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1. Introduction

The problem of determining algebraic concomitants for
given geometric objects occupies a central place in the theory
of geometric objects. Besides the analytical method [1], [5],
which conslists in reducing functlonal equations to systems of
partial differential equations of first order, an algebraic
method has been developed, in which one applies Jordan cano-
nical form matrices and group theory. In the present paper we
shall use an analytical method developed by S. Golgb inm [5].
Hence the results obtained will be valid for functions of
class 01.

Let Rdﬁzd denote the curvature tensor of the space I,
with a linear connection Dﬁx. Our aim 1is go determine all
algebraic concomitants of the tensor Ruﬂz , antysymmetric
with respect to the indices o, fi. These concomitants are
densities with weight - (~r), (may be zero)., Here we shall
consider the case n = 3, but at the same time we restrict
our problem to one of determining &all density concomitants
ot the tensor Rdﬁqf satisfying some additional conditions.
This paper is a continuations of [2] and [3].

2. Density with weight (-r) as an algebraic concomitants
of the tensor Rqﬁxji

First we shall give several basic symbols and definitions,
If in a neighbourhood U. of ‘a point { of the space L, the
transformation from the 0ld coordinate system (1) %o a new
one (1') is described by a system of functions
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(1) O S ORI L T O U UG

then A; denotes as usual

: A A

(2) Al =3_Aiz§"—)" (A=1,...,n).
For the transformation inverse to (1)

A A,
(3) 8 =4A7(8),
we assume the analogous notation

At
(4) Ax:%.

28

It is known that the elements (2) and (4) satisfy the condi-
tion

1

. 2 _ . ) i ! ‘
(5) £y = 37" ninor &), where J = det(d}) # 0,

and the minor Ai is understood in the algebraic sense.
According to ([8], p.138), din the space I  with an affine
connectioﬁ, the curvature tensor

g é s . 6
(6) dea = 23[(1';3]3 + 2r‘[o"|e|r}5]‘z .(o(,/a)’g,d,e_ 1..-.,!1)
can be Interpreted as a differential concomitant of the first
order for the object of parallel displacement F«py. From (6)
it follows that Rdﬂ is an antisymmetric tensor with respect
to o, ﬁ i.e.

¥

. § )
\7) Rdﬁa = -R/Sel] .

When we pass to the new coordinate system (X) we find

that the coordinates of the tensor Raﬂ dsatisfy the following
transformation rule

§ o P oy & 8 o,B8, % 0= Ty00e,m
8 Rope = A, Ay AL, A, R V0 ! ! .
( ) 0(/3,1 G' {3' 3 6 ‘xBX L] (d’/’P',zl’d‘l= 1I’ ...’n|>

)
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Denslity concomitants 3

In this section we shall not make use of the fact that the
tensor Rup Jis a concomitant of the connection Epwvof the
form (6).

In the space L_ the number N of essentlial coordinates
of the tensor Rde satisfyingzthe antisymmetry condition (7)
is given by the formula N = n (g) so that for n = 3,
N = 27. Accordingly, in the coordinate system (A) we assume
the following brief notation:

i 1 R Y| o1
) X3=R21"s X343 R0y X3,67R237s TyR3q7y Ty,37Rq32
9 .

i
=R1 i i i
Ti467M33 4 2yBas s ByusFosa s BieRozs , (141,2,3)

The‘souﬁFt algebralc concomitants H(xi,yi,zi) of the
tensor R&ﬁx,,being a density of weight (-r), satisfies the
following functional equation when we pass the o0ld coordinate
system (1) to the new one (A'):

(10) H(xy 35 125 ) = €191F H(xy,74,24), (1 = 1y000,9)

where

1, for W-density
(11) €=

sgn J, Tfor G-demsity,

The dependence of each of the variables Xy Tqs 29 on the
variables Xg9T4024 is given by a formula of the type (8).

By an analytical method [5] the functional equation (13)
can be replaced by a system of 9 partial differential
equations with one unknown function H depending on 27
UDKDOWS  X4,¥45Z4s (1 = 15240..,9) [21, [3].

The obtained system of equations is complete [3]. However,
it is not integrable in eny direction, neither according to .
the definition of A. Hoborski [6], nor according to the
definition of K, Zorawski [ﬁo]. We shall solve the system of
equations (18) - (26) in a special case, namely in the case
where L3 is the projective~euclidean space A3.
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3, The case of pro;]eotive-eticl:l_.dpan space A

When the affine connection de”‘ is symmetric, i.e. when
l;ﬁz =Pﬂ 41' we call Ih the space with affine symmetric con-
nection and denote it by An

The space A is called projective-euclidean whenever
there exists a vector Jsield E, such that the space An with
the connection object P“p1=F;,31+ 2a, ¥p has the curvature
tensor vanishing identically (see [4], or [8] p.288).

Let us introduce two tensors in the space An:

(12) B = 1_"n2 [(2+1)R g+ Vap]=1__l:2 (m Ryq+ Ry,)
6 § ¢ §

where

(14) Ryp = Reap', Vep = dege.

By means of ([8], p.289) we have the following theorem.
Theorem 1. (H.Weyl). For n > 2 the space Ay

is projective euclidean if and only if the Weyl tensor de‘f
vanishes

. s
(15) Wy =0

For n > 2 the condition (15) gives an algebraic relstion
between the tensor RdM and its algebraic concomitants Ro‘ﬁ
and ve(ﬁ‘ 5

In the space ‘A“n the curvature tensor R"‘F% satisfies
the Ricci identity of the form

(16) R[dm‘ =0.

Instead of investigating the order of the system of egqua-
tions (15) (with the unknowns Rdhd‘) we can examine the
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Density concomitants 5

exlstence of a unique solution of the algebraic system of
equations

(17) 2P[°L[5]A'dl;- ZA[O;‘Pﬁ]ﬁ: dezd’, (a < {5)

with respect to the unknowns Fygp.

By the order of the system of equations (17) we understand
the order of the projective—euclidean space An‘
In virtue og (Z) and (16) the system of equations (17)

contains L =-E—£E?r:—1l- independent equations and n2
unknowns E,p. On the basis of ([8], p.290) and (17) we have
the following corollary.

Corollary 1. In the projective-euclidean space
An thezcurvature tensor Rupf has, in the general case, at
most n~ independent coordinates. In the case of a connection
preserving volume the number of independent coordinates is
equal to (n§1).

For n =3 the indices o, f, ¥, 6§ take on values 1,2,3
(with limitation « <p ), from which by means of the corollary
above and formula (17) we obtain 7 systems of equatioms
determining Paﬁ’

' 3 3 2 _ 2 _ 1 _ 1 _
(18)  Rqpq” = Rypp” = Rqzq” = Ryz3” = Rpzp = Rpz5 = 0.
_ 2 _ 3
(19) Ppq =Rize7s Pg = RyzgT
[ _ 3 _ 3 . 1
) Pio = Ry3p”y Ppq = Rpzq™y Pip = 2Fpq = Rypq s
(20) 5 , 3
(2P12 = Foq = Raza™y Py2 = Faq = Rypz” .
( 2 2 1
Pis = Rigzos =Pgq = Rpzq®y Pyz = 2Pg = Rygy
(21) < 3 5
P13 = F3q = Rqzz”s Fyz = Pzq = Ryzp -
= 1 - 3
(22) ~Pap = Ripp's  Ppp = Rpzp”.
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1 1 2
(23) 5 _
o) _ _ g
2Py3 = P3p = Razz™y  Poz = Pyp = Rpzg »
1 2
(24) -P53 = R133 ' -P33 = R233 .

Solving the systems of equations (18) - (24) with respect to
the indeterminates Paﬁ we obtain

o2 o 3 o2 3
(5) P117Ri2q s P1oRyz07y Pyz=Rinz 7y FoqBozq7s
25 i

_ 3 _ 1 _ 2 _ 1 _- 2
Poo=Rp327s Poz=Rpqz s Pzq=Rzpq7y Pzp=Rzqn "y P3z=Rzpa.
Moreover, tesides conditions (18) the following three systems
of conditions should hold
3 1 3 1 _ 2
Rizq7s Bypp = -Bp3p”y Rqzz = Boaz -

i

2
(26)  Rqpq

3 3 3 2 _ 2. .. 2
J Rq23” = Byzp” = Bozq”s Byzp” = Rypz™ + Rpzq s
(27) 1 1 1
{ Rozq = Ryzp — Rypz
r 1 3 © 3 2 3 3
Ripq = =-2Bpzq” + Bqz07y Rqpp = 2Ryzp” = Rp3q7,

1 2 2 3 2 2

2 1 1

= 2Ryzo = Rypz -

3 1 1
Rozs” = =2Rqp3 + Ryzp 'y Rpzp

By Ricci?s identity (16) the fourth conditions of the
systems of conditions (20), (21) and (23) are identities.

From the tensor character of formula (17) we infer that
the systems of conditions (18) and (25) - (28) are invariant,
i.e. independent of the coordinate system (A).
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Density concomitants 7

In this way in the sp%fe A3 among 27 coordinates of
the curvature tensor dez we have distinguished 9 essential
coordinates. By formulas (18) and (26) - (28) the remaining
18 coordinates of the tensor Raﬂy depend on 9 essential
ones.

4, The determination of the density (scalar) concomitant

; g
of the curvature tensor RaﬁH in the projective-euclidean

space A3

Taking into account the invariant conditions (18), (25) -
- (28) for the coordinates of the curvature teansor Ruﬁ; we
introduce the following notation for the coordinates of the
tensor Eap

P

ug = Ppqs 8y = Pppy Uz = Pyzy U4y = Foyy U5 = Poy,

(29)

U.6 P25, l1,7 = PB,], u8 = P32, u9 = P33 .

Hence in view of (29), (18), (25) - (28) all coordinates
of the tensor dez&(for n = 3) can be expressed by means
of the parameters Ujseeeslgy namely

2_ 3 2 _ 3. 3
Rra1 =990 Byza” =ups Rpg =iz, Rozq™ =y, Rozp”=ug

(30) 1 2 1 2
Fo13 = Ugr Fozq = Ugs Rzpp = ugs Rypz = ug-
3 3 2 2 1 1
(31) Rizq” = Riza” = Ryzq” = Ryzz = Rozp = Rygp =0
3 1 1
(32) R131 = u,], R1~22 = -u5, R133 = -u9.
3 2 1
(33) R125 = Uy -~ u4, R132 = u5 - u7, R231 = Ug - Uge
R 14 U, - 2u 2--2u -u,, R 1. u; - 2u
(34 121 = Up= Wy Rypp = 2uy-uy, Ryzg = uz-cug
3 _ _ 3 _ 2 _
R133 = 2u3 Uy R233 = 2ug - Ug, R252 = u6-2u8.
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By (9), (10), (30) - (34) the sought concomitant
H (% sV 1 29) (k = 140..,9) depends only upon the essential
variables ui(i=1,...,9).

Hence we assume the following notation

(35) G(Ui) = H(xkvyk’zk)’ (i,k =1,...,9).

As usual we denote
(36) G =a—6 (i = 1 XK 9)-
i 3“1 ] 1]

By virtue of (9) as well as (30) - (36) the system of
partial differential equations corresponding to the functional
equation (10) (see [2], [3]) can be reduced to the following
system of nine partial differential equations of first order
(for the unknown function G depending upon nine variables
u1,...,u9)

( 2u1G1 + UGy + u3G5 + u4G4 + u7G7 = -rG

u Gy + uqG, + (u2+u4)G5 + uzlg + upGg = 0

U Gy + w G + u Gy + uyGg + (u5+u7)G9 =0
(uytu, )Gy + ugly + uglz + ugl, + ugh, = 0
(37) < 2u46, + uzG3 ~ 2ughs - uglg + unGp - ughy = 0
u2G3 + u5G6 + u4G7 + u5G8 + (u6+u8)G9 =0

0

(u3+ u7)G1 + ugly + u9G3 + UG, + u9G7

u5G2 + u,7G4 + (u6+ u8)G5 + u9G6 + u9G8 0

2u1G1 + u2G2 + u4G4 - u6G6 - u8G8 - 2u9G9 = 0.

\

The system of equations (37) is not integrable in any di-
rection, neither in the sense of A, Hoborski [6], nor in the
sense of K. Zorawski [10]. In [6] and [10] methods are
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Density concomitants 9

given for reducting an arbitrary complete linearly-independent
system of first order partial differential equations to an
equivalent system which 1s integrable in some direction.
However, this method of reduction is very complicated. By a
trial method we have ascertained that the system (37) is
integrable in the direction of equations (37.8), (37.2),
(37.7), (37.5), (37.9), (37.3), (37.4), (37.1), (37.6) ((37.k)
denotes the k-th equation of the system (37)).

To the partial differential equation (37.8) there
corresponds the following system of ordinary differential
equations:

du

o - u3 - 0 - u7 - u6+u8 -
(38)
du6 ) dq? _ du8 ) du9.
u9 0 u9 0

This system has the following first integrals:

(39) C1 = Uq, 02 = Ug, C3 = u.?, C4 = u9, Cs = Ug= ug
C6 = Ugug ~ u5u9, 07 = u2u9 = Uzlg, 08 = u4u9-u6u7.

Hence the general solution of (37.8) has the form
(40) G==¢(u1,u5,u7,u9,u6—u8,u6,u8-u5u9,u2u9- 3u8,u4u9-u6u7)=
=¢(v1,va,vs,vu,vs,v6,v7,v8,

where ¢ 1is an arbitrary function of class 01.

Substituting the solution (40) into the equation (37.2)
we obtain the following equation (¢k =3p/avy)

(41) (v27v3)¢5-(v7+v8)¢6+ (v1v4-v2v3)@7-+(v1v4-v2v3)qb = 0.
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To (41) there corresponds the following system of ordinary
differential equations

(42)
dv

Vp=Vz = =Vp=7Vg T VqVy - VoVs V4V, =VyVsz
whose first inregrals have the form

D =v,y, Dy =v,, Dz =v D, =v,y Dz =vg - vy,
(43) 1 1 2 2 3 3 T4 4 > 7 8

D6=-v2v3v5-v1v4v5—v3v7+v2v7, D7='v2v3v6—v1v4v6—v7v8.
fixpressing the obtained first integrals (43) by means of

the original variables uy and taking instead of D7 the
integral D7/D4, we obtain after a change of notation

-

=
N
[

"U.,l, W2=u3, W4=u9,
= u2u9-u3u8—u4u9+u6u7

=l
N
[

(44) <
W6 = u3u6u7—u1u6u9+u1u8u9+u2u3u9—u2u7u9—u§u8

W = W= UgUgUghlipUgUo+ils Ul Ug=UzUgln=U, Uglg=UsU, Ug -
From (29) it follows that

(45) Wp = W = det P, P = (Pij) (i,j = 1,2,3).
fhe general solution of (41) depends upon first integrals
Wige oo yWoy namely

(46) G =1y(wq,...,w7),

where y 1s an arbitrary function of class 01.

It is easy to verify that the first integral w = w7 of
the form (45) is a solution for all homogenous equations of
the system (37), and the eguation (37.1) is satisfied for
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r = =2. We represent the matrix P in the IZorm of a sum of
symmetric and antisymmetric parts

(47) P=P +P,.

It 1s easy to see that det P, = 0, but w, = det Pg is a solu-
tion of (37) for r =-2. In particular, w, 1is an integral
of the equation (37.8). Hence the determinant of w_ is

expressible in terms of first integrals of this equztion.
After a tedious computations we have succeeded in representing
it in the following from (where in agreement with (39) and
(40) we put vy =G4y 1= Tgeoes9)e

A
&V,

+v2v5v§+v2v5v7-v3v5v7+y2v5v8—v3v5v8+2v2v3v6—2v7v8-v$—v§}

- 1 _ 2.2 .2
W = det(PS) = [~4v1v4v6-v1v4v5+v2v6+v5v6+

(48)

From (12), (29), (45), (47) it follows that the quantities
w and w, are W-densities of weight 2, i.e. defining w and
W, by formulas (45) and (4#8), respectively, we obtain the

s
following transformation rules

(49) w'o= |3, wl= 5w,

To simplify solving the system of equations (37) we take
as first integrals of the equation (37.8) the following
expressions:

r6 = u4u9 - u6u7, r7 =W, r8 = WS'

Hence the general solution of (37.8) has the form
(51) G =w(TyseeesTg),
where w 1is an arbitrary function of class C1.

Next sabstituting G of the form (51) again into the
equation (37.2) and solving the corresponding system of
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ordlnary differential equations we obtain the following first
integrals

- S,I u,], 82 = u3, s5 = u,7, SL|. = u9,
(52)
S5

Uylg=Uzlg=,Ugtugln, Sg = W, Sp = Wg.

In view of (52) the general solution of (37.2) has the form
(53) G =0((S1,0-o,s7),

where o is an arbitrary function of class 01.

Substituting G of the form (53) into (37.7) and taking
into account (52) we obtain the following partial differential
equation '

(54) (52 + 83)d1 + 80y + S0 = 0,
which gives a system of ordinary differential equations
ds ds ds ds ds

ds ds
1 _ 72 T3 7L 5 _ 6 _ 7.
(55) 52+s3 = S, - 8, = 0 - 0 - 0 ~

This system has the following first integrals

-

t1 =8, = u9
t2 = Bg = u2u9-u3u8-u4u9+u6u7,
(56) ¢ BT
t4 = s7 = Wg
t5 = 8y = 83 = Uz ~ Uy,
k tg = 8485, - Sp83 = U ug = Uzl .

Hence the general solution of (37.7) has the form
(57) . G =/5(t1,...’-t6)’

where f is an arbitrary function of class cl.
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Substituting G of the form (57) into (37.5) and taking
into account (56) we obtain the following partial differential
equation

(58) tops + 2tghg = O.

The equation (58) yields a system of ordinary differential
equation

at dt dt dt dt5 at

1 2 4 6
(59) - =5 = —cé =0 = ts =’

which has the following first integrals:
Py = t1 = u9, Py = t2 = u2u9-u5u8-u4u9+u6u7,
(60) 2 2
p3=t3=w, p4=‘t4=ws, p5=t5/‘b6= (uB—u,?) (u1u9_u3u7).
We see that the general solutions of (37.5) has the form

(61) G='K(P19°°"p5)v

where ¥ 1s an arbitrary function of class ¢l
Substituting (61) into (37.9) we obtain the equation

(62) 2p4%q + P = 0

which yields a system of ordinary differential equations

.(63)

dp dp dp dp dp
4 _ P2 3 _ Py T¥5
2p, D, 0 0 70

This system has the following first integrals

(u3-u )2
91=P5=W,QE=P4=W5’QB=P5=—‘Lu_uu'
(64) . . 1189755
RN (u2u9-u3u8-u4u9+u6u7) .
9 = Pq - ug
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Hence the general solution of (37.9) has the form

(65) G =5(q1,qZ193sQ4)v

where 6 is any funtion of class 01.

Substituting (65} into (37.3) we obtain
(66) X3(q4)61 =0,

where x5(q4) is the value of the left-hand side of (37.3)
for G = Qe Because q, is not an integral of (37.3), we
have

(67) §, =0,

which means that the function 5(q1,q2,q3,q4) does not depend
upon  q,e. Let us observe that XB(q4) has the form

(68) X3(q4) =-—A—é:—B-1
u
9
where
A= u2u9 - uju8 - u4u9 + u6u7,
B =

= 2u1u6u9 - 2u,]u8u9 + u4u,7u9 - u2u3u9 + u2u7u9 +
2 . 2
+%%%—uﬂﬂ9—%%%+uy8—%%.

From (65) and (67) we finally obtain the following solution
of (37.3)

(69) G =2 (Qt]’qZ’QB)v

where 2 is an arbitrary function of class Cq.
Substituting (69) into (37.4) we obtain

(70) %, (q5)%5 = 0,
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Density concomitants 15

where X4(q5) is the value of the left-hand side of (37.4)
for G = 9z Since 3 is not an integral of (37.4), we
ohtain

(71) x5 =0,
i.e. x does not depend upon z-
Let us observe that-

(u, - u,)B
(72) X4(q3) = ( 3 7 .
uqug - u5u7)

In virtue of (69) and (71) the function G has the form
(73) G = Q(91,92) = Q(Wyws)’

where ¢ 1s any function of class C1.
Finally, substituting (73) into (37.1) we get

(74) WQ’]+st2=__§Q°

From (74) and (73) it follows that the conditions of
Buler’s theorem on homogenous functions holds, consequently G
has the form

~ 2 2
(75) & =w(ww,), w +wg >0,

where in the case of density concomitant (r #0)w 1is an
arbitrary function of class C1 which is positively homogenous
of order (-5&, and in the case of scalar concomitants w is
an arbitrary function of class 01 homogenous of zero order.

It is not difficult to verify that G of the form (75)
satisfies the equation (37.6).

Taking into account Euler?s theorem on homogenous functions
and the fact that the sought concomitant must satisfy the
functional equation (10) (for & =1 with the conditions
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16 L.Bieszk, D.Stygar

(29) - (34)), we infer from (75) and (49) that the function G
can be represented in the form

(76) G = |w|_r/2 K(w/w), w#£0,

where K 1is any function of class C1.
Hence by (49) the object
w
(77) 6=-2
is a scalar.

Remark 1. The function G of the form (75) or
(76) satisfies the originel function eguation (10) (with the
conditions (29) - (34)) for & =1 only.

Remark 2., For w=wg =0 the equation (74) is
satisfied for r # O by the function G =0, and for r = 0
by the function H = C, where C 1is any constant.

Hence we have proved the following theorems.

Theorem 2, In the projective-euclidean space
A, every dens1ty concomitant G(u1,...,u9) with weight (-1)
(in the class C )} of the curvature temsor R ﬂzgis a W-den-
sity of the form

(78) G = (w,wg), W+ wi >0, r#£0,

where w 1is any function of class 01 which is positively
homogenous of order (—-%).

Theorem 3 In the projective-euclidean space A3
every scalar concomitant G(uq,...,u9) (in the class 01) of
the curvature tensor Rdﬂ} has the form

(79) G =7 (wyw ), % + wi >0,

where 1 1is any function of class C1 which homogenous of
zero order,

Thne densities w and wq appearing in Theorem 2 and 3
are defined by formulas (45) and (48), respectively.
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Dersity concomitants 17

Corollary 2. In the projective-~euclidean space
A3 (in the class 01) there exists no 3?n-trivial algebraic
concomitant of the curvature temsor R, 7 which is a G-density

Remark 3. When the function w in (75) is linear,
we have

(80) G = aw + bw_,

where a and b are any constant. In fact, in view of (49)
the function G of the form (80) is a W-density of weight 2.
Assuming that the sought density concomitant G is of the
form

ijk

(81) G =a uiujuk, (1339k = 19000,9)

and substituting it into the system of equations (37), we
obtain, after a tedious computation, the form (80) for the
function G.
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