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SUR LE PRODUIT DE DEUX DÉRIVÉES 

Dans l e t r a v a i l [4] S.Kempisty a démontré que chaque 
f o n c t i o n r é e l l e , d 'une v a r i a b l e r é e l l e , qui e s t une dér ivée 
approximativement semi-cont inue in té r i eu rement au po in t x , 
e s t l a f o n c t i o n approximativement cont inue au po in t x . 
M. Ios i fescu [3] a donné des cond i t ions néces sa i r e s e t s u f f i -
san tes pour que l e p r o d u i t des dé r ivées de deux f o n c t i o n s 
d 'une v a r i a b l e s o i t de nouveau l a f o n c t i o n d é r i v é e . 

Dans l e p r é sen t t r a v a i l on g é n é r a l i s e l e s r é s u l t a t s de 
S.Kempisty e t de M. Ios i f é scu aux dé r ivées des f o n c t i o n s d ' e n -
semble, p r o f i t a n t de l a méthode de M. Ios i f e scu . 

So i t (X,M,/i) un espace mesuré de mesure 6-finie e t com-
p l è t e . On appe l l e base de d i f f é r e n t i a t i o n dans l ' e s p a c e 
(X.M,^) t o u t couple où § c II e s t une f a m i l l e d ' e n -
sembles de mesure ¡u p o s i t i v e f i n i e e t désigne l a convergen-
ce des s u i t e s (de Moore-Smith) d 'ensembles de l a f a m i l l e $ 
ve r s l e s p o i n t s x e X, d é f i n i e de manière que deux condi-
t i o n s su ivan tes so ien t s a t i s f a i t e s ) 

( i ) I l e x i s t e pour t o u t p o i n t x e X un ensemble d i -
r i g é G? e t une s u i t e (de Moore-Smith) d 'ensembles g; 
de l a f a m i l l e f qui e s t convergente au sens — > v e r s l e 
p o i n t x . 

( i i ) Toute s o u s - s u i t e c o f i n a l e d 'une s u i t e convergente 
v e r s un po in t x e X converge également ve r s ce po in t 
(v . [ 1 ] , p .30 e t [2], p . 2 4 4 ) . 
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2 Z.Grande 

Fixons la base de differentiation ($, ) dans l'espace 
(X,M,/i). Soit une fonction f : § — R (R - l'ensemble des 
nombres réels). Introduisons la désignation suivante: 
a = lim f (I), lorsque pour toute suite de Moore-Smith 

w convergente au sens ;> vers le point xf on a 
a = lim f Cl«), oté r 
Rappelons maintenant quelques notions dont nous feront usage 
dans ce travail (v. [l] et [ 2] ). 

Soit un ensemble //-mesurable A c X et le point x fixé, 
la borne supérieure (resp.inférieure), de l'ensemble de tous 

les nombres lim 
ter 

/lUnLj f /«(Ani. ) \ 
sup J (resp- \limterítí£ T M V j J ' 

pour toutes les suites de la forme où est dite 
épaisseur supérieure (resp.inférieure),de l'ensemble A au po-
int x, relativement â la base de différentiation (£,-*•). 
Si ces deux épaisseurs, supérieure et inférieure, sont 
égales, leur valeur commune s'appelle l'épaisseur tout 
court de l'ensemble A au point x, relativement à la même 
base de différentation. Dans le cas, où l'épaisseur en que-
stion est égale à 1, le point x est dit point d'épaisseur 
de l'ensemble A relativement à la base de différentation 
($ »=>)j et dans le cas opposé, où l'épaisseur en ce point 
est nulle, il est dit point d'éclaircie de l'ensemble A re-
lativement â la même base de différentiation. 

Une fonction .«-mesurable f i X — R , qui est integrable 
relativement à la mesure fi sur tout ensemble de la famille 

est dite fonction dérivée relative à la base de diffé-
rentiation au point x e X, lorsqu'on a l'égalité 

£ 5 M ï y / f ( t ) d / i = f ( x )-
i 

Nous appelons une fonction M -mesurable f:X—»-R approxi-
mativement semi-continue supérieurement (resp.inf«rieure-
ment) relativement à la base de différentiation au 
point x 6 X, lorsque, quel que soit le nombre réel a, le 
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Sur l e produit de deux dériveées 3 

point x e s t , relativement à c e t t e base, un point d 'épais-
seur de l'ensemble { t é X; f ( t ) < a } ( r e s p . j t e X ; f ( t ) > a } , 
s i ce t ensemble contient le point x . Si une fonction f :X—R 
es t approximativement semi-continue supérieurement et in -
férieurement au point x — - X , relativement à 
a lors e l l e s 'appel le approximativement continue relativement 
à ( £ , = > ) en ce point . 

Une suite (de Moore-Smith) d'ensembles {Eo.}o<eT c ^ e s t 

convergente ordinairement vers un point x e X ( E ^ s s ^ x ) 
( v . [ 1 ] , p.38 et [ 2 ] , p.246) lorsque 

(a) 0 < /u (Eo, ) < 00 pour <x e T 

(b) i l e x i s t e , pour tout ensemble E a , un ensemble 
e JT t e l que E a C et la suite { l « } 0 ( e T est 

convergente au sens =i> vers le point x . 
Une fonction //-mesurable PsX —»-R s 'appel le r - cont inue 

( r désigne une topologie) lorsque 

¿t S= 
pour tout point x 6 X et toute sui te { E a } a t T convergente 
ordinairement vers le point x (v. [1] , p.38 et [2], p . 2 4 6 ) . 

Soi t f î X — » R une fonction integrable relativement à 
l a mesure /i . Un point x e X est dit point de Lebesgue de 
l a fonction f lorsqu'on a l ' é g a l i t é 

11m ¿¡^jy J | f ( t ) - f ( x ) | = 0 . 

So i t maintenant f iX — - R une fonction t e l l e que la fon-
c t i o n f^ s o i t intégrable relativement à la mesure fi . 
Un point x fe X s 'appel le point de Ltebesgue d'ordre deux 
de l a fonction f lorsqu'on a l ' é g a l i t é 

lim ^ | î y / [ f ( t ) - f ( x ) ] 2 à/i - O , 

L e m m e 1 . Soit fsX—»R une fonction ^-mesurable . 
S i un point x e X est un point de Lebesgue d'ordre deux de 
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4 Z.Grande 

la fonction f , aloro le point x est un point de Lebesgue 
de la fonction f . 

D é m o n s t r a t i o n . Ce lenime résulte tout de suite 
de l ' i n é g a l i t é de Cauchy (v. [5]» p.12) 

/ |f( t ) - î U ) \ à M ^ / i ( I ) ^ J [ î ( t ) - f { x ) ] 2 à/i 
1 1 

pour I t 
T h é o r è m e 1 . Soit f s ï "-R une fonction /«-me-

surable et bornée. Pour qu'un point x 6 X soit un point de 
Lebesgue de la fonction f , i l faut et i l su f f i t q u ' i l soit 
un point de Lebesgue d'ordre deux de la fonction f . 

D é m o n s t r a t i o n . D'après le lemme 1 i l reste 
à prouver que chaque point de Lebesgue de la fonction f est 
un point de Lebesgue d'ordre deux de la fonction f . Mais 
c ' e s t une conséquence évidente de l ' i n é g a l i t é 

| / [ f ( t ) - f ( x ) ] 2 d/i é 2 I t p / l f C t ) - f ( x ) | dm f 
I I 

où le nombre Mf s a t i s f a i t à l ' i n é g a l i t é |f(t)| M̂  pour 
t 6 X. 

T h é o r è m e 2 . Soit f tX—»R une fonctiôn /* -me-
surable et bornée. Pour qu'un point x t X soi t un point de 
Lebesgue de la fonction f , i l faut et i l s u f f i t que la fon-
ction f soi t approximativement continue au point x . 

D é m o n s t r a t i o n . Soit E£ j = | t < I ; | f ( t ) -
- f ( x ) | ^ e j pour £ > 0 et l e f . S i la fonction f est appro-
ximativement continue au point x , alors lim - 0 

pour tout nombre c > 0 . De plus, pour tout nombre t > 0 on 
a l ' i n é g a l i t é 

/ | f ( t ) - f(x)|d/i 

MD 

v«(E, y) 
«f 

I l en résulte que x est un point de Lebesgue de la fon-
ct ion f . 
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Sur le produit de deux dérivées 

Si x est un point de Lebesgue de la fonction f, alors 
/|f(t)-f(x)|d/i f\f{t)-f{x)\àM 

lim — ^ lim = 0. 

De plus, 

f |f(t)-f(x)|d,u 
tj ^ f. 

/ad) MD 
Il en résulte que la fonction f est approximativement conti-
nue au point x. 

T h é o r è m e 3. Soit fîX —"-R une fonction /U-me-o 
surable et telle que la fonction, f soit intégrable. Pour 
que les fonctions f et f soient des dérivées, il faut 
et il suffit, que chaque point x e X soit un point de Le-
besgue d'ordre deux de la fonction f. 

D é m o n s t r a t i o n . On a l'égalité 

(1 ) 

J[.f2(t) - f2(x)] dfJ. 

A(I) 
a 2fUl /[f(t) _ f(x)l + 

Si les fonctions f et f sont des dérivées, on a les 
égalités 

( 2 ) i1^* ¿ k ) / ^ = o , i 
z Ï Ï x ^ I ) /[^(tî-i^x)] d/« = 0 
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6 Z.Grande 

pour tout point xtX. Les égalités (1),(2) et (3) entraînent 

(3'} m Air/['(t>-f(x)]2 - o . 

d'où x est un point de Lebesgue d'ordre deux de la fonc-
tion f et, d'après le lemme 1, x est un point de Le-
besgue de la fonction f. Il en résulte l'égalité (2) qui 
suffit pour que la fonction f soit une dérivée au point x. 

De meme les égalités (1) et (2) entraînent l'égalité 
(3)» qui suffit pour que la fonction f soit une dérivée 
au point x. 

T h é o r è m e Supposons qu'une fonction bornée 
f s X — s o i t une dérivée au point x e X. Si la fonction 
f est approximativement semi-continue supérieurement au 
point x, alors la fonction f est approximativement conti-
nue au point x. 

D é m o n s t r a t i o n . Admettons, par contre, que la 
fonction f ne soit pas approximativement continue au point x. 
Alors, d'après le théorème 2, le point x n'est pas un 
point de Lebesgue de la fonction f. Il existe donc une suite 
(de Moore-Smith) {l«}a£g; d'ensembles de la famille 9 qui 
est convergente au sens =»s» vers le point x et telle que 

(4) lim ^(i ) - f (x)| àfi = a > 0 . «*r « ^ 

Puisque la fonction f est une dérivée au point x, on a 
ainsi 

( 5 ) «Vf ^ k i / t f ( t ) - f ( x ) i d ^ = 0 

Posonsr g(t) = f(t) - f(x). 
Soient A« = {t 6 X; g(t) > o} n i^, 

B „ = ( t £ X; g(t) «S Oj n I w . 
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Sur le produit de deux dérivées 7 

D'arrès (4) et (5) on a 

(6) ¿ f e P ^ = - }ïmT AljM^ =#>0-

Soi t 6 = -^Q. Puisque la fonction f est approximativement 
semi-continue supérieurement au point x , a ins i x es t an 
point d'épaisseur de l'ensemble C = { t e X; f ( t ) < f ( x ) + e } 
relativement à ( $ , = * > ) . Alors 

Jff ,7—)feit)âM = iS -àû(fëit)àM + / s ( t ) d") * 

ssli® sup 1 T \ J g(t)d(tt + l i a sup J j s / 
tter a e r / m * ; 

/"(A^nC ) //(A^nC * ) 
< e l £ r B U p Mg ^ r ^ / « ( I . ) » (C = X - C), 

ce qui est en - contradict ion avec ( 6 ) , d'où le théorème. 
Dans le cas , où X = R on a l e théorème de Kempisty [ 4 ] , 
I l résul te de théorèmes 1 , 2 et 3 l e c o r o l l a i r e suivant. 
C o r o l l a i r e 1 . Soit f »X —»-R une fonction o 

bornée. Pour que l e s fonctions f et f soient des dér i -
vées, i l faut et i l s u f f i t que la fonction f so i t approxi-
mativement continue. En p a r t i c u l i e r , s i X = R on a le théo-
rème de Wilkosz (v. [ 6 ] ) . 

T h é o r è m e 5. Soient f :X—- R et g:X — R des dé-
r ivées bornées. Pour que l e produit f . g so i t une dérivée, 
i l s u f f i t (mais i l ne faut pas*) que, quel que so i t le point 

v . [ 3 ] , le théorème 2 . 
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8 Z.Grande 

x e X, au moins une de deux fonc t ions f e t g s o i t appro-
ximativement continue à x . 

D é m o n s t r a t i o n . S o i t x e X. Supposons que 
l a f o n c t i o n f s o i t approximativement continue au point x . 
On a 

Puisque l a fonc t ion g e s t une dérivée bornée, a i n s i on a 

D'autre p a r t , d 'après l e théorème 2 , x e s t un point de 
tebesgue de l a fonc t ion f . Alors . 

( ? ) j \ j ] J S i * ) ~ g ( x ) ] âju = 

= " S(x)]qM + ^ Ï T / g ( t ) [ f ( t ) - f ( x ) ] d ^ . 
i i 

(8) 

0 . 
I 

I l en r é s u l t e que 

( 9 ) 

De ( 7 ) , ( 8 ) e t ( 9 ) i l r é s u l t e que 

J û W [ £ ( t > « ( t ) " f ( x ) g ( x ) ] d'u = 0 • 
i 
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Sur le produit de dear dérivéed 9 

Ainsi la fonction, f.g est une dérivée au point x et le 
théorème 5 est démontré. 

Des théorèmes 4 et 5 il résulte le corollaire suivant» 
C o r o l l a i r e 2. Soient fiX—»-R et g:X—*-R 

des dérivées bornées. Pour que le produit f.g soit une 
dérivée il suffit que, quel que soit le point x e X, au 
moins une de deux fonctions f et g soit approximative-
ment semi-continue supérieurement a x. 

Du théorème 5 il résulte encore deux corollaires sui-
vants. 

C o r o l l a i r e 3« Le produit d'une dérivée bor-
née et d'une fonction r-continue est une dérivée. 

C o r o l l a i r e Le produit d'une dérivée 
bornée et d'une fonction bornée approximativement continue 
est une dérivée. 

Pour la démonstration du corollaire 4 il faut remarquer 
que chaque fonction bornée approximativement continue ftX—"-R 
est une dérivée (v. [1], p.37 et 26). 

T h é o r è m e 6. Soit f:X—*~R une fonction bornée. 
Pour que le produit de la fonction f avec une fonction 
dérivée bornée soit une dérivée, il faut et il suffit que la 
fonction f soit approximativement continue. 

D é m o n s t r a t i o n . La suffisance de cette con-
dition résulte du théorème 5» Nous démontrerons sa nécessité. 
De l'égalité f • 1 = f il résulte que la fonction f est 
une dérivée. La fonction f = f • f est aussi une déri-
vée. Alors, d'après le théorème 3i la fonction f est 
approximativement continue. 

T h é o r è m e 7« Soient f»X—"-R une dérivée bornée 
et g:X—-R une dérivée intégrable. Pour que le produit f.g 
soit une dérivée il suffit (mais il ne faut pas*) que chaque 
point x e X soit un point de Lebesgue de la fonction g. 

D é m o n s t r a t i o n . Soit x e X un point de Le-
besgue de la fonction g. Alors 

*v. [3] » le théorème 5« 
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10 Z.Grande 

Ai?* i f e y / l « ^ ~ 0. 

Evidemment 

= 0 . 

(10) l ia | ¿ f e / f C * ) [ g < t > - g ( x > ] d , 

Puisque la fonction f est une dérivée bornée, alors on a 

(11) l in / [ f i t ) - f ( x ) ] à/i = 0 . 

De (10), (11) et de l 'égal i té 

- j f e y / [ f ( t ) g ( t ) - f ( x ) g ( x ) ] d// = 
I 

= f { f } / [ f ( t ) " • i f e / * C t ) [ g ( t ) - g (x ) ] d,« 

i l résulte que 

i ï , ¿T ï r/ [ f ( t ; ) 6 ( t ) ~ f ( x ) -

ce qui termine la démonstration du théorème 7» 
Supposons maintenant que X a Rm et M est la mesure 

de Lebesgue. Soit 9 la famille de toutes les boules de 
l'espace H® et la convergence «=»• est définie par la con-
dition K (x trQ ) — x,(5(K (x, r a ) » {téR®, <?(t,x) < r a ) , 
où 9 désigne la distance euclidienne dans l'espace Rm), 
lorsque la suite de nombres ir_ } est convergente vers 0. 

1 a J Qs1 
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S o i t une f o n c t i o n f :R m R. Un point x Rm e s t d i t 

point de L i p s c h i t z de l a f o n c t i o n f l o r s q u ' i l e x i s t e un 

nombre p o s i t i f r Q e t un nombre p o s i t i f a t e l s que 

| f ( t ) - f ( x ) | « s a . 9 m ( t , x ) pour tout point t t K ( x , r Q ) . 

T h é o r è m e 8. Soient f : R m — - R et g»Rm — » R 

des dér ivées i n t é g r a b l e s . Pour que l e produit f»g s o i t une 

dérivée i l s u f f i t (mais i l ne f a u t pas*) que tout point 

x e Rm s o i t un point de L i p s c h i t z de l a f o n c t i o n f . 

D é m o n s t r a t i o n . Admettons que x 6 Rm e s t 

un point de L i p s c h i t z de l a f o n c t i o n f . Alors i l e x i s t e un 

nombre p o s i t i f a et un nombre p o s i t i f r Q t e l s que 

| f ( t ) - f ( x ) | < a . 9 m ( x , t ) pour t 6 K ( x , r ) . Puisque l a 

f o n c t i o n g e s t une d é r i v é e , a l o r s 

(12) S M(*lx,r)) J Cg(t) ~ S(X)] = 

D'autre p a r t , s i r c r Q , a l o r s 

U t i x , r » / « < t ) [ f ( t ) " 
K(x,r) 

^ x f c y y / |ça<x,t) g(t)|d^< 
KM 

«M 

v . [6] , l e théorème 5 
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12 Z.Grande 

Puisque l'intégrale de Lebesgue est continue, alors 

£ 3 ^(I(i,r)) / «^)[f(t) - f(x)]d//= 0 . 
Kfx.r) 

De (7), (12) et (13) on a 

£ 3 MI!x,d) / [ f ( t ) s ( t ) " f ( x ) e<x)]d" = 0 • 
K(x,r) 

ce qui achève la démonstration. 
Il résulte des théorèmes 7 et 8 le théorème suivant. 
T h é o r è m e 9« Soient f:R m—-R une dérivée 

bornée et g:Rm—»-R une dérivée intégrable. Pour que le 
produit f.g soit une dérivée, il suffit (mais il ne faut 
pas*) que tout point x € Rm soit un point de Lipschitz de la 
fonction f ou bien de la fonction g. 
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