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ON THE SCHWARZIAN FOR THE FUNCTIONS
OF SHAH-TAO-SHING

In this article we consider the class KD of functions of
.Shah~Tao-shing. This class consists of functions f that are
holomorphic and single-valued in a simply - connected domain
D, O € D, normed by the condition £(0) = O and satisfying the
condition

f(zq) f(z2) # -1 for iz,, z,€D.

Necessary conditions are established in order that a function
belong to Ky, similar to those given by Singh [1] for the
class of bounded single-valued functions. In particular, the
case D = K(C,1) is considered.

de Let B be a s1mp1y—connected domain having the property

that if w ¢ B, then --—-é B and let O € B. The boundary b of
w
B is an analytic curve,

b: w=w(t), xa<t<s B8,

which is positively oriented with respect to its interior.
The curve
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O.Bere niewicz-Rajca

Brws W) =~ —, ast< B
w(t)

has no points in common with B, The curve b is also posi-

tively oriented with respect to its interior, because the
curves b and b have the same indices with respect to the
point w = O. In fact,

1 dw 1
ing, O =mfw—-=ﬁAargw=1 ,

It is easy to see that if points 51, §2, "";n belong
to B, then the points 1

—=— 43 ==, sses~=— lie outside
;’1 §2 n
the curve D. Indeed, if Sk € B, then

we now consider the function

1) plw) = Re;[cxvigai‘%!l)- ],
- = }v

where g(w,?) is the Green function for the domain 3 with a
pole at 3, J €3, and ay

are arbitrary complex numbers.
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Schwarzian for the functions of Shah-Tao-shing 3

The function p(w) is harmonic in B except for the points
7y and it vanishes on the boundary b. The singular part of

p(w) hes the form
n
1 Xy
S,(w) = 5 Re z — 1.
1 2 -
[?-1W}v}

If we put

I, _
(@3 s(w) = - 4 Re{ Z(w?}, - %w_)],
v

v =1

then the function p(w) + S(w) is harmonic in B and p(w) = O
for w e be Let us observe that

(3) S(~ ) = S(w).

||

Next let V(w) denote a meromorphic function such that

(&) Re {V(w)} - s(w).

It is easy to verify that

(5) V(w) = V(- D).
w

Let B* be the region lying between the curves b and b.
From Green's theorem it follows that
f V(w) av(w) } =

(6) os/f [v' ()2 aw = Re{%
8* -0+8
= Re{ 1(2 f Re{V(w)] dRe{V(w)]-l- Zif Re{V(w)}dI {V(w)]-
i m

-b+b -b+F
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- f V(w)dV(w))} = ZfRe{V(W)}dIm{V(w)] +

-b+b -5

+/Re {V(W)}dIm{V(W)} .
b

Putting

3, =fRe{V(W)} a m{v(w)}.

-b

I, =jRe{V(w)}d Im{v(w)} ’
)
and taking into account (4), (5) and (6) we obtain

3, =jS(w)dIm {V(w)} = —f 5(- %) dIm{V(- %)]:

-b -b

=?[S(w)dIm {V(wj} =J5 .

Thus, the inequality (6) can be replaced by the following one

(7) fRe{V(w')}dm{V(w)} >0.

Iet U(w) denote a function meromorphic within B for which

re { U(w)} = p(w) .

The function U(w) + V(w) is holomorphic in B, Hence, by
Grezsn’s theorem, it follows that

OS/f’U’(w)H" (w)|2 dw = Re{ }_—f{U(wHV(w)} d[U(w)+V(w)” =
8
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= 2fRe {U(w)+V(w)}dIm{U(w)+V(w)} =
b

= 2/ Re{V(w)}dlm{U(w)} + EfRe{V(w)}dIm{V(w)} .
b 'Y

From above and from (7) it follows that

jRe{V(w)} dIm{U(w)}BfRe{V(w)}dIm{V(w)} =0,
-5

b

hence

(8) fRe{V(w)}dIm {U(w)} =0,
b

Since on the curve b we have p(w) = O, it follows that

(9) Re{V(w)}dIm{U(w)} =fRe{V(w)+U(w)}~dIm{U(w)}.
b b

Now observe that

j{U(w)+V(w)}dU(w) =
b

[

f[Re{U(w)+V(w)}+ iIm{U(w)+V(W)}J‘ d[Re{U(w)} +iIm{U(w)H =
5
=z/‘Re{U(w)+V(w)}dRe{U(w)} + 1 z/im{U(wHV(w}}dRe{U(w)] +
+ i/Re{U(w)HI(w)} dIm{U(w)} - fIm[U(w)+‘-I(x-v)}dIm{U(w)} .
b b
Tzking into account that Re{U(w)} = p(w) = U for web, we
obtain
f{U(w)+V(w)}d{U(W)} =
b

= if Re{U(w)«n-V(w)}dIm{U(w)} —fIm{UL'\.-J}+’\J(vv')}dIm{L’(w)}
b b
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from which it follows that

(100 reldf {U(w)+V(w)}dU(w)]= S refvmvim}amafvan).
b

Since the function V(w) + U(w) is holomorphic in B, we get

f{v(w)-t-U(w)] {V(w)+U(w)]
b

and consequently

(11) f{V(w)+U(w)]dU(w) = -j{v(w)-l-U(W)} av(w) .

In view of (8), (9), (10) and (11), we obtain

0 < Re [ %J{V(w)ﬂ(b}dﬂ(wﬂ = - Re[%!{V(wHU(W)]dV(W)] .

With the help of integration by parts, we finally obtain
(12) Re{ %f[u (W)+V’ (w)]V(w)dw};O.
b

Next, observe that

aq(w 3) — 3q(w,3) ]
(13} uw) = 2Z[°‘” LTS l PRPE N

where q(w,3) is a meromorphic function of w such that

Re {q(w,?)_} = g(w,3). It is easy to verify that

ag(wW,?) =2 3g(w&?). w3

Taking into account that for w ¢ ),

U’ (w) =-g%
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Schwarzian for the functions of Shah-Tao-shing

and in view of (13) we .get

3 2 2
» ,Zr“” R Ly, *

On the other hand, from (2) and (4) we obtain

n]'

n —
Vi(w) = - 1 - - .’.
(w Fl Z, [ (W= ?’)Z (1+awfz}

vat

which together with (14) implies

2 2
(15) U’ (W)-FV’ (w) = E [dg <a (W, ) + —_1 > +
=T Volpes  2(w-3)

+ & (azs(w!’)

R 1
2% ' 2(1+5vW) )J ]

Following Bergman [2], we denote

(16) k(w,3) = - & %}’_?

2
(16') X(w,3) = 2 L&) , 1 _

x(w-3;

Inserting (16) and (16’') into (15) we obtain

n

U (w)+V (w) = Z{[ 5 X(w, })'I-OI,(—WZ‘ '2 K(w, ;v))]
Vs [4

and consequently
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8 O.Beresniewlicz-Rajca

;].—f [U' (w)+V' (w)]V(w)dw = Z oy Xy [K(?v ] ?A‘) =

b v, u=1
1 -
TR ] g,,—.', @ %X (3 2) -

From the equality above and from (12) we obtain

o o | Felin s i)
» ﬂ

vu=1

n
- Z“v &,ax(},,),,)} 20 .
v, u=1
Hence, we have proved the following theorem.
Theorem 1, If B is a simply-connected region with
analytic boundary such that w ¢ B implies - —} ¢ B and if

0 € B, then for any points J,, }2""’}11 12 B there bolds
the inequality (17); o4 3%59eee s, are arbitrary complex num-
bers and the functions K(w,3) and X (w,3) are defined by (16)
and (16'), g(w,3) being the Green function for the domain B.

2. Let £(z) be a function which maps a simply~connected
domain D conformally onto the domain B described in section 1.
Then we have the well known relations between the functions

KD and XD for the domain D and the functions KB and XB
for the domain B

(18) Kp(zy3) = Eg(w,)f" (2) £'(3),

(18") XD(Z’}) =XB(W1‘9)fl(z) £’ (?) - u(z’}) ’
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where

= £(3), w= £(z), u(z,3)=f L (23 __ 1 ]
w 3), W z), u(z,} T\E(2)-2(3))2 (z_})z

Let %5 5 = 1,25¢04,0, be arbitrary points of D and ;=
= £(py) their images under the map f. Then inequality (17)
takes the form

1 re | & sk, g - (202 (20) ]_
(19) e { g"“v"‘ﬂ[ Py 2 F[’I-Pf(?p)f(’?#]z

= Z. oy Xy [7‘('2,7»7,‘)”(9,.9#)” >0 .

9"(:1

-f
Now, let us substitute ay= aye ° , where

— £' (9 )" (ga) }
8= [K( ) -
arg Zayup Dvs T [“’f(?v)f(?#?r

e
We obtain
Re l Z‘;'a,, &, [K(p,.'z,.) - [iif;:g‘;]z]]=
et | 5 e - )
= ,L‘; & o, [m,.v,.) - ,,[f;if;fz——%;] ?]I
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Observe that

Re { i_ oy &y [x(?v' pu) + u(p,, Z“)]}"
v, =1

n

= ‘/:. a,&,‘[xug,,rgﬁ) + u(y,.e,.)] .

»p=t
Now, inequality (19) can be written in the form

(19) ; “ﬂ[ ployr2a) + u(?vl'Qﬂ]
u=
n )T
I’ o, & [ ( 'y ) - ]

Hence, we have proved the following theorem.

Theorem 2, If a function £(z) conformally maps a
simpiy‘ - connected domaln D onto the domain B described in
section 1 and p,, vV = 1,2,e¢50, are arbitrary points in D
and 3,= £(p,), then the inequality (19)/ holds, where ou.
are arbitrary complex numbers and the functions ‘XD(z,}),
K (z,3) are defined by (18) and (18').

Let us put D = K(O,r), O < r < 1. Then by [2], we have

Kp(z’s) = ) xD(za}) = O,

1
r(r°~32)

In this case inequality (19°’) tekes the form

2" ' _ | £(9y)2 04
20 =
( ) R, v=1°‘9 “ﬂ{ [f(?v )"-f(?,«)]? |<
£ ()2 (9,)
<Z°"°“‘[( - )2 [ee(p) f(, ) 2]'
Py r® u 2 u P ]
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Schwarzian for the functions of Shah-Tao-shing 11

3. Let K denote the class of functions of the form
£(z) = 2 >
z) = b1z + bzz + eeey b1 o,
single-valued in the disc K(0,1) and satisfying the condition
£(z,) f(za) # -1 for z4y 2, € K(0, 1) .

Let B, = £(D). It is easy to see that if w e ﬁr’ then

-l B,. Hence, B satisfies the same requirements as
w

r
the domain B described in section 1. Consequently, every
function £ e K satisfies inequality (20). Taking limit in
(20) with r-—1, we obtain the following theorem.

Theorem 3, If a function £ belongs to the class
K, then the following inequality holds

n

_ | 2'(29)2 (34)
9 O 2
[f( 2 )-£( 714)]

(21) x

V=t

4&«,@[ 1 PTGy
e (1-2.30°  [1+20020 )

In particular, if in (21) we put oy =a, = 1 and take limit
with )1—-;’-2 s then we obtain

(22) Hﬁ.—{g} - 3 [%%}]2] | < m __1g7 ()

[+12(2)18]2

w “ 2
The expression {f,z} = 2?7%5% —-g [%r%%%] is known

as the Schwarzian of the function £, Hence, inequality (22)
glves an estimation of the Schwarzilan in the class K, We
shall show in the sequel that this estimation is exact.

- 317 -



12 O.Beresniewicz~Rajca

4, We now take up the problem of finding an extremal
function for the inequality (22). To this alm observe that
in order that a homography h(z) satisfy the condition

h(z1) h(ze) £ -1 for Zqy Zy € K(0,1)

it is sufficient that

h(z) h(zj—)= -1 for z e K (0,1) .

Z

Such a homography is the function

h(z) =22_, |a] <1.
1+az

Let us form the compound function

z + é _z(1 - lal )?
(23) f(z) = h(1 + Ez) - 2az + 1 + Ial2

The function (23) nullifies the left-hand side of (22) for
every z ¢ K(0,1). We are going to find for which z the right~
~hand side of (22) is O, when we substitute (23). Since

If'(Z)l = - [al42 ) v
141£(2) @ 4|a|2|z|2+(1¥|aI2)2+4(1+Ial JRe(3z)+|z|“(1+{al®)

the right-hand side of (22) is O provided that

1 - lal4

(24)
4la|2|z|2+(1+|a|2)2+4(1+|a|2)Re(§z)+|zl2(1-lal

732

1
Y-
1 -]z}
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Schwarzian for the functions of Shah-Tao-shing 13

Let us put a = -z, in (23), where 2z € K(0,1). Then the
relation (24) holds for 'z = zo. This means that fcr any
z, € n(0,1) the function (23) with a = -z, is extremal for
inequality (22). In particular, if 2z, is real, the function
(23) maps the circle K(0,1) onto the circle

62 22+1
o 0
- z2~1 - 1 z2 )
o %o
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