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Zvignicw Grand
SUR LE PRODUIT DE DEUX DERIVEES

Dans le travail [4] S.Kempisty a démontré que chaque
fonction réelle, d'une variable réelle, qui est une dérivée
approximativement semi-continue inférieurement au point x,
est la fonction approximativement continue au point x.
M.Iosifescu [3] a donné des conditions nécessaires et suffi-
santes pour que le produit des dérivées de deux fonctions
d'une variable soit de nouveau la fonction dérivée.

Dans le présent travail on généralise les résultats de
S.Kempisty et de M.Iosiféscu aux dérivées des fonctions d’en-
semble, profitant de la méthode de M,Iosifescu.

Soit (X,M,u) un espace mesuré de mesure 6-finie et com-
pléte. On appelle base de différentiation dans l'espace
(X,M,u) tout couple (§,=»), ol FC M est une famille d’en-
sembles de mesure u positive finie et =+ désigne la convergen-
ce des suites (de Moore-Smith) d’ensembles de la famille &
vers les points x € X, définie de maniére que deux condi-
tions sulvantes soient satisfaitess

(i) Il existe pour tout point x € X un ensemble di-
rigé T et une suite (de Moore-Smith) d’ensembles [IG}“T
de la famille ¢ quil est convergente au sens ===>vers le
point x.

(ii) Toute sous-suite cofinale d%une suite convergente
vers un point x € X converge également vers ce point
(ve [1]s pe30 ot [2], p.24s).
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2 Z.Grande

Fixons la base de différentiation (§, =>) dans l’espace
(X,Myu)e Soit une fonction f ¢ §—=R (R - l’ensemble des
nombres réels). Introduisons la désignation suivante:

a = lim £ (I), lorsque pour toute suite de Moore-Smith
I =y

{I‘,L“T, convergente au sens — vers le point x, on a
a = 3{2’1@ £ (I)
Rappelons maintenant quelques notions dont nous feront usage
dans ce travail (v. [1] et [ 2]).

Soit un ensemble u -mesurable A ¢ X et le point x fixé,
la borne supérieure (resp.inférieure), de l’ensemble de tous

M(AnI) #(An ))
les nombres [ljinelr sup AL, (resp. lin;.eriﬁ.f ALY |)

pour toutes les suites de la forme {Ib}te q? ol It-bx est dite
épaisseur supérieure (resp.inférieure),de l’ensemble A au po-~
int x, relativement 3 la base de différentiation (F,=»).

S8i ces deux épaisseurs, supérieure et inférieure, sont
égales, leur valeur commune s’appelle 1?épaisseur tout
court de l’ensemble A au point x, relativement & la méme
base de différentation. Dans le cas, ol 1’dpaisseur en que-
stion est égale & 1, le point x est dit point d’épaisseur
de l'’ensemble A relativement 3 la base de différentation
(§ =), et dans le cas opposé, ol 1’épaisseur en ce point
est nulle, il est dit point d'éclaircie de 1l’ensemble A re-
lativement & 1la méme base de différentiation.

Une fonction m-mesurable £3X —= R, qui est intégrable
relativement 3 la mesure M sur tout ensemble de la famille
J$, est dite fonction dérivée relative 3 la base de diffé-
rentiation (§,=+) au point x e X, lorsqu’on a 1'4galité

}in: ﬁ-fy/f(t)d,a = £(x).
I

Nous appelons une fonction u-mesurable f:X—+R approxi-
mativement semi-~continue supérieurement (resp.inférieure-
ment) relativement & la base de différentiation (§F,=>) au
point x e X, lorsque, guel que soit le nombre réel a, le
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Sur le produit de deux dériveées 3

point x est, relativement & cette base, un point d'épais-
seur de l’ensemble {tex; f(t)< a} (resp.{téX; £(t)>a} ,

si cet ensemble contient le point x. Si une fonction fi:X—-R
est approximativement semi-continue supérieurement et in~
férieurement au point x ——X, relativement a3 (§,==),
alors elle s?appelle approximativement continue relativement
a (§,=>) en ce point.

Une suite (de Moore-Smith) d’ensembles {Ea}ae’l‘ ¢ M est
convergente ordinairement vers un point x e X (Eq-—‘-bx)
(ve [1]y Dp.38 et [2], p.246) lorsque

(a) O< u(E,)< o pour €T

(b) il existe, pour tout ensemble E, , un ensemble
Ioe® tel que E, ¢ I, et la suite {Iu}
convergente au sens == vers le point x.

Une fonction u-mesurable F:X — R s’appelle ¢ -continue

(r désigne une topologie) lorsque

1
lim m /F(’G)d/(: P(x)
£

Eqéax

ax€el est

o
pour tout point x e X et toute suite {Ea}cxeT convergente

ordinairement vers le point x (v. (11, D38 et [2], Pe246).

Soit f:X—=R une fonction intégrable relativement &
la mesure # « Un point x € X est dit point de Lebesgue de
la fonetion £ lorsqu’on a 1'égalité

I ===

lim z%ﬁ}/'f(t) - i’(x)l du =0.

Boit maintenant £3X —=R une fonction telle que la fon-
ction 2 solt intégrable relativement a la mesure u .
Un point x ¢ X s’appelle point de Lebesgue d’ordre deux
de la fonction f 1lorsqu’on a l’égalité
1 2
lim ;"('I—y;/'[f(t) - f(x)] du =0

L J

Lemmne 1e Soit f:X—=R une fonction a-mesurable.
Si up point x € X est un point de Lebesgue d’ordre deux de

- 323 -



4 Z.Grande

la fonetion £, alors le pecint x est un point de Lebesgue
de la fonction f£.

Démonstration. Ce lemme résulte tout de suite
de 1'inégalité de Cauchy (v. [5], p.12)

j'lf(t) - s au<Yu(1) Vf[f(t)-f(x)]a du
I I

pour IeJ.

Théoréme 1. Soit f£:X—=R une fonction M-me-
surable et bornée. Pour qu’un point x € X soit un point de
Lebesgue de la fonction £, il faut et il suffit qu'il soit
un point de Lebesgue d’ordre deux de la fonction £,

Démonstration. D'aprés le lemme 1 il reste
3 prouver que chaque point de Lebesgue de la fonction f est
un point de Lebesgue d'ordre deux de la foomction f. Mais
c’est une conséquence évidente de 1'inégalité

If[f(t) - 202 d,a! < 2 M,rflf(t) - f(x)l da ,
I z

ol le nombre M, satisfait d 1'inégalité |£(6) < M, pour
t e X.

Théoréme 2., Soit £:X—=R une fonctidn u-me-
surable et bornée. Pour qu'un point x € X solt un point de
Lebesgue de la fonction £, il faut et il suffit que la fon-
ction £ soit approximativement continue au point x.

Démoanstration, Soit E, r= {t< 1 126)-
-f(x)la £} pour £¢ >0 et Ie¥ . 8581 la fonction f est appro-
ximativement continue au point x, alors Il-:!;ni %‘%ﬁl)= 0

pour tout nombre ¢ > O, De plus, pour tout nombtre ¢ > O on
a 1'inégalité

S12e6) - £00)|an
L
A(I)

#(B, I).

<t s+ %o

Il en résulte que x est un point de Lebesgue de la fon-
ction £f.

- 324 -



Sur le produit de deux dérivées 5

81 x est un point de Lebesgue de la fonction f, alors

f|f(t)-f(x)l du flf(t)-f(x)l du

lin < lim ! = 0.
I=>x # (1) I=ex A(I)

De plus,

flf(t)-—f(x)ld,u
s > ‘“(EE,I) .
u(I) A4(I)

Il en résulte que la fonction f est approximativement conti-
aue au polnt x.

Thé&oréme 3. Soit £:X—=R une fonction u-me-
surable et telle que la fonction f2 solt intégrable. Pour
que les fonctions £ et £2  soient des dérivées, il faut
et 11 suffit, que chaque point x e X soit un pecint de Le-
besgue d’ordre deux de la fonction f.

Démonstration. Ona l'égalité

f[fz(t) - 22(x)] am

L _ 2f(x)
(1) s - 2200 ‘I/[f(t) - 2] ap+

+2%T)-f[f(t) - £(0)]2 au .
I

Si les fonctions £ et £2 sont des dérivées, on a les
égalités

(2) Ao ds [ [ee-z@)] ar =0,
I

(3) R es) f[fz(t)-fz(x)] du =0
I
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6 Z.Grande

pour tout polnt xe X. Les 8galités (1),(2) et (3) entrainent

[ =ex

(3") lim ‘-;%T)—f[f(t)-f(x)]z =0,
I

d’odl x est un point de Lebesgue d’ordre deux de la fonc-
tion £ et, d4’aprés le lemme 1, x est un point de Le-
besgue de la fonction £. Il en résulte 1'8galité (2) qui
suffit pour que la fonction f solt une dérivée au point x.

De méme les &galités (1) et (2) entraipent 1'égalité
(3), qui suffit pour que la fonction £2 soit une dérivée
au point x.

Théordme 4. Supposons qu’une fonction bornde
f3X—=R soit une dérivée au point x e X. Si la fonction
f est approximativement semi-continue supérieurement aun
point x, alors la fonction £ est approximativement conti-
nue au point x.

Démonstration. Admettons, par contre, que la
fonction £ ne solt pas approximativement continue au point x.
Alors, d’aprés le théoréme 2, le point x n’est pas un
point de Lebesgue de la fonction f. Il existe donc une snite
(de Moore-Smith) {I“}GGT d’ensembles de la famille ¥ qui
est convergente au sens === vers le point x et telle que

xel

(#4) lim ;—%T:)—flf(t) - f(x)|ag =a>0.
[ﬂ

Puisque la fonetion f est une dérivée au point x, on a
ainsi

(5) s iry flew-swlax = 0.
I.

uer
Posonsg g(t) = £(%) - £(x).
Solent Ao ={t € X; 8(t) > 0} n I,
B,:[te X; glt) < o} N I
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Sur le produit de deux dérivées 7

D'arrés (4) et (5) on a

(6) o(eT #(I ) g(t)d;u - llm —(—ng(t)d =%>00

q

Soit ¢ =-%6. Puisque la fonction £ est approximativement
semi-continue supérieurement au point x, ainsi x est un

point d’é8paisseur de l’ensemble C = {t e X; f£(%) <1f(x)+£}
relativement 4 (§ ,==). Alors

lim

Lin ﬂ( )fg(t)dp = lim ;%ﬁ(fg(t)d,u + g(t)d,a>

<1lim sup 7%3—) fg(t)dﬂ+ 1im supz%lzy/ g(tldu <
aeT ANC ANl

A(A,NC) H(AgnC*) o .
stlim sup —fZ(T_7'+ M llm sup ——iz?izy-sgfﬁ-, (¢'=x-~-2c¢),

ce qui est en'contradiction avec (6), d'oll le théoréme.

Dans le cas, ol X = R on a le théoréme de Kempisty [4].

I1 résulte de théorémes 1, 2 et 3 le corollaire suivant.

Corollaire 1. Boit f£iX—=R une fonction
bornée. Pour que les fonctions £ et £2 soient des déri-
vées, 1l faut et il suffit que la fonction f soit approxi-
mativement continue. En particulier, si X = R on a le théo~
réme de Wilkosz (v. [6]).

Théoréme 5. Soient f:X—=-R et g:X —R des dé-
rivées bornées. Pour que le produit f.g soit une dérivée,
il suffit (mais il ne faut pas®) que, quel que soit le point

“)v.[B], le théoréme 2.
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8 2.Grande

x ¢ X, au molns une de deux fonctions £ et g soit appro-
ximativement continue & x.

Démonstration. Soit =x ¢ X. Supposons que
la fonction £ soit approximativement continue au point x.
On a

@ g [l s - 260 )] au =
I

=ﬂi%;—j[g(t) - g(x)]d,u + ll}—I)-fg(t)[f(t) - f(x)]d/n
I ' I

Puisque la fonction g est une dérivée bornée, ainsi on a

(8) lim ﬂj(—I-yf[g(t) - g(x)] du =0.

[ x
D*autre part, d'aprés le théoréme 2, x est un point de

Lebesgue de la fonction f. Alors.

L=y

lim "T’(‘ﬂﬂf(t) - f(x)|du= 0.
I

Il en résulte que

T x

(9) lim I%fyl/g(t)[f(t)-f(x)]dﬂ ls
I

i
< I]ﬂxlﬁy‘flf(t)-f(x)l aul = 0.

De (7), (8) et (9) il résulte que

lim ,«T‘T"(I }[[f(t)g(t) - £(x) g(x)] du=0 .

I=x
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Sur le produit de deux dérivées 9

Ainsi la fonction f.g est une dérivée au point x et le
théoréme 5 est démontré.

Des théorémes 4 et 5 il résulte le corollaire suivant.

Corollaire 2, Solent f1X —=R et g:X—=R
des dérivées bornées. Pour que le produit f.g soit une
dérivée il suffit que, quel que soit le point x € X, au
moins une de deux fonctions £ et g so0it approximative-~
ment semi-continue supdrieurement & x.

Du théoréme 5 il résulte encore deux corollaires sui-
vants.

Corollaire 3., Le prodult d’une dérivée bor-
née et d’une fonction r-continue est une dérivée.

Corollaire 4, Le produit d’une dérivée
bornée et d’une fonction bornée approximativement continue
est une dérivée.

Pour la démonstration du corollaire 4 il faut remarquer
que chaque fonction bornée approximativement continue fi:X—=R
est une dérivée (v. [1], p.37 et 26).

Thédoréme 6. Soit fiX—=R une fonction bornde.
Pour que le produit de la fonction £ avec une fonction
dérivée bornde soit une dérivée, il faut et il suffit que la
fonction £ soit approximativement cocntinue.

Démonstration., La suffisance de cette con~
dition résulte du théoréme 5. Nous démontrerons sa nécessité.
De 1’8galité £ . 1 = £ 1l résulte que la fonction f est
une dérivée. La fonction £° = £ « f est aussi une déri-
vée. Alors, d’aprés le théoréme 3, la fonction £ est
approximativement continue.

Théorédme 7. Solent f£i1X—=R une dérivée bornée
et g:X—=R une dérivée intégrable. Pour que le produit f.g
soit une dérivée il suffit (mais il ne faut pas™) que chague
point x € X soit un point de Lebesgue de la fonction g.

Démonstration. Soit x e X un point de Le-
besgue de 1la fonction ge Alors

*4. [5], le théordme 5.
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10 Z.Grande

,12, ,‘{%‘fj‘/ls(t) - g(x)ldp = 0.

Evidemment
(10 a | gy fro)[sw-em]anle
I
113:: ‘l—k%flg(t)jg(x)ldﬂl =0 .
I

Puisque la fonction £ est une dérivée bornde, alors on a

(11) lin ﬂ-fy}/[r(t) - £(x)] au

De (10), (11) et de 1l'égalité

0.

—,ll(—fyf[f(t)s(t) - f(x)g(x)] du =
I

=§-&%—‘/Ef(t) - f(x)]d;t + f(-ﬂff(t)[s(t) - s(x)] du
I I '

i1 résulte que

lim ﬁﬂ‘/‘[ﬂt) g(t) - £(x) g(x?]dy = 0,

J =g

ce qui termine la démonstration du théordme 7.

Bupposons maintenant que X = R® et A4 est la mesure
de Lebesgue. Soit J§ la famille de toutes les boules de
1*espace R® et 1a convergence —»¢st définie par la con-
dition K (x,rn)-»x,(‘j(x (x, rn) = {te B®; Q(t,x) < rn}.
ol ¢ désigne la distance euclidienne dans l’espace Rm)',

o0
lorsque la suite de nombres {rn} . est convergente vers O,
n=
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Sur le produit de deux dérivées

11

‘Soit une fonction f£:R" R, Un point x R® est dit

point de Lipschitz de la fonction £ lorsqu’il existe un
nombre positif T, et un nombre positif a +tels que

|£(t) - £(x)| < a « ¢™(%,x) pour tout point teK(x,r ).

Théoréme 8. Soient f£:R®"—=R et gtR"—R
des dérivées intégrables. Pour que le produit feg soit une
dérivée 11 suffit (mais il ne faut pas™) que tout point
x ¢ R® soit un point de Lipschitz de la fonction £,

Démonstration. Admettons que x € R* est
un point de Lipschitz de la fonction f. Alors il existe un
nombre positif a et un nombre positif r, tels que
|£(t) - £(x)| < aeq B(x,t) pour t € K (x,r ). Pulsque la
fonction g est une dérivée, alors

(12) r_.n m f [s(t) - g(x)] du =

K(x,r)
D'autre part, 81 r < r,, alors

| ey J e[t - 2)au<

K(x,r)

< KR f lo®(x,t) &(+)|au <

K(x,r)

<ﬁ'| / ls(")ld"‘l' (x, =_____“(xi§'r))).

K(x.7)

[6]s le théoréme 5
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Puisque l'intégrale de Lebesgue est continue, alors

(13) lim ;zf%;:;jj Jf g(t)[f(t) - f(x)]dﬂ =0 .

r=0 K(x,r)

De (7), (12) et (13) on a

;]-'-i.% /t(sz,_r)—) f [f(t) g(t) - £(x) g(x)]d,u: o,
' K(x,r) '

ce qui achéve la démonstration.
Il résulte des théorémes 7 et 8 le théoréme suivant.
Théoréme 9. Soient f:R®—=R une dérivée
bornde et g:R™—=R une dérivée intégrable. Pour que le
produit f.g soit une dérivée, il suffit (mais il ne faut
pas') que btout point - x € R™ soit un point de Lipschitz de la
fonction f ou bien de la fonction g.
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