

Marian Majchrowski

APPLICATION OF THE GREEN FUNCTION
 IN THE THEORY OF PSEUDOPARABOLIC EQUATIONS

We consider equation

$$(1) \alpha[u] \equiv \frac{\partial^2}{\partial x \partial t} \left[p(x, t) \frac{\partial u}{\partial x} \right] + q(x, t) \frac{\partial u}{\partial t} = F(x, t, u, u_x, u_{xx}, u_t, u_{xt})$$

with homogeneous boundary conditions

$$(2) \begin{cases} \alpha_1 u(a, t) + \alpha_2 u_x(a, t) = 0, \\ \beta_1 u(b, t) + \beta_2 u_x(b, t) = 0, \\ u(x, 0) = 0, \end{cases}$$

where $(x, t) \in Q = \langle a, b \rangle \times \langle 0, T \rangle$, $(|\alpha_1| + |\alpha_2|)(|\beta_1| + |\beta_2|) \neq 0$.

We suppose that

$$1^0 \quad F(x, t, z_1, z_2, z_3, z_4, z_5) \in C(Q \times R^5),$$

$$2^0 \quad |F(x, t, z_1, z_2, z_3, z_4, z_5) - F(x, t, \tilde{z}_1, \tilde{z}_2, \tilde{z}_3, \tilde{z}_4, \tilde{z}_5)| \leq L \sum_{i=1}^5 |z_i - \tilde{z}_i|,$$

$$3^0 \quad p(x, t), q(x, t), p_x(x, t), p_t(x, t), p_{xt}(x, t), q_t(x, t) \in C(Q),$$

$$p(x, t) \neq 0 \quad \text{for } (x, t) \in Q,$$

4° For an arbitrary $t \in [0, T]$ the equation

$$l^t(y) = \frac{d}{dx} [p(x, t)y] + q(x, t)y = 0,$$

with conditions

$$\alpha_1 y(a) + \alpha_2 y'(a) = 0,$$

$$\beta_1 y(b) + \beta_2 y'(b) = 0,$$

has in the interval a, b the unique solution $y \equiv 0$.

We shall show that under these assumptions and some additional hypotheses the problem (1) - (2) has the unique solution $u(x, t)$ which is continuous in Q as well as the derivatives $u_x(x, t)$, $u_{xx}(x, t)$, $u_t(x, t)$, $u_{xt}(x, t)$.

In the paper [1] N. Calistrut has considered the case of $p(x, t)$ and $q(x, t)$ independent of the time variable t .

L e m m a 1. Under the assumptions stated above the Green function $G(x, \xi; t)$ for the operator l^t belongs to the class $C_t^1[0, T]$. The derivative $G_x(x, \xi; t)$ is continuous and differentiable with respect to t for $x > \xi$ and $x < \xi$; moreover, the derivative $G_{xt}(x, t; \xi)$ is continuous in each of the domains $x < \xi$ and $x \geq \xi$, thus it is bounded in the set $a, b \times a, b \times 0, T$.

P r o o f. It is known (cf. [2], p. 520) that if we put

$$(3) \quad G(x, \xi; t) = \begin{cases} y_1(x, t)y_2(\xi, t) & \text{for } x < \xi \\ y_2(x, t)y_1(\xi, t) & \text{for } x \geq \xi, \end{cases}$$

where $y_i(x, t)$ ($i=1, 2$) is a solution of the equation $l^t(y)=0$ satisfying conditions

$$(4) \quad \alpha_1 y_1(a, t) + \alpha_2 y'_1(a, t) = 0,$$

$$(5) \quad \beta_1 y_2(b, t) + \beta_2 y'_2(b, t) = 0,$$

and for fixed $t \in (0, T)$ we have

$$(6) \quad y_1(x, t)y'_2(x, t) - y_2(x, t)y'_1(x, t) = \frac{1}{p(x, t)},$$

then

$$(7) \quad y(x, t) = - \int_a^b G(x, \xi; t) l^t [y(\xi; t)] d\xi$$

for an arbitrary function $y(x; t)$ satisfying the homogeneous boundary conditions (2).

We observe that for arbitrary $y_1(x; t)$, $y_2(x, t)$ satisfying the equation $l^t(y) = 0$ with conditions (4), (5), respectively, we have

$$\frac{d}{dx} \left\{ p(x, t) [y_1(x, t)y'_2(x, t) - y_2(x, t)y'_1(x, t)] \right\} = 0,$$

thus

$$(8) \quad y_1(x, t)y'_2(x, t) - y_2(x, t)y'_1(x, t) = \frac{\psi(t)}{p(x, t)},$$

where $\psi(t) \neq 0$ for $t \in (0, T)$ which follows from the assumption 4°.

Now we shall show that the functions $y_1(x, t)$, $y_2(x, t)$ are continuous and differentiable with respect to t . We consider the problem

$$(9) \quad l^t(y_1) = 0, \quad \alpha_1 c_1 + \alpha_2 d_1 = 0,$$

where $c_1 = y_1(a, t)$, $d_1 = y'_1(a, t)$ are supposed to be constant.

By the substitution

$$(10) \quad \frac{d^2}{dx^2} y_1(x, t) = \varphi(x, t),$$

$$(11) \quad f(x, t) = \frac{-p_x(x, t)}{p(x, t)} d_1 - \frac{q(x, t)}{p(x, t)} [d_1(x-a) + c_1],$$

$$(12) \quad N_0(x, \xi; t) = \frac{p_x(x, t)}{p(x, t)} + \frac{q(x, t)}{p(x, t)} (x - \xi)$$

we reduce the problem (9) to the integral equation of Volterra type

$$(13) \quad \varphi(x, t) = f(x, t) - \int_a^x N_0(x, \xi; t) \varphi(\xi; t) d\xi.$$

Its solution is given by the formula

$$(14) \quad \varphi(x, t) = f(x, t) - \int_a^x \pi(x, \xi; t) f(\xi; t) d\xi,$$

where

$$(15) \quad \pi(x, \xi; t) = \sum_{n=0}^{\infty} (-1)^n N_n(x, \xi; t)$$

and

$$(16) \quad N_k(x, \xi; t) = \int_{\xi}^x N_{k-1}(x, s; t) N_0(s, \xi; t) ds, \quad (k=1, 2, \dots).$$

From the assumption 3° it follows that the functions (11) and (12) are continuous and differentiable with respect to t . From (16) it follows that $N_k(x, \xi; t)$ is continuous and differentiable with respect to t for $k = 1, 2, \dots$. Therefore, under the assumptions stated above, there exists a constant D such that

$$|N_k(x, \xi; t)| \leq D^{k+1} \frac{|a - b|^k}{k!},$$

$$\left| \frac{\partial N_k}{\partial t}(x, \xi; t) \right| \leq D(2D)^k \frac{|a - b|^k}{k!}.$$

Thus the resolvent (15) is continuous with respect to t and the derivative $\frac{\partial \pi}{\partial t}(x, \xi; t)$ exists and is continuous. Therefore $\varphi(x, t) \in C_t^1 <0, T>$; since

$$y_1(x, t) = \int_a^x (x - \xi) \varphi(\xi, t) d\xi + d_1(x - a) + c_1,$$

$$y_1'(x, t) = \int_a^x \varphi(\xi, t) d\xi + d_1,$$

we have shown that $y_1(x, t) \in C_t^1 <0, T>$. A similar argument shows that $y_2(x, t) \in C_t^1 <0, T>$. Therefore $\psi(t) \in C_t^1 <0, T>$, further, the Green function defined by (3) and the functions $\tilde{y}_1(x, t) = \frac{y_1(x, t)}{\psi(t)}$

and $\tilde{y}_2(x, t) = y_2(x, t)$ have the required property (6) and satisfy the thesis of Lemma 1.

Corollary. Lemma 1 implies the existence of a finite constant

$$(17) \quad \Gamma = \sup_{\substack{x, \xi \in [a, b] \\ t \in [0, T]}} \left\{ |G(x, \xi; t)|, |G_x(x, \xi; t)|, \right. \\ \left. |G_t(x, \xi; t)|, |G_{xt}(x, \xi; t)| \right\}.$$

Taking into account (1) and (7) we construct the operator A defined by

$$(Aw)(x, t) = - \int_a^b G(x, \xi; t) \int_0^t [\bar{F}(\xi, \tau, w(\xi, \tau)) + \frac{\partial q(\xi, \tau)}{\partial \tau} w(\xi, \tau)] d\tau d\xi$$

which transforms the set Σ of all functions $w(x, t)$ defined on Q and continuous with derivatives w_x, w_{xx}, w_t, w_{xt} into itself. It is easy to show that the solution of the problem (1) - (2) is a fixed point of the operator A. In the set Σ we define the metric

$$\varrho_\lambda(u, v) = \sup_Q \left\{ |u(x, t) - v(x, t)| e^{-\lambda t}, \right.$$

$$|u_x(x, t) - v_x(x, t)| e^{-\lambda t}, |u_{xx}(x, t) - v_{xx}(x, t)| e^{-\lambda t},$$

$$|u_t(x, t) - v_t(x, t)| e^{-\lambda t}, |u_{xt}(x, t) - v_{xt}(x, t)| e^{-\lambda t} \right\},$$

where λ is an arbitrary positive constant. It is known that $(\Sigma, \varrho_\lambda)$ is a Banach space. Analogously, as it is done in [1] we can show that

$$\varrho_\lambda(Aw, Av) \leq \max \left\{ \frac{\Gamma(b-a)}{\lambda}, \frac{M}{\lambda}, \Gamma(b-a)(1 + \frac{1}{\lambda})(5L + R) \right\} \varrho_\lambda(w, v)$$

for $w, v \in \Sigma$, where M is a positive constant, $R = \sup_\xi |q_t(x, t)|$, L is the Lipschitz constant from the assumption 2^o, Γ is a constant defined by (17). If $5L + R < \frac{1}{\Gamma(b-a)}$ and λ is suffi-

ciently large, then from Banach's theorem on contracting mappings it follows that the problem (1) - (2) has the unique solution.

If in the right-hand side of the equation (1) the functions u_t and u_{xt} do not occur, then we obtain the estimation

$$\varphi_\lambda(Aw, Av) \leq \max \left\{ \frac{\Gamma(b-a)}{\lambda}, \frac{M}{\lambda} \right\} (5L + R) \varphi_\lambda(w, v).$$

Then the problem has the unique solution without any additional hypotheses.

One can pose the problem of approximation of the exact solution $u(x, t)$ of the problem (1) - (2) with the right-hand side independent of u_t and u_{xt} by the solutions of an ordinary differential equation.

We state the new problem

$$v_0(x) = 0$$

$$(2.1) \quad \frac{d}{dx} \left[p(x, t_k) \frac{d}{dx} (v_{k+1} - v_k) + q(x, t_k) (v_{k+1} - v_k) \right] = \\ = h F^*(x, t_k, v'_k, v''_k)$$

with conditions

$$\alpha_1 v_{k+1}(a) + \alpha_2 v_{k+1}(b) = 0,$$

$$\beta_1 v_{k+1}(a) + \beta_2 v_{k+1}(b) = 0,$$

where $F^*(x, t, z_1, z_2, z_3) = F(x, t, z_1, z_2, z_3) + q_t(x, t)z_1$ and $t_k = k \cdot h$, $h = \frac{T}{n}$, $k = 0, 1, \dots, n$.

One can prove the following theorem analogous to Theorem 2.1 in [1].

Theorem. Let $\bar{v}(x, t)$ be the exact solution of the problem (1) - (2) (the right-hand side is independent of

v_t, v_{xt}). If $F^*(x, t, z_1, z_2, z_3)$ has the total derivative with respect to t which is bounded in $Q \times R^3$, then the differences

$$v_k(x) - \bar{v}(x, t_k), \quad v'_k(x) - \frac{\partial \bar{v}(x, t_k)}{\partial x}, \quad v''_k(x) - \frac{\partial^2 \bar{v}(x, t_k)}{\partial x^2}$$

converge uniformly to 0 with respect to x for $n \rightarrow \infty$.

REFERENCES

- [1] N. Calistrat: Existence and approximation of the solution of a boundary value problem, Atti Accad. Sci. Torino 107(1973) 473-487.
- [2] B.I. Smirnov: Курс высшей математики. Т. IV, Москва 1957.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received October 29, 1975.

