

P. K. Das, S. K. Bose

IDEALS AND MULTIPLIERS
OF A CLASS OF INTEGRAL FUNCTIONS

The object of this paper is to study the structure of maximal ideals and principal ideals in the space of a class of integral functions $R = \{f \mid f(z) = \sum_{n=0}^{\infty} a_n z^n, n!|a_n| < k, |z| < \infty\}$ as defined in [1] and studied in an earlier paper. Further we have studied the multiplier problem for this class.

We shall give now a characterization of maximal ideal in the space R . For this aim we introduce the following definition.

Definition. Let $A(f) = [z \in C \mid f(z) = 0, f \in R]$ and let $A(I) = [A(f) \mid f \in I \subset R]$. An ideal I of R is called fixed if $\bigcap_{f \in I} A(f)$ is non-empty.

Theorem 1. Every maximal fixed ideal of R is of the form

$$I(\alpha) = [f \in R \mid f(\alpha) = 0] \text{ for some } \alpha \in C.$$

Proof. Let for any fixed $\alpha \in C$ $I(\alpha) = [f \in R \mid f(\alpha) = 0]$. It is clear that $I(\alpha)$ is a fixed ideal of R . Now the mapping $f \rightarrow f(\alpha)$ is a homomorphism of R into C , whose kernel is $I(\alpha)$. As the kernel of a homomorphism is a maximal set, $I(\alpha)$ is a maximal fixed ideal of R . On the other hand, if I is a fixed ideal and if $\bigcap_{f \in I} A(f)$ contains more than

one point, say α_1 and α_2 , then I is properly contained in $I(\alpha_1)$ or $I(\alpha_2)$, violating the maximality of I .

Theorem 2. If $f_1, f_2, \dots, f_n \in R$ are such that $\hat{f}_k(\tau) \neq 0$ ($k=1, 2, \dots, n$) for $\tau \in \Delta(R)$, where \hat{f}_k is the Gelfand transform of f_k and $\Delta(R)$ is the space of maximal ideals in R , then the ideal generated by f_1, f_2, \dots, f_n is a principal ideal.

We first prove the following lemma from which the proof of our theorem will follow.

Lemma. Let A be a commutative Banach algebra with identity e . If $x_1, x_2, \dots, x_n \in A$, then either exist some $\tau \in \Delta(A)$ such that $\hat{x}_k(\tau) = 0$ ($k=1, 2, \dots, n$) or there exist $y_1, y_2, \dots, y_n \in A$ such that $\sum_{k=1}^n x_k y_k = e$.

Proof. The elements of A are either singular or regular. If x_1, x_2, \dots, x_n are all singular, then $0 \in \delta(x_k)$, ($k=1, 2, \dots, n$). We also know that if A has an identity, then for $\alpha \in A$ $\delta(\alpha) = \mathcal{R}(\hat{\alpha})$, where $\mathcal{R}(\hat{\alpha})$ is the range of $\hat{\alpha}$. Hence there exists some $\tau \in \Delta(A)$ such that $\hat{x}_k(\tau) = 0$ ($k=1, 2, \dots, n$).

On the other hand, if x_k ($k=1, 2, \dots, n$) are all regular, then for every x_k ($k=1, 2, \dots, n$) we have one y'_k such that $x_k y'_k = e$. Hence it follows that $\sum_{k=1}^n x_k y'_k = e$, where $y_1, y_2, \dots, y_n \in A$.

Proof of Theorem 2. If the condition of Theorem 2 holds, then by the lemma we have elements $g_1, g_2, \dots, g_n \in R$ such that $f_1(z) \circ g_1(z) + f_2(z) \circ g_2(z) + \dots + f_n(z) \circ g_n(z) = e^z$. This shows that the ideal generated by f_1, f_2, \dots, f_n is nothing but the principal ideal generated by the identity element e^z .

Corollary. Any finite set f_1, f_2, \dots, f_n for which $\hat{f}_k(\tau) \neq 0$ ($k=1, 2, \dots, n$), $\tau \in \Delta(R)$, generates the ring R .

Proof. As the ideal R is generated by the identity element e^z and the ideal generated by f_1, f_2, \dots, f_n is the

principal ideal generated by the identity ideal (e^z) , so $f_1, f_2, \dots, f_n \in R$ ($k=1, 2, \dots, n$) for which $\hat{f}_k(\tau) \neq 0$, $\tau \in A(R)$, generate the ring R . We consider now the set $W = \{f \in R \mid f(z) = 0 \text{ at a finite set of given points}\}$. It is easy to see that W is an ideal in R . We shall prove that W is a closed set in R .

It is enough to prove that the set of functions which vanish at $z = z_0$ is closed. If $f_p \rightarrow f$, where $f_p \in W$, ($p=1, 2, \dots, n$) is to be shown that f also vanish at $z = z_0$. Now given $\epsilon > 0$ we can find p_0 such that $\|f_p - f\| < \epsilon$ for $p > p_0$ i.e.

$$\sup_n n! |a_{pn} - a_n| < \epsilon \Rightarrow |a_{pn} - a_n| < \epsilon' \text{ for } p > p_0.$$

This, together with the result [2] that the convergence in norm in R is equivalent to the uniform convergence in any finite circle of the complex plane, shows that $f(z) = \sum_{n=0}^{\infty} a_n z^n \in W$. Hence W is closed.

Proposition. W is a set of first category.

Proof. We shall show that W is non-dense in R . If this is not true, then W contains a ball B whose centre is f_0 . If $f \in R$ is such that $f(z_0) \neq 0$, then $f_0 + \lambda f$ does not vanish at $z = z_0$ for $\lambda \neq 0$. But since R is a normed linear space, we have $\|\lambda f\| \rightarrow 0$ as $|\lambda| \rightarrow 0$. Hence for sufficiently small λ , $f_0 + \lambda f \in W$ which is a contradiction. Hence W is non-dense in R .

Now we shall consider the multipliers of H^p into R , where H^p is the Hardy class of functions [4] with p th mean bounded.

Theorem 3. A necessary and sufficient condition for a sequence $\{\lambda_n\}$ to be multiplier of H^p into R is that

$$\lambda_n = O\left(\frac{n^{1-1/p}}{n!}\right) \text{ where } 0 < p \leq 1.$$

P r o o f :

1° If $f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^p$ and the condition $\lambda_n = O\left(\frac{n^{1-1/p}}{n!}\right)$

holds, then $|a_n| \leq C n^{1/p-1} \|f\|_p$ and $|\lambda_n| < K \frac{n^{1-1/p}}{n!}$. This

shows that $n! |\lambda_n a_n| < K \Rightarrow \sum_{n=0}^{\infty} a_n \lambda_n z^n \in R$. Hence the condition is sufficient.

2° If $\{\lambda_n\}$ is a multiplier, then by the closed graph theorem, the operator \wedge fixed by $\{\lambda_n\}$ is a bounded operator from H^p into R i.e. $\sup_n n! |\lambda_n a_n| \leq C \|f\|_p$, $f \in H^p$.

If we take $f(z) = g(\gamma z)$, where $\gamma < 1$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ for $b_n \sim K n^{1/p}$, then we have

$$n! |\lambda_n| n^{1/p} \cdot \gamma^n \leq C (1-\gamma)^{-1}.$$

Putting $\gamma = 1-1/n$ we get

$$|\lambda_n| = O\left(\frac{n^{1-1/p}}{n!}\right),$$

which proves necessity of the condition.

BIBLIOGRAPHY

- [1] M.K. Sen: On a class of integral functions, Bull, Cal. Math. Soc. 61 (1969) 67-74.
- [2] P.K. Das: Space of a class of integral functions. (in print).
- [3] R. Larsen: Banach algebra. New York 1973.
- [4] P.L. Duren: Theory of H^p spaces. New York 1970.

DEPARTMENT OF MATHEMATICS & ASTRONOMY, LUCKNOW UNIVERSITY,
LUCKNOW (INDIA).

Received July 2nd, 1975.