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TAYLOR EXPANSION IN THE FINITE ELEMENT METHOD 
FOR A TWO-POINT BOUNDARY VALUE PROBLEM 

Introduction 
The f i n i t e element method has become very important today 

as one of the most powerful tools for finding numerical .'so-
lutions of boundary value problems. 

The aim of th is paper i s to show the application of the 
Taylor expansion formula to specify admissible functions in 
the case of a two-point boundary value problem. Sections 1 
and 2 give a short introduction to the problem discussed. 
A simple example of piecewise-linear approximations i s descri-
bed in Section 3» The Taylor expansion approach i s demonstra-
ted in Section 4 . Because of the pract ica l point-of view the-
re i s no theoret ica l error analysis here. But in Section 5 
the solution of a part icular problem is shown and a compari-
son with piecewise l inear and analyt ical solutions i s made. 

1. Statement of the problem 
Many technical problems are expressed in the form of a 

two-point boundary value problem of the forms 

(1.1) - + q(x)u. = f ( x ) , du 

(1.2) u(a) = UQ; u(b) = uQ, 
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2 T. Marks 

over the closed interval I=[atb]j p(x), q(x), f(x) "being 
given possibly nonlinear functions of a real variable x; 
UQ,uq - constants. For the sake of simplicity the form (1.2) 
of boundary conditions has been chosen, but it should be 
noted that more general form might be discussed as well. 

It can be shown - under appropriate assumptions concerning 
p(x),q(x),f(x) - that if problem (1.1), (1.2) has a solution, 
then this solution will be unique. It can also be demonstra-
ted that this problem is then equivalent to one of finding a 
minimum of the functional 

over a set of functions that satisfy the conditions (1.2) 
(see [1] for necessary assumptions). 

2. Finite element method 
The finite element method approach requires the interval 

I to be divided into a finite number of subintervals = 
= »xj • Let us assume that this division is given by 
n+1 nodal points 

For simplicity let us take the subintervals being of the 
same length, i.e. 

Under appropriate assumptions (see [1]) the functional F 
breaks up into the sum of functionals Fyj,F2,...,FQ, i.e. 

0 
(1.3) dx 

a = XQ^X^C c x ^ < x Q = b. 

" Xi-1 = h b — a i=1,2,...,n, where h = Q 
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Finite element method 3 

The finite element method is the generalized Ritz method 
working with special admissible functions which are piece-
wise defined. Here, these functions are considered which 
have different analytical expressions over each subinterval. 
In our one-dimensional case, a finite element is a closed 
subinterval with the family of functions which are 
alloved to occur within it. This family is a linear combina-
tion with coefficients p ^ of a finite number of chosen 
functions 9»̂ .j(x), so that 

(2.2) 

Now, the problem is to find such a spline-function of the 
form 

(2.3) p(x) = < 

for x e I. 1» 

for x 6 IQf 

where <p is given by (2.2), which is minimizing the func-
tional F and fulfiling boundary conditions (1.2). In other 
words, the approximate solution is determined by making the 
functional F stationary in the set of all functions (2.3) 
which satisfy the conditions (1.2) and have the oomponent 
functions with the same values at the coincident nodes 
of the adjacent elements (the last requirement will be re-
called as the continuity conditions). This will lead to 
the system of linear equations with respect to unknown va-
lues of the parameters Pjj* 

The existence, uniqueness and convergence, when h tends 
to zero, of the approximate solutions can be obtained from 
the Lax-Milgram Theorem (see [1] Chapter 1). 
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3« Piecewise linear approximation 
The admissible functions can be given directly in terms 

of their own nodal values. Let us denote 
y k = y(x k) for k=0,1,...,n, 

where p(x) given by (2.3) and (2.2). Then, a piecewise 
linear approximation is defined over i-th subinterval by 

3C «"X X-OC • 
(5.1) ^ ( x ) = + h 1" 1 y ± i=1,2,...,n, 

y^ are chosen as parameters. It should be noted here that the 
continuity conditions hold.tThus, we obtain 

J ±{ 9) = *.(/) = / [ p ( x ) + 

(3*2) x—x \ 2 ' /x —x x—x \1 
+ - H T 1 ' ^ <x) ("h yi-1 + - T ^ y J h 

for i=1,2,...,n. It is easy to see that 

(3.3) "l«1) 0 for d * i-1,i . 

Furthermore 

( 5' 4 ) HSyT = + 3y-j ior u J 0 

There is no difficulty in verifying that 

— a i ? i - 1 + V i " ® ! » l y ^ = e ^ i - i + V i - i i . 

where a^ ,b. »c-.,e. ,f. can be obtained by ana-
lytical or even numerical integration. Introducing (3.5) to 
(3.4) yields 

( 3.6) = a i y i - 1 + < V c i + 1 ) y i + , W i + 1 - e i - f i+1 
(i=1,2,...tn-1). 
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Taking into considerations (1.2), the stationary conditions 

"If) = 0 (i=1,2,...,n-l) lead to the system of n-1 linear o 
equations 

(b^ + c2)y^ + a 2y 2 = e1+f2-a1uQI 

(3.7) a ^ ^ +(V ci+1 ) yi + ai+1 yi+1 = ei + fi+1» 

(i=2,3,...,n-2), 

an-1yn-2 + < V l + cn^n-1 = en-1 + fn " W 

with a tridiagonal and symmetric matrix. The solution of (3«7) 
gives directly the values of the approximate function in no-
dal points which in turn can be used to obtain analytical 
expressions for 9 1. 

4. Taylor expansion in the finite element method 
Let us assume that p(x) f 0 for x e I. Thus, equation 

(1.1) can be rewritten in the form 

(4.1) r(x) s(x)u + t(x), 
dx 

where 

. < . > . - 2 $ - . 

Now, let r(x), s(x), t(x) and the solution of (4.1), (1.2) 
be infinitely differentiable functions on I (regularity assump-
tions). We use the Taylor expansion formula to express u on 
each subinterval in the following form 

A p 

(4.2) u(x) = u i z ^ + u ' t z ^ x - z^ + ^ u" (z±)(x - z±) + ..., 

where * Denoting U{z±) = U j , 
(4.3) 1 1 

u » ^ ) = v i, 
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for i=1.2.... fn, we deduce from (4.1) and iron the regularity 
assumptions that 

u'2)
(z.) = r ^ + s.u. + t., 

u^ )(z i) = (ri+r^si)vi+(ris. + s^u. + ir.t. + t!.), 

u(4)(z.) = ...., 
(4.4) 

where r^ = r(z^), r^ = r'(z^), s^ = s(z^) and so on. 
Generally 

(4.5) u< k )( Z i) = c ^ + d i k V i + e i k, 

where the constant coefficients c^id^,e i i f depend only on 
the values of the given functions r(x), s(x), t(x) and on the 
values of their derivatives at the point zi. 

Now the piecewise-polynomial approximation can be chosen 
over i-th subinterval such that 

m 
y1(x)=:Ui+Vi(X-Zi) + £ -Jy ( C ^ + d ^ V . + e ^ ) )K 

(4.6) _ *"2 
= ai(x)ui + b ^ x ) ^ + ci(x), 

where a ( x ^ b V ) . ci(x) are polynomials of degree m. 
(It is appropriate to note here, that we can weaken our re-
gularity assumptions, because only a finite number of the 
derivatives is needed for our purpose). Denoting 

y(xi) = ii f o r i=0,1,...,n, 
we have (for the continuity conditions to be fulfilled) 

\|/l(xi_1 )=yi_1=al(xi_1 )ui+bi(xi-1 )vi+ci(xi_1), 
(4.7) 

yi(xi) = = ai(xi)u. + bi(xi)vi + ci(xi). 
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The solution with respect to u ^ y i e l d s 

(4.8) u ± = A ^ y ^ + Bjjy± + c^ , v ± = A p y ^ + B ^ i + c i • 

Introducing (4.8) to (4.6) we obtain for i=1,2,..,n 

(4.9) / ( x ) = Ai(x)yj__1 + B 1(x)y i + C
i(x), 

where Ax(x),B1(x),C1(x) are polynomials of degree m. If we 

choose y^ as parameters, all considerations fror. Section 3 

can be easly repeated. As previously, the latter operations 

will lead to the system of linear equations with tridiac°nal 

symmetric matrix. But now we have the approximate function 

consisting of higher degree polynomials whose forn is obtai-

ned directly from the form of our differential equation. 

Therefore, we can expect that error will be less than in the 

previous case. 

5. Example 

The example has been chosen as simple as possible to en-

able a straightforward error veryfication of the method 

applied. 

Let us consider a two-point boundary value problem 

d 
dx (x = 0, u(0.25) = 0.62, u(1.00) = 0.00. 

The interval [0.25,1.00] has been devided into n subinter-

vals » X J with expansion points zi = xi_i + » where 

0 75 

h = x^ - = . Only first three components of the 

Taylor expansion have been taken into consideration. Thus, in 

the case presented, we have admissible functions which are 

piecewise defined as below 
f (x) = v x(x) = + vi(x-zi) +-5J7 Vj_(x - z ii

2 

= u i + 

( x - z . ) 2 

< x - zi } + 2 Z l 
v ±, for x e ^ . x . 
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n= 40 , h » 0 . 0 1 8 7 5 

X U1 

0 . 2 5 0 0 0 . 6 2 0 000 
0 . 2 6 8 8 0 . 5 8 7 664 
0 . 2 8 7 5 0 . 5 5 7 509 
0 . 3 0 6 3 0 . 5 2 9 258 
0 . 3 2 5 0 0 . 5 0 2 685 
0 . 3 4 3 8 0 . 4 7 7 602 
0 . 3 6 2 5 0 . 4 5 3 852 
0 . 3 8 1 3 0 . 4 3 1 298 
0 . 4 0 0 0 0 . 4 C 9 828 
0 . 4 1 8 8 0 . 3 8 3 340 
0 . 4 3 7 5 0 . 3 6 9 750 
0 . 4 5 6 3 0 . 3 5 0 Sr:2 
0 . 4 7 5 0 0 . 3 3 2 37C 
0 . 4 9 3 8 0 . 3 1 5 

r 1— '-••33 
0 . 5 1 2 5 0 . 2 3 8 3 35 
0 . 5 3 1 2 0 . 2 8 2 3 U 
0.55GC C. 401 
0 . 5 5 3 8 C . " ~ 407 
C.5-375 C . 2 3 7 300 P j j " " 5 :• / • • 

T • 

r . 2 ' o O 1- r— 
: O 

C . - H 3 7 C . 1 n 7 00 ¡1 
0 . 6 6 2 5 6 . 1 8 4 1^3 

G.171 680 
o . v c c c 0 . 1 5 9 53? 
0 . 7 1 0 7 0 . 1 4 7 7 1 3 
0 . " j 7 5 0 . 1 3 6 194 
0 . 7 3 * 3 0 . 1 2 4 9 S 4 
T . 7 7 5 C 0 , 1 1 4 CIO 
0 . 7 3 3 8 0 . 1 0 3 317 
r . ol? C.092 875 
0 . 8 3 1 2 0 . 0 8 2 570 
o.-sscc r-

- < -- 693 
0 . 0 6 2 333 
0 . 0 5 3 382 
C.O44 031 

0 . 3 2 5 0 0 . 0 3 4 871 
0 . 9 4 3 5 O.C25 095 
C . 3 ' 2 5 C . 0 1 7 056 
0 .9G13 0 . C 0 8 4SC 
1 . 0 X 0 C .0C0 000 

U2 

000 0 . 6 2 0 000 000 
606 0 . 5 8 7 655 639 
126 0 . 5 5 7 493 509 
202 0 . 529 237 666 
552 0 . 5 0 2 661 406 
956 0 . 4 7 7 576 208 
180 0 . 4 5 3 823 611 
922 0 . 4 3 1 269 145 
220 0 .409 797 7 1 3 
309 0 .369 3 1 0 070 
£53 0 . 3 3 3 7 1 3 304 
7 5 7 ^ . 3 5 0 952 106 
423 p . 3 3 2 340 1 5 3 
341 0 . 3 1 5 625 686 
54C 0 . 2 5 0 356 596 
- 5 7 n . 2 8 2 L;86 5 2 7 1 iA * 0 . 2 6 7 3 7 3 9 1 5 
r. n r 0 . 2 S 2 381 3 7 8 

0 . 2 3 7 875 1 7 2 
300 0 . 2 2 3 824 7 3 5 
3 3 3 c . 2 1 0 202 297 
483 0 . 1 9 6 982 5 5 2 
1 5 4 0 . 1 8 4 142 374 
188 0 . 1 7 1 660 574 
1 2 6 p . 1 5 3 5 1 7 688 
052 0 . 1 4 7 695 798 
436 0 . 1 3 6 1 7 8 ToG C PC 0 . 1 2 4 950 11C 
549 0 . 1 1 3 956 857 
969 0 . 1 0 3 305 460 
021 0 . 0 9 2 863 690 
3 1 4 0 . 0 8 2 660 1 5 7 
223 0 . 0 7 2 684 231 
813 0 . 0 6 2 925 979 
789 0 . 0 5 3 376 104 
438 0 . 0 4 4 025 893 
582 0 . 0 3 4 867 167 
536 0 . 0 2 5 892 241 
068 0 . 0 1 7 093 882 
365 0 . 0 0 8 465 278 
oco 0 . 0 0 0 000 000 

Tablica 1 

Y 

0 . 6 2 0 000 000 
0 . 5 8 7 655 635 
0 . 5 5 7 493 503 
0 . 529 237 658 
0 . 5 0 2 661 397 
0 . 4 7 7 576 198 
0 . 453 823 601 
0 .431 269 1 3 5 
0 . 409 797 709 
0 . 389 110 060 
0 .369 7 1 9 974 n . 3 5 0 3 5 2 096 
0 . 3 3 2 940 180 
0 . 3 1 5 625 677 
0 . 2 9 8 956 588 
0 . 2 8 2 886 519 
c . 2 6 7 373 908 
0 . 2 5 2 381 371 
0 . 2 3 7 875 165 
0 . 2 2 3 824 728 
0 . 2 1 0 202 291 
0 . 1 9 6 982 546 Q . 1 8 4 142 369 
6 .171 660 569 
0 . 159 517 684 
0 . 1 4 7 695 794 
0 . 1 3 6 178 364 
0 . 1 2 4 950 106 
0 . 1 1 3 996 853 
0 . 103 305 457 
0 .092 863 687 
0 .oe2 660 154 
0 . 0 7 2 684 229 
0 .062 925 977 
0 .053 376 102 
0 . 0 4 4 025 892 
0 . 0 3 4 867 166 
0 .025 892 240 
0 . 0 1 7 093 882 
0 . 0 0 8 465 277 Q . 0 0 0 00c 000 
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The method descr ibed i n Sec t ion 4 b r ings the system of l i n e a r 
equat ions t o be solved 

(a^ + a 2 ) y 1 - a 2 y 2 = 0 . 6 2 a 1 , 

~ a i y i - 1 + ( a i + a i + 1 ) y i ~ a i + 1 y i + 1 = 0 ^ = 2 , 3 , . . . , n - 2 ) , 

- a n - 1 y n - 2 + <an-1 + a n ) y i w 1 = 

where 

5 2 C 3 a i = —g— I x^dx, ( i = 1 , 2 , . . . , n ) . 
h z j J i 

Tab.1 g ives a comparison of numerical s o l u t i o n s obtained by 
us ing t h e p iecewise l i n e a r approximation (U1) - 4 exact d i -
g i t s , by us ing t h e piecewise Taylor expansion (U2) - 7 exact 
d i g i t s , and by t h e a n a l y t i c a l s o l u t i o n (Y). 

Of course , t h i s comparison cannot r ep l ace t h e t h e o r e t i c a l 
e r r o r a n a l y s i s , b u t , i t shows t h a t the Taylor expansion 
approach i s very u s e f u l . 
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