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GENERALISED STRONG NORLUND SUMMABILITY

1. Introduction

In [2], a definition of generalised strong Norlund summa-
bility was given and some multiplication theorems concerning
strong Nérlund summability of product, which is more general
than the Cauchy product of two sequences, were established,

In the present paper ocertailn inclusion theorems have been
established which answer questions such ast "If one genera-
lised Nérlund method includes another, 1s the same true of
the associated generalised strong Norlund methods?" Some re-
lations between generalised strong Norlund, generalised abso-
lute Nérlund and generalised NO6rlund summability have been
established which, in particular, yield some interesting re-
lations between strong Riesz, absolute Riesz and Riesz summa-
bility. It is interesting to note that the results of [4]
follow as particular cases of our results,

2+ Preliminaries
Throughouv this paper H and H1 will denote positive
constants which may not be the same at each occurence,

Given any sequence {pn}, we write

0o

p(z) = Z_pn z"

n=0

- 451 =



2 A.Kumar

whenever the series on the right converges., We deflne the
sequence {kn} of constants by means of the following formal
identity

(2.1) x(z) =2}, x_q=0.

As usual we say that the sequence {pn]e,u if

Preq _Poi2

Py = 1, p,> 0, Py ~Ppes <1 for n>0,

Let {pn} a.nd{oxn} be sequences of numbers, real or complex,
and write

n

(p»cx)n = E Ppep ¥y *
y=

It is well known that the operatlon » 1is commubtative and
assoclative,
Given any arbitrary sequence {Wn}’ we define

Awn = wn = W w-1 = 0.

It can be easily verified that

A(p*o&)n = (Ap*a}n = (p&do:)n.

Definitions

(1) Generalised Nérlund summability (N,p,«).

Suppose that (pmr)n # 0 for n>0. A'given sequence
{sn} is said to be summable (N,p,a) to the value s, if
tn-—-s as n-=oo, where

(pnas)n

(2.2) *o = Tpwary
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Generalised strong Nérlund summability 3

and
n

(p-qs)n = E Pp.y % Sye

y=0
This is denoted by s —s(N,p,o) (cf. [3], [5], [6]).

The method (N,p,o) is said to be regular if 1t preserves
limits for convergent sequences.,
(2) Generalised absolute Norlund summability |N,p,al,y2 >0,
We shall say that {s;} s absolutely summable (N,p,o)
with index 2> O, or summable |N,p,aly, if

— a-1
4 ltv-tv_1l<oo,
v=1
wbere t, is defined by (2.2). When A= 1, INypy |, summa~
bility reduces to |N,p,«| summability (ef.[5]).

(3) Generalised strong Nérlund summability [N,p,or]).'f\>0.

Let (pxaa), # Oy (P*#o), # 0 for n > O. A given sequen-
ce {sn} is safid to be strongly summable (N,p,x) with index
A>0 tos, or summable [N,p,x], to s, if

(p*a)ng (P* Aq)yl

and is denoted by s —= s [N,p,a]y (cf. [2]). As remarked
in [2], this definition is of use only when (pxa) —=co as
n— oo,

The choice o, =1 for n >0 leads (N,p,x) summa~-
bility to (N,p) summability, [N,p,a|, summability to |N,pl,
sumnability and [N,p,«], summability to [N,p], summability
(ct. [4]).

When p, =1 for n >0, (N,p,a) summability reduces to
Riesz summability (F,x) (cf. [5]), INyp,xly to sbsolute
Riesz summabillty II‘—T,qlz and [N,p,q]x to strong Riesz
sunmability [F,«],.

(pxals)) A

W-s = 0o(1) ;
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4 A.Kumar

If P and Q are methods of summabllity, Q is saild to
include P (written P C Q) if every sequence summable P is
also summable Q +to the sdme sum. P and @Q are said to be
equivalent (written P = Q) if each includes the other.

In the rest of the paper it 1s assumed that

(p.m)n * 0, (p*Aot)n # 0, (q# °')n % 0, (q*Aq)n # 0 for n >0,

3. The Lemmas

In this section we collect some lemmas which will be
required in the proof of our theorems,
Lemma 1, Let {pn}e,u. and qn> 0 for n =2 0.

(1) 1£

P, 4

-1 Pt <

n

for n > 0,

then k, >0, k2 0O for n>0.
(i) If

q
dpeii

P
n < n
Pp-1

(3.2)

then kj > 0, k<0 for n >0,

The proofs of (i) and (ii) are respectively contained
in the proofs of Theorem 23 of [7] and Theorem 3 of (#].

Lemma 2, ({1] Lemma 2). Let {pn}e,u ) o > O,
g, >0 for n 20, 9, =0 (pn) and (3.1) hold., Then,
if (N,q,«) is regular, (N,p,a) is regular,

Lemma 3 ([2) Lemma 1). If

(3.3) Y ltowac),| =0 ((pw ),
v=0
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Generalised strong Norlund summability 5

then [N,pyoly € [Nypyal, for A>au>o0,
Lemma &, ([6] Lemma 1 withoxnapn). et o, # 0
for n>= 0.

Then (N,p,a) & (N,q,e) if and only if
(3.4) (lel = | (ped ), = 0 ((awedy),

and, for every fixed v,
(3.5) k, , = ol(qedd,).

Lemma 5 ([1] Theorem 1). If {pn}ep » ®,> 0, >0
for n >0, p, = 0 (ap) (N,q,o:j is regular and (3.2) holds,
then (N,p,o) is regular and (N,p,o) C (N,q,c0).

Lemma 6 ([6] Theorem 1 with o = bn). Ir {.pn}éﬂ,
«,>0, q, >0 for n=>0, (3.1) holds and (N,q,o) is
regular, then (N,p,x) ¢ (N,q,c).

Lemma 7, Levoa, # 0 f6r n »0. Then (N,ux)¢ (F,p)
if and only if

(306) Z ldn’°'| = 0 (1),

9=0
and, for every fixed o,

(307) dn,.q -0 as n—=oo,

where

Bo B (1%0)

o 59(1§u)9
(3.8) dn'P =4 u—p'n';mn— ('Q = n)o
o (¢ > n).
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6 A.Kumar

Proof, Writing

(3-9) . =

n “ % ot “'BV’
y=0
n
’ 1
(3.9°) t, = ("_’_‘—,5): L By8y,
we have A(('hm)n un) = °‘n 8, and so

n
1 Bo
'bn = m—ﬁ)—; ;&;—A(“ *0()9 U.q) =

= ‘ﬁ—m—{: . Z(;‘-’-- _‘ﬁ'l) (1), u An(1x o)y u.n}-
ntg=g\%e g+l ¢ ? «n
n
- L 3y, oo
where d, o is given by (3.8). If 8, =1 for all n, then
u, = 1, n =71y 8o that Z dn.,q = 1 for every n.

Hence, it follows from Theorem 2 of [?7], that (¥,x) c (K,A)
if and only if (3.6) and (3.7) hold.

4, Inclusion Theorems
Theorem 1, If (Rypy) ¢ (Nyq,0) and

(5.1) (x| » [(pwac)]), =0((quan)y,),

then [N,p,a], ¢ [M,q,«], for A>1. When A= 1, the condi-
tion (4.1) may be omitted.
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Generallsed strong Nérlund summabililty 7

Proof, Writing

(pxa(x8)), (awalxs)),
Ln=_——(§m)-n——-5, Mna—(—q—“-—A;')n_—-B

and noting that gq, = (k»‘p)n (cf. (2.1)), we have
(q*on)n M, = (k*(p*Au)L)n .

Thus, using Bélder’s inequality, and by (#.1),we obtain

w2y {Iare] 1] < (el @eanl (5],

2 2=
< (xlx|(exae] [oM) {deleleramiD | <
A A=1
<u(lk|*|(prac)] L) {lavac) |} <

< H( | k|*|(praa)] Ile)n ’

and we have

n n n-v
1 ) H
(Q*u)n ;l(q*m")xvl IMVI = (q*a)n vZa,lk'l ‘g '(p*dq)ﬂ“Lﬂl)"

We now suppose that sn——s[N,p, °‘]x‘ Thus

Xy = G%JJ;‘Z_;"P*A“M 5,1 = o)

and hence

. n \ n
(q#a), ;I(Q*Aq)yl | My} SHE{—GE Z'kn—vl(P'°‘)v X, = o(1)

V=0
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8 A.Kumer

provided (3.4) and (3.5) hold., But, by Lemna 4, this is equi~
valent to the hypothesis (N,p,x) ¢ (N,q,o). Hence 'sn——s[N,qp:])
s n—-s[N,q,q];\ 4nd the required inclusion follows.
Corollary. If (N,pyo) = (Nyqy00, then [Nypya] =
= [N,q,a]1. '
Theorenm 2, Ifoxn> O, qn> O for n>0,4un>0
for n >0, {pn}e#, Py, = O(qn), (N,q,x) is reguler and

q
n n
— S = for n>n
9p-1 Pp-1 o?
then [19’,;»,:::]A c [N,q,o&]A for A>1,

Proof, Case n, = O, Using Lemma 1 (11), we f£ind
that

(lklnpidu)n = 2k (p*ax), - (qe Ac()n =0((qn» ax),)

q P :
since, whenever B < B for n> O, 1t can be easlly
g1 Pp

verified that p, =0(q,) implies (p+aa), = 0((quac) ).

Thus (4.1) holds and the result follows from Lemma 5 and
Theorem 1.
For the general case, we have

b  Pn .
q_n-_i‘ > for n = n°+1, B2 yeeee
Write t,=q, for n= n°9n°+1, B 4+2 gecey

and define tn recursively for n = no-'l, n°-2,...,0, 80O
that ¢t > 0 and
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Generalised strong Nérlund summability 9

-

Sne bne2  Ing Pn+1) .

—5——4 min(
n t;n.+"l’ qn' Pp

t
If we set &, = —B., then

[+]
§n G En p
< < —R.
{En}e# €01 ~ 1’ Tp Pp_q for n>0,

und g, = O(En). Since p, = O(qn) = O(En) and

(K,tyo) 18 regular (by Lemma 2), therefore, by the case
n, = 0’ (with q replaced by ’gn), we obtain

(4.3) [N,p,.e], € [W,E,x], for 2>1.

Next, by Lemma 6 (with P, Teplaced b En), we have
(FyEy0) G (Nyqp0)e If we write k(z) = : , then, by Lemma
1(1), En =20 for n =0; and so (4.1) holds. Thus, by

Theorem 1,
(4.4) [M,8,0]y € [Maye],  for a>1,

From (4.3) and (4.4), the required inclusion follows.
Theorem 3, If, in addition to . the hypotheses of
Theorem 2, {qn}ey, then [N,pya, = [Nyqyo, for A >1,
Proof, Define {En} as in the proof of Theorem 2., By
Lemma 2, (N,f,o«) is Tegular and so by the case n, =0 of
Theorem 2 (with Py replacad by q, and Q9 replaced by sn),
we have [N,q,o]y ¢ [Ny§,0],+ Since, by Lemma 5, (N,p,o) is
- regular, therefore, from Lemma 6 and Theorem 1 (with p, Te-
placed by &, and q, replaced by p,), we obtein [N,E,a];\g
[Nypyx]y, because it can be easily verfied that, in this case
aiso, (4.1) holds. Thus [N,qya,c [Msp,0], for A >1,
This, in conjunction with Theorem 2, yields the result.
Theoremn &, IfOfn>0. 9,>0 for n=»0,8a, > 0
for n > 0, {pn}e,u s (Nypyo) and (N,q,x) are regular, and
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10 A.Kumar

Ppv p-1

for n> ns

then
[N!Pv"‘]a-g [N’Q,“];\ for A >1,

For the case b, = O, the regularity of (N,pe) is not needed.

Proof. When n, = Oy by Lemma 1(1), ’ko'> 0, kn>0
for n >0, and so (#.1) is satisfied. The result now follows
from Lemma 6 and Theorem 1,

For the general case, interchanging P, and a4, in the
construction of {En} (cf. the proof of Theorem 2), we, in
this case, obtaln

En Iy En Pp
{En}e,a ’ En-'ls CRIL P Ppi

for n >0 and ©p, = 0 (§,). Now,by Lemma 5, (N,§,0) is re-
gular and so by the case n = O of Theorem 2 (with En in
place of q,), we have [(N,pya}) ¢ [W,E,od, s and by the case

= 0, [N Ev‘-"]) [N9Q!°4]r

Thus  [N,pye]y € [Nyaya], for 2 >1, as desired,

5. Relations between generalised strong Nérlund, generali-
sed absolute Nérlund and generalised N6rlund summability
methods,

Theorenm 5. If (3.3) holds, then [N,p,«],‘; (N,p,o)
for 2 21,

Proof, Since, by Lemma 3 [N,p,c‘x:l}‘_ [N,p,ca(],1 for
A >1, therefore it is enough to show that [N,p,a],‘ (N,pyx).
*S[N,p,a],‘. Thus

Suprose s,

(prafxs)),
p.u) ZI(P sacy | | o5z Toraw), s' = o(1)-
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Generalised strong Nérlund summability 1

Now
—1 Zn (p*aAlas)) (psas)
,
xady L (pxacl {m—!- s} T nn -8
Thus

I(p*«S)

Towe, " ®

and hence Sn-"-s(N,p,or) and the result follows,

Theorem 6, If (N,p#Ax) is regular and 2 =1,
then the necessary and sufficient conditions for a sequence
{sn} to be summable [N,p,«], to & are that it be summable
(N,p,) to 8 and that

- (p * s))
< Gy ) ol Tra e poco
' v=0

n

(5.1) —p—:—u)-;- Zl(pidq)pl ILv - Vvll = 0(1),
. va0
where

(pra(xs)),
(5.2) LV = mp—— »

(p*xs),
(5.3) VV:W .

Proof. Necessity. Sp.ppose that 8, — s[N,p, o(]m.
Then, by Theorenm 5, sn—-s(N,p,a). Thus

(5.4) (ﬁ;}; ZI(P,*AO&),I |z, - s> = o(1)

Va0
and

(505) V —=8 as n——eo,
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12 A.Kumar

Since (N,p»aa) is regular, therefore, from (5.5), we obtain

(5.6) Gaay- Z](p»m),| ly,- s = o(1).

R ya0

By Minkowski’s inequality, ws obtain

2 1
_ it
(5.7) {(p :«)n Z.‘(P*“)vl | 2, - v } <
. b

1

1 n
< {Zp *“;n Z’(P*M)‘v' lL,-sIah +

=0

n
)
+ {5:—«2 ZI(P * aa)y| ly, -s|
=0

Using (5.4) and (5.6) in (5.7), we obtain (5.1).

Sufficiency. Suppose that (5.,1) and (5.5) hold, Then, in

this case also, (5.6) holds, Hence, by Minkowski’s inequality
and (5.1),

1
2

" 1
{(p—j‘;r D lp aw) IL,-sI%]-“s
2 y=0

n 1

A A3
< {ﬁ‘f}g Z (o 2| | Ty= vy j+

y=0
n A%
+{(p:°‘)nzl(p“‘°‘)v‘ lvy-s | }= o(1)
v=0

so that (5.4) holds; and hence s, —=s [N,p,a]a.

Remarks

1) Since, in Theorem 6, (N,p «a«) is regular, therefore (5.1)
is equivalent to
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A
(5.8) (1= I(g*A«)l)n ; I(P*AO()vl le - Wvl = 0(1).

2) 1If {sn} is summable IN,p,alp,then s, —s(Nypya), vhere

(5.9) S = Z (tn"tn__,‘) + to,
ne1t
t, being defined by (242)

Theorem 7, If (N,p»Ax) is regular and {sn} is
summable [N, pyolqs then sn——s[N,p,cx],], where s is gi-

ven by (509).
Proof, By Theorem 6 and Remark 1), it is enough

to show that

Cre T(owad] = ;I(P*A«)»l By = vyl= 0(1),

where L,, y, are defined by (5.2), (5¢3), respectively.
Now, for n >0,

I -y = (p* o) (apwos) - (px a0} (pras) .
n n =
(prac) (px o)

('p«(-u)i1 {(p*GS)n-('p&ors)n_,]]-{(pxcx)n- (p-o:)n_,l}(p;qs)n
(pxraa) (pwed,

]

(poedy, q (pxaxs)) -~ (pwedy(peas) 4
(px* ac), (pxod -

(P*Ol)n_»] Yo ~ (P*Of)n_q Y1
(pwao),
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14 A.Kunmar

Thus
(5.10)  |(pwao) | [T, = v | = [(pea) 4| [v, =¥y q<
< (1= |(p&AOl)! )n_'] Ivn - vn—'\l
and hence
1
(1#](pwac)|) Z’I(pndu)vl [T~ Wl
(5.11)

<m Z- (1*I(P*Ao)l )9-'\“17 Yorl.

n
Writing x, =]y, - ¥o_1le X, = Z X,
v=f
we find that the right hand side of (5.11) is

S el . jl; |(pxacdy| X, = (1)

since (I\—I,p; a0) 1z regular. This completes the proof,
PTheorem 8 If 2>1, (N,pxa0 is regular,

(5.12) (1%[(pwaa)|) 4 =0 (nf[(pxe) P
and if s —~s(N,p,«) and {sn} is summable |N,pye]y, then
sn——s[N,p,u],\ .

Pr oo f. By Theorem 6, it suffices to show that (5.8)
holds. Now, using (5.10), we find, by (5.12), that
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Generalised strong Nérlund summability 15

n
1 A
(5.1%) TN Z,' (pxacdy| [L,- yy "=
y=0
1 : 1% |(p*a)| )x lvy= v .I)
S(x1(praall ), Z =
y=1 [(p*aa)y|

n

N\~ 2
1 A-1
s("*l(p*Aq)l)n VZ:T(1*I(P*A“)l)y_1 v l\"v"Vv_ql .

n
Now letting 3, = 9“-q|y,-%_1|"\ y Y, = Zyv
v=i
and proceeding as in Theorem 7, we find thai the right hanu
side of (5.13) is o0{1). This establishes (5.8)'and the proof
is thus complete.
As particular instances of the results of Sections 4 and
5, when x, = 1 for n >0, we obtaln various results con-
tained in [4].

6, Relations between strong Riesz, absolute Riesz and
Riesz summgbility methods '

Theorem 9, Letax, # O for n > O. Then, for 221,
(N,o) ¢ (M,p) implies [ﬁ,a]a C [ﬁ,p]x .

Proof. Suppose that s —-s[ﬁ,a],x. Thus, by defini-

n
tion,
n
(6.1) = 7 le e -s|)‘ = 0(1)
. w, = Tiwed . v 8y = .
pg
Writing R
b = 7o 8,118, -]
n- (14,3)!1 »i15y ’
p=0
and proceeding as in the proof of Lemma 7, we dotain
n
(6.2) t, = ;dn’quq .
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16 A.Kumar

vthers

(

| Bl _ [ Bgaql\ (1%
<|°‘| |°::q|> o, 0=¢ <=,

| B, | (1%e0)

ERLC (¢ =),

\ 0 (¢ >n).

3ince (N,o) ¢ (N,B), therefore (3.6) and (3.7) hold, Let

A 1|
Ay =49t 0<¢<n-1, I_Q_l l 0 adl]
1 { Fol™ [Fo+l]

Clearly 4, N Ay = ¢ and 4, U Ay = {q: O<o < n—’l}. Now

, gl | (1%
) _laael = Z( 5ol ~ Fosnll | T )
= Q€AY ¢ 8+
Iﬁol l'39+’l| (1*“)¢ I’snl | (1*°‘)n|
i ;( ol ™ 1SgsallITT*AI 1" {0 l(ub)nl)
[Bol  Boyn || (1% >
< Pl Poy e N +
;A'( [%ol  *g44 (I]*ﬁ)n
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Generalised strong Norlund summability 17

lﬁ +1| |/3 l I (1&0()9 ‘ | I(1*°‘) I)
o+l el <
+ ;;( [*o+1l %0l M&Zin EN | |(1*p) |

<2lle-at |t

PEA, ¢
B Bost (M%) | Bl |(’Icm) |
» Ll ml (] el
d =0{1),
;ﬂ , no?l

!

by (3.6). Also, for every fixed 0 dn'g-“o as n—=oo,
by (3.7).

Thus the transformation (6.2) is null-preserving and hence,
by (6.1), t, = 0(1). Thus sn——s[ﬁ,p],\ and the required
inclusion follows,

Putting P, = 1 for n =0 in the results of Section 35,
we obtain the following theorems.

Theoren 10, If Z’Iugl = 0((1&0:) ), then
— — v=0
[N,cx].,\ c€ (Nyx) for a =21,

Theorem 11, Suppose that (N,o) is regular and

A>1, Then s,— s[ﬁ,o:],‘ if and only if s, —s (Nyo) and

n
A
1*10( n_ Zluv| Isv - uvl = o(1),
y=0

where u, 1is defined by (3.9).
Theoremn 12, If (N,o) is reguler and {sn} is

o .
summable Il‘_T,o:I,‘, then sn—-s[i‘f,u],l, where s = z' (wp=u, _q)4
-
+ u, u, being defined by (3.9).
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18 A Kumar

PTheorem 413, Suppose that A >1, (N,«) is regular and
(1 *lal)n_1 =0(n|(’|x-o:)n.|)._1f sn—-s(ﬁ,u) and {sn} is summa-
ble |F,aly , then s —s{f,cd,.
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