinate system (A) to a new 
one (A1) i s described by a system of func t ions 
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(1) t* « ¿ ' ( t ? , . . . , ? ) , U'= 1' n') , 

then Â  denotes as usual 

(2) A*' = 3 A * V > , ( A - 1 n). 
* 2% 

For the transformation inverse to (1) 

(3) ^ - a V ) , 

we assume the analogous notation 

(4) A ' . i ^ l . 

I t i s known that the elements (2) and (4) s a t i s f y the condi-
t ion 

A 1 5T A' 
(5) = J~ minor k% , where J = detU^) ^ 0, 

and the minor A* i s understood in the algebraic sense. 
According to ( [8 ] , p.138), in the space with an aff ine 
connection, the curvature tensor 

(6) Eoc(i/= 2 U M 6 > ? ~ 1 — ' n ) 

can be interpreted as a d i f fe rent i a l concomitant of the f i r s t 
• Y 

order for the object of pa ra l l e l displacement F̂ p . Prom (6) 
i t follows that R ^ ^ i s an antisymmetric tensor with respect 
to a , yS i . e . 

When we pass to the new coordinate system (A1) we find 
; the coordinates 

transformation rule 

J I 

that the coordinates of the tensor s a t i s f y the following 

r«^ p 5'_ a* a*5, a* S /ot,(3, 3 ,i= 1 , . . . , n \ 
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Density concomitants 3 

In t h i s s ec t ion we s h a l l not make use of the f a c t t h a t the 
s 

t e n s o r R „ i s a concomitant of the connection Co of the 
«Pi 

form (6) . 
In the space L the number N of e s s e n t i a l coordina tes 

of the t e n s o r E ^ ^ ^ s a t i s f y i n g the antisymmetry condi t ion (7) 
i s given by the formula N = n 2 ( 2 ) so t h a t f o r n = 3» 
N = 27. Accordingly» i n the coordinate system (A) we assume 
the fo l lowing b r i e f n o t a t i o n : 

(9) 
x j L=R 1 2 1

i , x i + 3 - R 1 2 2
i , * i + 6= R i23 Í » y i = R 1 3 1 1 ' y i+3~K132 Í 

/ i + 6 ^ 1 3 3 , Z i+3= E232 Í» zi+6:=R2^±f ( i=1,2 ,3) . 

The sought a lgeb ra i c concomitants of the 
t e n s o r being a dens i ty of weight ( - r ) , s a t i s f i e s the 
fo l lowing f u n c t i o n a l equat ion when we pass the old coordinate 
system (A) t o the new one (A'): 

(10) H ( x i , y i , z± ) = & | j | r H ( x i l y l t z 1 ) , ( i = 1 , . . . , 9 ) 

where 

Í 1 , f o r W-density 
(11) e=< 

I sgn J , f o r G-dens i ty , 

The dependence of each of the v a r i a b l e s x î , y^i, z ,̂ on the 
v a r i a b l e s i s given by a formula of the type (8) . 

By an a n a l y t i c a l method [5] the f u n c t i o n a l equat ion (13) 
can be replaced by a system of 9 p a r t i a l d i f f e r e n t i a l 
equat ions with one unknown f u n c t i o n H depending on 27 
unknows x i , y i , z i , ( i = 1 , 2 , . . . , 9 ) [ 2 ] , [3 ] . 

The obtained system of equat ions i s complete [3 ] . However, 
i t i s not i n t e g r a b l e in any d i r e c t i o n , n e i t h e r according to 
the d e f i n i t i o n of A. Hoborski [6] , nor according to the 
d e f i n i t i o n of K. Zorawski [10]. We s h a l l solve the system of 
equat ions (18) - (26) in a s p e c i a l case , namely in the case 
where L^ i s the p r o j e c t i v e - e u c l i d e a n space k y 
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3. The case of project ive-eulcl idean space AQ 

When the a f f i n e connection f^jj^ i s symmetric, i . e . when 
Qp11 w e c a -H space with a f f i n e symmetric con-
nec t ion and denote i t by AQ. 

The space i s ca l led p ro jec t ive -euc l idean whenever 
the re e x i s t s a vector f i e l d Î t such tha t the space A^ with 
the connection objec t f^p* = 2A(ot*Pp) 11818 ^ e c u r v a ' f c u r e 

t e n s o r vanishing i d e n t i c a l l y (see [ 4 ] , or [8] p .288) . 
Let us introduce two tensors in the space AQ: 

where 

E0</3 = V / ' ^ = 

3y means of ( [ 8 ] , p.289) we have the fol lowing theorem. 
T h e o r e m 1. (H.Weyl). For n > 2 the space A^ 

i s p ro j ec t ive eucl idean i f and only i f the Weyl tensor 
vanishes 

(15) 0 . 

For n > 2 the condit ion (15) gives an a lgebra ic r e l a t i o n £ 
between the t ensor R ^ ^ and i t s a lgebra ic concomitants R^fi 
and V ^ . 

In the space A^ the curvature tensor R ^ s a t i s f i e s 
the Ricci i d e n t i t y of the form 

(16) W = ° -

Instead of i nves t iga t ing the order of the system of equa-
lf* t i o n s (15) (with the unknowns R ^ ) we can examine the 

- 520 -
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ex i s t ence of a unique s o l u t i o n of t h e a l g e b r a i c system of 
equa t ions 

(17) ^ J A t - 2 A [ ' p f l i = 

wi th r e spec t t o the unknowns 
By the order of the system of equa t ions (17) we understand 

the o rde r of t he p ro j j ec t ive -euc l idean space An> 

In v i r t u e of (7) and (16) the system of equa t ions (17) 
2 / 2 y, \ 2 

con ta in s L = — - — j - ^ — i n d e p e n d e n t equa t ions and n 
unknowns P^jj. On the b a s i s of ( [ 8 ] , p .290) and (17) we have 
t h e fo l lowing c o r o l l a r y . 

C o r o l l a r y 1. I n the p r o j e c t i v e - e u c l i d e a n space g 
A.Q the curva ture t e n s o r R ^ has , i n the gene ra l case , a t 
most n 2 independent coo rd ina t e s . In the case of a connection 
p r e s e r v i n g volume the number of independent coord ina te s i s 
equal t o C 1 ^ ) . 

For n = 3 the i n d i c e s o(, (J, n , & take on va lue s 1 , 2 , 3 
(with l i m i t a t i o n ot <ß ) , from which by means of t he c o r o l l a r y 
above and formula (17) we o b t a i n 7 systems of equa t ions 
determining P^jjs 

(18) R121^ - R 122 5 = E 1 3 l ' = R, 133 = R, 232 = R. •233 = 0 . 

(19) 

(20) 

P 1 1 " R 1 2 1 ' P11 = E131 ' 

3 P12 = R132^» P21 " R2313» P 12 ~ 2 P 21 = R12l'1» 

•12 21 " 123 ' 

(21) < 
P13 = R123 ' " P 31 " R231 ' P 13 " 2 P 31 ~ E131 

2 P 13 " P31 = E 133^ ' P13 ~ P31 ~ R132 ' 

(22) - P 2 2 = R1221» P22 = R 232 5 , 
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(23) 
" P 2 3 ~ R123 ' 

2 P23 ~ P32 " E 233 > ' P23 " P32 ~ E231 

1 2 
~P32 = R132 ' P23 " 2 P 32 = E232 

(24) 1 2 
~P33 = E133 ' ~P33 = E233 ' 

Solving the systems of equa t ions (18) - (24) wi th r e spec t t o 
t h e i nde t e rmina t e s P w e o b t a i n 

(25) < 
P 1 1 - E 1 2 1

2 , Ï ) 12 J I 132 3 ' P13~E1232» P 21 = E 231 3 ' 

P22= ; R2325 ' P 23 = E 213 1 ' P31= E3212» P32=;R3121» P 33 = R 323 2 , 

Moreover, "besides cond i t i ons (18) t he fo l l owing t h r e e systems 
of cond i t i ons should hold 

(26) ®i21 = E17.1 ' E i ? ? ~ - E ? 3 ? • - ® 131 ^232 133 
2 

233 ' 

(27) 
E 123 3 " E 132 3 ~ ^ l 3 ' R' 132" ~ R123 

2 2 
+ ^231 » 

? 1 - H 1 - E 1 
231 " 132 "123 

(28) 

E121 1 = - 2 E 2 3 1 3 + E1323» R 122 2 = ^ 1 3 2 ^ " R 231 ? ' 

e 131 1 = 2 R 231 2 + R 1 2 3 2 ' E 133 5 = 2 R 123 2 + R 231 2 ' 

e 2 3 3 3 = - 2 R 1 2 3 1 + E1321» R232 2 = 2 R 132 1 ~ R1231 • 

Ely R i c c i ' s i d e n t i t y (16) t he f o u r t h cond i t i ons of t h e 
systems of c o n d i t i o n s ( 2 0 ) , (21) and (23) a re i d e n t i t i e s . 

Prom the t e n s o r c h a r a c t e r of formula (17) we i n f e r t h a t 
t h e systems of c o n d i t i o n s (18) and (25) - (28) a re i n v a r i a n t , 
i . e . independent of t he coord ina te system (A). 
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In this way in the space A, among 27 coordinates of 
<f 5 

the curvature tensor R ^ we have distinguished 9 essential 
coordinates. By formulas (18) and (26) - (28) the remaining 
18 coordinates of the tensor R^py depend on 9 essential 
ones. 

The determination of the density (scalar) concomitant 
of the curvature tensor R ^ in the projective-euclidean 
space A j 

Taking into account the invariant conditions (18), (25) -
- (28) f o r the coordinates of the curvature tensor we 
introduce the following notation f o r the coordinates of the 
tensor P 

(29) 
û  - P-11» - ^1?» - 3 » ua - » - P; 12 13' " 2 1 ' " 2 2 

He = P23' u,7 = Uq = = P 31 32" 33 

Hence in view of (29), (18), (25) - (28) a l l coordinates £ 
of the tensor R ^ ( for n = 3) can be expressed by means 
of the parameters namely 

(30) 

2 3 2 3 3 
R121 = u 1 ' R132 = u 2 ' R123 = u 3 ' ^31 = u4» R232 = u5 

.R213'1 ~ u6' ®2312 " u7' H3121 " u8» R3232 = u9 

(31) 

(32) 

(33) 

(34) 

~ R122^ - ~ - - Enz - 0« 131 133 ^232 - ^233 

R1315 = u1' R1221 - ~u5' R1331 ~ ~u9 

123 

1 
1 
3 

= Up - u v R1 5 2 = û  - u9, R. 7' "231 = u 6 ~ u 8 " 

R12l ' = U 2 - 2 V R1222 = 2 u 2 _ l V R1311 = u3 " 2u7 

R133" = 2u3~u7' R2333 = 2 u 6 " u 8 ' R2322 = u 6~ 2 u 8-
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By (9), (10), (30) - (34) the sought concomitant 
H(xk,ykfz^.) (k = 1,...,9) depends only upon the essential 
variables u^(i=1.. ,9). 

Hence we assume the following notation 

(35) G(Ui) = H(xk,yk,zk), 

As usual we denote 

3G (36) i 3u,-

(i,k = 1,...,9) . 

(i = 1,... ,9). 

By virtue of (9) as well as (30) - (36) the system of 
partial differential equations corresponding to the functional 
equation (10) (see [2], [3]) can "be reduced to the following 
system of nine partial differential equations of first order 
(for the unknown function G depending upon nine variables 
U,, , • . . , Uq ) 

2u^G1 + u2G2 + U J G J + u^G^ + û Gr, = -rG 

lUjGg + unG4 + (u2+u^)G5 + U^G6 + UyGg = 0 

u1G3 + u^G6 + u1G7 + u2G8 + (u3+u7^G9 = 0 

(u2+u4)G1 + U5G2 + u6GJ + U5G4 + UgG7 = 0 

(37) J, 2u1G1 + UjGJ - 2U5G5 - u6G6 + a?G? - UgGg = 0 

u2G3 + u5G6 + U4G7 + u5G8 + (u6+u8^G9 = 0 

(u^ + UpjG,, + UgG2 + UgGj + U6G4 + UgG7 = 0 

UJG2 + U?G4 + (U6+ UQ)G5 + UgGg + UgGg = 0 

2u1G1 + U2G2 + U4G^ - U6G6 - UgGg - = 0. 

The system of equations (37) is not integrable in any di-
rection, neither in the sense of A. Hoborski [6], nor in the 
sense of K. ¿orawski [io]. In [ó] and [io] methods are 
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given for reducting an arbitrary complete linearly-independent 
system of f i r s t order p a r t i a l d i f f e r e n t i a l equations to an 
equivalent system which i s integrable in some direct ion. 
However, t h i s method of reduction i s very complicated. By a 
t r i a l method we have ascertained that the system (37) i s 
integrable in the direction of equations (37 .8 ) , ( 37 .2 ) , 
( 37 .7 ) , (37 .5 ) , ( 37 .9 ) , ( 3 7 . 3 ) , ( 37 .4 ) , ( 37 .1 ) , (37 .6) ( (37 .k) 
denotes the k-th equation of the system (37) ) . 

To the p a r t i a l d i f f e r e n t i a l equation (37 .8) there 
corresponds the following system of ordinary d i f f e r e n t i a l 
equations: 

dû  du2 du, 3 du4 du^ 

(38) < 
0 u3 - o - u7 u6+ u8 

du6 

u9 

du8 

u9 

dug 
= 0 ' 

This system has the following f i r s t in tegra ls : 

(39) °2 = u 3 ' °3 = V C4 = u 9 ' C5 = u 6 - U 8 

. c 6 = U6U8 " U5U9» °7 = U2U9 " U3U8' °8 = W U6U7 • 

Hence the general solution of (37 .8) has the form 

( 4 0 ) G = <p (iL, , U3 , U? , Ug , U6-Ug , U6 , Ug-UjUg, U^-U^Ug , u ^ - u ^ ) = 

» V f y » v 2 ' v 3 ' v 4 ' v 5 » v 6 ' v 7 ' v 8 ' 

where (f i s an arbitrary function of c lass C . 
Substituting the solution (40) into the equation (37.2) 

we obtain the following equation (<pk =3(^/3vk) 

(41 ) (v 2-v 3 - (v ?+v8)v6 + (v 1v 4 -v 2v 3 )q>7 + )<fQ = 0. 
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(to (41) there corresponds the following system of ordinary 
d i f f e rent ia l equations 

(42) J 

dv. d v2 dV3 dV4 
0 ~ 0 

dvc dVr dvc 

v 2 - v 5 - v 7 - v 8 v ^ - v ^ j v ^ - v 2 v 3 

whose f i r s t inregrals have the form 

D1 = v 1 f D2 = v 2 , D3 = v 3 , = D5 = v7 - v 8 , 

D6 = v 2 v 3 v 5 - v l V ? 5 - v 5 v 7 + v 2 v 7 , D7 = v2v3v6-v1v4v5-v7v8 . 
(43) 

Expressing the obtained f i r s t integrals (43) by means of 
the original variables u^ and taking instead of By the 
integral D^/D ,̂ we obtain a f ter a change of notation 

(44) 

w1 = u1t w2 = u3, w4 = u g , 

w5 = u2a9~u3u8~a4u9',"u6u7 

w6 = UjUgU^i^, u6u9+ui ug u9+ u2 u3 u9~ u2 u7 u9 -u3 u8 
w7 =W = u1u5ug+u2u6u7+u3u4u8-u3u5u7-u1u6u8-u2u4u9 . 

From (29) i t fol lows that 

(45) w7 = w = det P, P = ( P ^ ) ( i , j = 1,2,3) . 

'fhe general solution of (41) depends upon f i r s t integrals 
w 1 , . . . ,w 7 > namely 

(46) G s l f t ^ Wr,), 

where y is an arbitrary function of class C . 
I t is easy to ve r i f y that the f i r s t integral w = w7 of 

the form (45) i s a solution f o r a l l homogenous equations of 
the system (37), and the equation (37.1) i s sat is f ied fo r 

- 526 -



Densi ty concomi tan ts 11 

r = - 2 . We r e p r e s e n t t h e m a t r i x P i n t h e 1jrm of a sum of 
symmetric and an t i symmet r ic p a r t s 

(47) P = P s + P a . 

I t i s easy t o see t h a t de t P& = 0 , but wg = de t P g i s a s o l u -
t i o n of (37) f o r r = - 2 . I n p a r t i c u l a r . w_ i s an i n t e g r a l s 
of t h e e q u a t i o n ( 3 7 . 8 ) . Hence t h e de te rminan t of w„ i s 
e x p r e s s i b l e i n t e rms of f i r s t i n t e g r a l s of t h i s e q u a t i o n . 
A f t e r a t e d i o u s computa t ions we have succeeded i n r e p r e s e n t i n g 
i t i n t he f o l l o w i n g f rom (where i n agreement wi th (39) and 
(40) we put v.̂  = C i f i = 1 , . . . , 9 ) . 

wc = d e t ( P ) = 1 
-4V1'V4V6~V1 V 5 + V 2 V 6 + V 3 V 6 + ' s - 4V 

(48) p 2 2 
+ v 2 v 3 v 5 + v 2 v 5 v 7 ~ v 3 v 5 v 7 + v 2 v 5 v 8 ~ v 3 v 5 v 8 + 2 v 2 v 3 v 6 ~ ^ v 7 v 8 - v 7 - v 8 

Prom (12) , (29) , (45) , (47) i t f o l l o w s t h a t t h e q u a n t i t i e s 
w and wg a r e W - d e n s i t i e s of weight 2 , i . e . d e f i n i n g w ana 
wg by fo rmulas (4-5) and (48) , r e s p e c t i v e l y , we o b t a i n t h e 
f o l l o w i n g t r a n s f o r m a t i o n r u l e s 

(49) w' = | j | ~ 2 w, w's = j j | ~ 2 wg . 

To s i m p l i f y s o l v i n g t h e system of e q u a t i o n s (37) we t a k e 
as f i r s t i n t e g r a l s of t h e e q u a t i o n (37 .8 ) t h e f o l l o w i n g 
e x p r e s s i o n s : 

(50) 
r 1 = V r2 = u3» r 3 = u 7 ' r 4 = u 9 ' r 5 = U 2 U 9~ U 3 U 8 

r 6 = u^ug - u 5 u ? , r ? = w, r Q = wg . 

Hence t h e g e n e r a l s o l u t i o n of (37 .8 ) has t h e form 

(51) G =w ( r 1 t . . . , r 8 ) , 
1 

where co i s an a r b i t r a r y f u n c t i o n of c l a s s C . 
Next s u b s t i t u t i n g G of t h e form (51) a g a i n i n t o t h e 

e q u a t i o n (37 .2 ) and s o l v i n g t h e co r respond ing system of 
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ordinary differential equations we obtain the following f i rst 
integrals 

(52) I S1 ~ U1 ' s2 = u3' s3 = u7' = u9' 

s5 = u2u9-u3u8-u4u9+u6u7, s6 = w, s? = ws 

In view of (52) the general solution of (37.2) has the form 

(53) G = oc(s1t... ,s?), 

1 
where of is an arbitrary function of class C . 

Substituting G of the form (53) into (37.7) and taking 
into account (52) we obtain the following partial differential 
equation 

(54) (s2 + s^ }^ + s4<x2 + s4oc5 = 0, 

which gives a system of ordinary differential equations 

(55) 
ds„ 

S2+Sj 
ds2 ds, 

This system has the following f i rst integrals 

ds^ ds,- ds^ dSn 

(56) 

= s4 = u9 
*2 = s5 = U2U9"U3U8"U4U9+U6U7 ' 

= s6 = w , 

= s? = ms ' 
= S 2 - s3 = u3 ~ u7' 

*6 = S1S4 - s2s5 = u ^ 9 - u3u? 

Hence the general solution of (37.7) has the form 

(57) G = j 3 ( t 1 , . . . , t 6 ) I 

where /¡> is an arbitrary function of class C . 
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Substituting G of the form (57) into (37-5) and taking 
into account (56) we obtain the following par t i a l d i f fe rent ia l 
equation 

(58) t5|J5 + 2t6(56 = 0. 

The equation (58) y ie lds a system of ordinary d i f fe rent ia l 
equation 

(59) 
dt1 dt2 dt , dt^ dt5 dt6 

~~ö~ = = = = = 

which has the following f i r s t in tegra l s : 

(60) 
P1 = t 1 = u9 ' P2 = t 2 = u2u9~u3u8"u4u9+u6u7 ' 

P3=t3=wt P4=t4=ws, p5=t|/t6= (u 3 -u 7 ) 2 ( U l u 9 -u 3 u ? ) , 

We see that the general solutions of (37.5) has the form 

(61) G = i ( p 1 t . . . , p 5 ) , 

where % i s an arbitrary function of c lass C . 
Substituting (61) into (37.9) we obtain the equation 

(62) 2p1K1 + p2T|2 = 0 , 

which y ie lds a system of ordinary d i f fe rent ia l equations 

dP1 dP2 d p* dp, 

This system has the following f i r s t integrals 

(u , -u 7 ) 2 

q-! = P5 = w, q2 = p4 = ws, q3 = = » ¿ . A 
(64) J 1 9 3 7 

P2 (u2u9-u5u8-u£fu9+u6u7)2 

^ " 

- 529 -



14 L.Bieszk, D. Stygar 

Hence the general solution of (37.9) has the form 

(65) G = 6 , q 2 , q 3 , q 4 ) , 

where 6 i s any funtion of c l a s s C^. 
Substituting (65) into (37.3) we obtain 

(66) X j t q ^ d , = 0, 

where X^(q^) i s the value of the left-hand side of (37.3) 
for G = q^. Because q^ i s not an integra l of (37.3) , we 
have 

(67) ^ = 0 , 

which means that the function ¿ ( q , | , q 2 , q 3 i q d o e s not depend 
upon q^. Let us observe that X^(q^) has the form 

(68) X . ( q , ) = 
u9 

where 

A = u2u9 - u3u8 - u^u9 + u 6u ? , 

B = 2U1U6U9 - UgUg + u^u?u9 - u ^ U g + u 2 u ? u g + 

+ u 3u 7u 8 - u 3u 4u 9 - u 3 u 6 u ? + U^Ug - u6u^ . 

Prom (65) and (67) we f i n a l l y obtain the following solution 
of (37.3) 

(69) G =X ( q 1 , q 2 , q 3 ) , 

where X i s an arbitrary function of c l a s s C . 
Substituting (69) into (37.4) we obtain 

(70) V q 3 ) K 3 = 0 
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where X ^ ( q j ) i s t h e v a l u e of t h e l e f t - h a n d s i d e of ( 3 7 . 4 ) 
f o r G = q y S i n c e q^ i s n o t an i n t e g r a l of ( 3 7 . 4 ) , we 
o b t a i n 

(71 ) 3 i 3 3 0 , 

i . e . 3c does n o t depend upon q^ . 
Le t us o b s e r v e t h a t 

( u , - U 7 ) B 
(72 ) X 4 ( q 5 ) = - — 2 "2"' 

* ( u ^ 9 - u 3 u ? ) 

I n v i r t u e of (69) and (71) t h e f u n c t i o n G h a s t h e f o r m 

(73 ) G = ^ ( q 1 , q 2 ) = ^ (w,w g ) , 

1 
where g i s any f u n c t i o n of c l a s s C . 

F i n a l l y , s u b s t i t u t i n g (73) i n t o ( 3 7 . 1 ) we g e t 

( 74 ) W£>1 + V ? 2 = 

From (74) and (73) i t f o l l o w s t h a t t h e c o n d i t i o n s of 
E u l e r ' s t h e o r e m on homogenous f u n c t i o n s h o l d s , c o n s e q u e n t l y G 
h a s t h e f o r m 

(75 ) G = co ( w , w s ) , w2 + w2 > 0 , 

where i n t h e c a s e of d e n s i t y c o n c o m i t a n t ( r 0 ) t o i s an 
1 

a r b i t r a r y f u n c t i o n of c l a s s C which i s p o s i t i v e l y homogenous 
o f o r d e r ( -§- ) , and i n t h e c a s e of s c a l a r c o n c o m i t a n t s 00 i s 

1 
an a r b i t r a r y f u n c t i o n of c l a s s C homogenous of z e r o o r d e r . 

I t i s n o t d i f f i c u l t t o v e r i f y t h a t G of t h e f o r m (75) 
s a t i s f i e s t h e e q u a t i o n ( 3 7 . 6 ) . 

Tak ing i n t o a c c o u n t E u l e r ' s t h e o r e m on homogenous f u n c t i o n s 
and t h e f a c t t h a t t h e s o u g h t c o n c o m i t a n t must s a t i s f y t h e 
f u n c t i o n a l e q u a t i o n (10) ( f o r £ = 1 w i t h t h e c o n d i t i o n s 
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(29) - (34)), we infer from (75) and (49) that the function G 
can be represented in the form 

(76) G = |w|~r/2 K(wg/w)t w / O , 

where K is any function of class C . 
Hence by (49) the object 

(77) = ^ 

is a scalar. 
R e m a r k 1. The function G of the form (75) or 

(76) satisfies the original function equation (10) (with the 
conditions (29) - (34)) for £ = 1 only. 

R e m a r k 2. For w = w = 0 the equation (74) is 5 

satisfied for r / 0 by the function G = 0, and for r = 0 
by the function H = C, where C is any constant. 

Hence we have proved the following theorems. 
T h e o r e m 2. In the projective-euclidean space 

A^ every density concomitant G(u^,...,ug) with weight (—r) 
(in the class Q^) of the curvature tensor R^^ is a W-den-
sity of the form 

(78) G = (w,wg), w2 + w| > 0, r ji 0, 

where Co is any function of class C which is positively 
homogenous of order (-

T h e o r e m 3. In "the pro ¡jective-euclidean space A^ 
every scalar concomitant G(uy>.. ,uQ) (in the class C^ ) of 

6 * the curvature tensor R&fa h a s i«*1® form 

(79) G = r ( w t w s ) f w 2 + w2 > 0, 
1 

where t is any function of class C which homogenous of 
zero order. 

The densities w and w^ appearing in Theorem 2 and 3 
are defined by formulas (45) and (48), respectively. 
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C o r o l l a r y 2. In the p r o j e c t i v e - e u c l i d e a n space 
A, ( in the c l a s s C ) t h e r e e x i s t s no n o n - t r i v i a l a l g e b r a i c 

j f 
concomitant of t h e curva tu re t e n s o r R ^ which i s a G-density. 

fi e m a r k 3. When the f u n c t i o n co i n (75) i s l i n e a r , 
we have 

(80) G = aw + bw_ , 

where a and b are any c o n s t a n t . I n f a c t , i n view of (4-9) 
the f u n c t i o n G of the form (80) i s a W-density of weight 2. 
Assuming t h a t the sought dens i t y concomitant G i s of the 
form 

(81) G = a i d k u i u d u k , ( i , 3 , k = 1 . . . . . 9 ) 

and s u b s t i t u t i n g i t i n to the system of equa t ions (37) , we 
o b t a i n , a f t e r a t e d i o u s computation, the form (80) f o r t h e 
f u n c t i o n G. 
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