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ELEMENTS OF FINITE VARIATION 

_ st J\ _ 
Suppose we a r e g iven two l i n e a r l a t t i c e s L L ' (L1 c L ) 

and two l i n e a r o p e r a t i o n s : a d e r i v a t i v e S: L -*-L (on to ) 
and an i n t e g r a l T: L° — L ^ such t h a t ST = id^o (see papers 
[ 2 ] , [ 3 ] ) . This pape r d e a l s w i t h t h e r e l a t i o n s between a 
p a r t i a l - o r d e r i n L° and a p a r t i a l - o r d e r i n t h e s e t I n o r (see 
D e f i n i t i o n 2 . 1 ) of e l ements x , such t h a t Sx > 0 . There a r e 
c o n s i d e r e d (0 ) -convergence and r e g u l a r ( r ) - c o n v e r g e n c e of x^ 
i n Var ( see S e c t i o n 4 ) , which a r e de te rmined by such conve r -
gences of Sx n-

1 . I n t r o d u c t i o n 
Le t X be a l i n e a r s p a c e . 
D e f i n i t i o n 1 . 1 . A s e t WcX i s s a i d t o be a 

wedge, when i t s e lements s a t i s f y t h e f o l l o w i n g c o n d i t i o n s 
(1 ) i f x . y e W , t h e n x + y e W, 

(2) i f x e W, A > 0 , t h e n A x e W . 

A wedge W w i l l be c a l l e d a cone, when i t s e lements s a t i s f y 
moreover t h e c o n d i t i o n 

(3) i f x e W (x ^ 0 ) , t hen - x £ W. 

Le t Kc X be a cone . We d e f i n e i n t h e l i n e a r space X a r e -
l a t i o n of p a r t i a l - o r d e r < by 

(4) x ^ y ^ y - x e K . 

A cone K c X w i l l be c a l l e d r e p r o d u c a l , i f eve iy e lement 
x e X can be w r i t t e n as t h e d i f f e r e n c e of e lements of t h e 
oone K. 
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D e f i n i t i o n 1.2. The linear partially ordered 
space X, such that every two-element subset of the space 
has a supremum and an infimum, will be called linear lattice. 

Let X be a linear lattice. For every element xeX we 
introduce 

(5) x+ = sup(x,0), x_ = sup(-x,0), x = sup(x,-x). 

D e f i n i t i o n 1.3. An operation A : .X —- X will 
be called positive, if AKcK, where KcX is a cone. 

Let L° be a linear lattice in which the relation of 
partial order is induced by a cone KcL° . Suppose we are 

. A. 

given a linear lattice L and a sublattice L and two 
linear operations S: l } — L° (onto L1 c L°) and T: L° — L1 

(into) such that Stf = f for f € L°. The operation S wil l 
be called a derivative, the operation T will be called an 
integral. 

The elements c € Ker S such that Sc = 0 will be called 
constant. The operation s from L into the set of constant 
(sx = x-TSx, xeL^ ) is linear (see [ 2 ] , [3 ] ) . A partial-order 
in l' ' is induced by the partial-order1 in L°. 

2. The properties of the operations m and fi 
D e f i n i t i o n 2.1. Let Incr denote the set of 

values of the operation m 

(6) m(x) = x + T(Sx)_ for x eL 1 , 

and let Deer denote the set of values of the operation /± 

(7) ^ (x ) = x - T(Sx)+ for x eL 1 . 

The elements of the set Incr (Deer) will be called increasing 
(decreasing) elements. 

D e f i n i t i o n 2.2 

(8) Ke^ S = jx 6 L1 j Sx > o j , 

(9) Ke^ S = jx e L1 ? Sx < oj . 
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Elements of f i n i t e va r i a t ion 5 

T h e o r e m 2.1., 

(10) Incr 

(11) Deer 

P r o o f . 

1 ° Let m̂  = m(x) = x + T(Sx)_. We get 

Sm(x) = Sx + ST(Sx)_ = (Sx) + - (Sx)_ + (Sx)_ 

that i s Sm(x) = ( Sx ) + , hut (Sx ) + 0 , hence m̂  e Ker^ S 
or Incr c Ker. S . 
2 ° Let n^ g K e ^ S . We have Sn^ > 0, hence (Sm1)_ = 0, 
but m(m^ ) = m̂ j + T(Sm^ ) = m^, hence K e ^ S c Incr. 

The proof of (11) i s analogous. 
The operations m and fi have cer ta in dual proper t ie s so 

that the proofs of the theorems f o r operations m and jul are 
s i m i l a r . 

T h e o r e m 2 . 2 . I f the in tegra l T i s a p o s i t i v e 
operation, then the operation m i s convex and the operation 
fi i s concave. 

P r o o f . We wi l l show that f o r a^ + cx2 = 1 , a ^ , oc2 > 0 
we have 

(12 ) mioc^x^ + OC2X2 ̂  < a i m ( x i ) + QC2m^x2 

Since (x+y)_ < x_ + y_ (see [7] )» we have 

+ a 2 x 2 ) = ot^x^ + « 2x: 2 + T^SCa^x^ + a 2 x 2 ) J _ < 

«Coc^x^ + a2X2 + T(oc^Sx^ )_ + T (a 2 Sx 2 )_ = 

= oĈ x̂  + a 2 x 2 +0£/|T(Sx / ])_ + oi 2 T(Sx 2 )_ , 

hence we get (12) . From d e f i n i t i o n (7) we have 

/xfa^x^ + ct 2 x 2 ) > a^tutey]) + a 2 / J (x : 2 ) 

f o r oĉ  + a 2 = 1, oc^t a 2 > 0 . 
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T h e o r e m 2.3. The operations m and a have for 1 ' xe L the following properties 

(13) m(m(x)) = m(x), 
(14) M M * ) ) = 

(15) m'(/i(x)) = /i(m(x)) = sx . 
If the integral T is positive, then 

(16) m(x+y) < m ( x ) + m(y) , 

(17) ^(x+y)>/i(x) +/i(y). 

If a > 0, then 
(18) m(ccx) = ccm(x) , 

(19) /i(ccx) = a^Cx) . 

If a <0, then 

(20) m(cxx) = aC/i(x) , 

(21) fifax) = am(x) . 

Moreover, we have 

(22) m(0) = 0, 

(23) /¿(O) = 0, 
(24) m(-x) = -/i(x) , 
(25) /i(-x) = -m(x), 
(26) m(x) + m(-x) = T|Sx| , 
(27) /¿(x) + ^(-x) = -T|Sx|. 

The proofs can easily be obtained from definitions (6) and 
(7) and from the properties of elements of the linear lattice 
L 1. 1 

T h e o r e m 2.4. Any element x e L can be represent-
ed in the form 
(28) x = -x Q + m(x) - m(-x) , 

where xQe Ker S and m(x), m(-x) e Incr. 
- 2 0 6 -
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P r o o f . I f x e L 1 , then Sx e L° . We have 

Sx = (Sx)+ - (Sx)_ and TSx = T(Sx)+ - T(Sx)_. 

From d e f i n i t i o n s (6) and (7) we have 

(29) x = - x 0 + ¿t(x) + m(x) . 

From (24) we ob ta in (28) . 

3 . The p r o p e r t i e s of t h e I n c r . Quas i -o rder in L 
I t i s easy t o prove the f o l l o w i n g theorems. 
T h e o r e m 3 . 1 . 

(30) I f x e I n o r , then m(x) = x . 

T h e o r e m 3 . 2 . A s e t Ino r i s a wedge. 
D e f i n i t i o n 3 . 1 . Let x ^ . X g t L . We d e f i n e in 

i / ' a r e l a t i o n «j i n t n e f o l l o w i n g manner 

(31) x ĵ <! x 2 X g ^ £ I n c r i . e . Sfcg-x^ ) > 0 

^ ^ x 2 = x1+m1» ^ 6 1 1 1 0 1 • 

T h e o r e m 3 . 3 . The r e l a t i o n <J d e f i n e d by formula 
(31) i s r e f l e x i v e and t r a n s i t i v e i . e . i s a q u a s i - o r d e r . 

P r o o f . 
1° x 1 < J x 1 « ^ S ( x 1 - x 1 ) = 0, 0 £ I n c r . 

2° I f x^<i Xg and x 2 < { x j , then S ixg -x^ ) > 0 and S ( x j - x 2 ) > 0 . 

But 

S(x 2 -x^ + x 2 - x 2 ) = S ( x 2 - x ^ ) + S ( x ^ - x 2 ) > 0, 

hence S(x^-x^) > 0 i . e . x^ <{ x^ . 
1 The space L i s quas i -o rde red by the s e t I n o r . 

4 . The p r o p e r t i e s of t he s e t of c l a s s e s Var 

Let x , y eL . We say t h a t 

(32) x £ x = x + c , where c e KerS. 

- 207 -
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We d e f i n e 

(33) [ x ] + [y] = [x+y], 

(54) x [ x ] t [AxJ , A - s c a l a r . 

So we have 

(35) c e [o] c eKerl S . 

The s e t of c l a s s e s [ x ] , x e L , w i l l be deno ted by Var and 
i t s e l e m e n t s w i l l be c a l l e d e l emen t s of f i n i t e v a r i a t i o n . The 
s e t Var i s a l i n e a r s p a c e . 

We d e f i n e an o p e r a t i o n 

(36) S m i V a r - ^ L ° 

i n t h e f o l l o w i n g manner 

(37) S m [ x ] = Sx , x e L1 . 

L e t us i n t r o d u c e a s e t K^ i n t h e space Var d e f i n e d a s 
f o l l o w s 

(38) Km = { [ x ] : x c l n c r j . 

T h e o r e m 4 . 1 . The s e t E^ i s a cone i n t h e space Var . 
P r o o f . 
I f [ m l ] 6 Z * a a d l > 2 ] e V t h e a K ] + t m 2 ] 6 V 

b e c a u s e m^ + ^ e I a o r . S i m i l a r l y i f [ m i J e A > 0 , 
t h e n X [m^] = [Am,,] e K ^ I f [m^] e K^ (m^ ^ c ) , t h e n S m ^ O . 
I f - [m^] e K^, t h e n -Sm,, > 0 i . e . Sm^ < 0 . Hence Sm,, = 0 
i . e . m̂ j = c . 

Given a cone K^ we d e f i n e i n t h e s p a c e Var a p a r t i a l -
- o r d e r by 

m 

(39) [ x ] < | [ y ] ^ [ y ] - [ x ] £ K m . 
m 

Hence 
(40) [ x ] <J [ y ] < ^ x < { y . 

m 
- 2 0 8 -
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D e f i n i t i o n 4.1. A linear lattice with the 
partial-order < is called an archimedean lattice, if 

a > 0 and na < b for i = 1,2,... implies a = 0. 

Let L° be an archimedean lattice. 
T h e o r e m 4.2. The cone is an archimedean cone 

in Var. 

P r o o f . We would like to show that if 

(41) [ a , ] ^ and [m^ - n ^ ] e (1 = 1,2,...), 

then 

(42) [nt,] = [0]. 

From (41 ) we have Sm^ > 0 and Sn^ - nSm^ > 0. Since L° 
is an archimedean lattice we have 

Sm̂ j = 0 i.e. m^ = c i.e. [m^J = [oj. 

In Theorem 2.4 there was a decomposition 

(43) x = -x Q + m(x) + /¿(x) = -x Q + m(x) - m(-x) 

i.e. 

(44) [x] = [m(x)J - [m(-x)] , 

where [m(x)], [m(-x)J t ̂  . 

Hence we have the following theorem. 
T h e o r e m 4.3. Every element of the space Var can 

be written as the difference of elements of the K cone i.e. m 

the cone K m is reproducal. 

T h e o r e m 4.4. 

(45) [z] = sup ([x], [x]J 

iff m 

(46) Sjz] = sup (sjx], Sm[y]). 
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From the def ini t ion (37) we can write (46) as follows 

(47) Sz = sup(SxfSy ) . 

P r o o f . From def ini t ion (39) and from (40) we have 

x<Jz, y ^ z 

x<{u, y<^u 
z <{ u 

i . e . 

(48) 
Sz > Sx, Sz > Sy 

Su > Sx, S u > Sy 
Su > Sz i . e . (47) 

From (47) and from the def ini t ion of supremum in L we have 

and 

i . e . 

(49) 

Sx < Sz, Sy < Sz 

Sx < Su, Sy « Su 

S ( z - x ) 0, S (z-y ) > 0 

S(u-x) > 0, S(u-y) > 0 

x <| z, y < z 

x <i u, y <i u 

=£> Sz « Su 

•S(u-z ) > 0 

z <; u. 

From the def ini t ion of the re lat ion we obtain (45). 
T h e o r e m 4 . 5 . 

[w] = inf ( [ x ] , [ y ] ) (50) 

i f f m 

(51) Sm[w] = i n f ( s m [ x ] , S m [y ] ) . 

From the def ini t ion ( 3 7 ) of Sm we can write (51) as follows 
(52) Sw = sup(Sx,Sy ) . 

The proof i s analogous to the proof of Theorem 4 . 4 . 
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The l i n e a r space Var with supremum and infimum i s a l i n e a r 
l a t t i c e . 

For each element [ x ] e Var we def ine 

(5?) [x ] + = sup( [x] , [ o ] ) , 

(54) [x]_ = sup(-[x] , [ 0 ] ), 

(55) I W | - sup ( - [x ] , [ x ] ) 
and we c a l l them the p o s i t i v e p a r t , the negat ive p a r t and the 
module of the element [*]» r e spec t i ve ly . 

From Theorem 4 .4 . we have the fo l lowing co ro l l a ry . 
C o r o l l a r y , . 

(56) sup( [x ] , [ 0 ] ) = [ x ] + = [m(x)] f 

(57) s u p ( - [ x ] , [0 ] ) = [x]_. = [m(-x)] , 

(58) s u p ( - [ x ] , [ x ] ) = | [ x ] | = [m(x) + m(-x) ] . 

P r o o f . From Th. 4 . 4 . we have 

(59 ) Sm(x) = S (x+T(Sx)_) = (Sx)+ , 

because sup(Sx,0) = (Sx)+ i n L°. S imi lar ly we obta in (57) 
and (58). 

A l i n e a r l a t t i c e i s ca l l ed a K-space, i f every non-empty 
subset i s bounded from above and has a supremum. In the K-space 
we can introduce a convergence based on p a r t i a l - o r d e r whioh we 
o a l l (o)-convergenoe. 

<1 Q 
Let L and L be a K-space. Let x_ ( n = 1 , 2 , . . . ) be a 

1 

sequence of elements from L . I f the sequence x n i s i n -
creasing i . e . x < X

n+1» then lim x = sup x . By the 
' n a n • 

super io r l i m i t and the i n f e r i o r l i m i t of the sequence xQ we mean the elements 

(60) l im xQ = inf [ s u p i x ^ . x ^ , . . . ) l , 
n —oo -i 

(61 ) lim x = sup [inf (x ,x . , . . . ) ] . 
n — n J 

- 2 1 1 -
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We say that a sequence x^ i s (o )-convergent to an element 
x , i f 

(62) lim x = 11m x = x . 
n — 0 0 n—"-«w 

The element x wil l be ca l led a ( o ) - l i m i t and we write 
(o) - l im = x» I f the sequence x_ i s increasing, then 

lim fx 1 = I lim x 1. Let a sequence x be bounded. Then 
n—<*> L J L n — J 
in the space Var there e x i s t supremum and infimum 

(63) [sup , . . . ) ] lim sup ( [ x ^ , |^xn+1 j , . . . ) , 

(64) [ i n f ( x n , x n + v . . . ) ] i lim iirf ( [ x j , [ x ^ ] , . . . ) . 

By definit ion we have 

(65) lim k l = [ i n f sup ( x n , x n + 1 , . . . ) ] , 
n ——«3 L J 

(66) I k [x n J = -[sup inf ( x n i x n + 1 , . . . ) ] . 

We have the following general defini t ion of a (0)-convergence 
in the K-space. 

D e f i n i t i o n 4 . 2 . A sequence [ x n ] ( 0 ^ c o n -
vergent to a c l a s s [ x ] , i f 

(67) H i [ x l = lim [ x l . 
n - » ~ L J n—<» L J 

The common value of l imit superior and l imit i n f e r i o r wi l l be 
cal led ( o ) - l i m i t and we write 

(68) (o ) - l im [ x n ] = [ x ] . 

T h e o r e m 4 . 6 . 

(69) (o) - l im [ x j = [ x ] , 

- 2 1 2 -
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i f f 

(70) l i m Sx^ = l i m S x n 
fl-^OO XI—OO 

o r 

( o ) - l i m Sx^ = Sx . 

P r o o f . 

1° I f ( o ) - ! ^ ^ ] = [ x ] , t hen 

(71) J ^ t M M = W -
H—»-OO J 11—fc-Oo 

L e t 

(72) ^ I H [ x j = [ g ] and ^ ^ [ x j = [ g ] . 

Prom (46) , ( 47 ) , by p a s s i n g t o l i m i t , we o b t a i n 

(73.) S m [G ] = I H S m [ x J = [ i n f s u p i S x ^ S x ^ , . . . , ) ] , ft — « - J J 

w S m [ g ] ^ I M S m [ x J = [sup i n f ( s x n , s x n + 1 , . . . ) ] . 

The e q u a l i t i e s (73) and (74) a re e q u i v a l e n t t o t he f o l l o w i n g 
e q u a l i t i e s 

(75) SG = l i m S x n , 
n — 

(76) Sg = l i m Sx^ . 

From (72) we have 

[ G ] = [ g ] i . e . G = g + c and SG = Sg , 

hence 

l i m S x n = l i m S x n . 
n — n — 

2° I f ( o ) - l i m Sx^ = Sx o r SG = Sg i . e . S (G - g ) = 0 , then 
n—00 

G = g + 0 and [ g ] = [ g ] . 
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Prom (65) we have 

We have proved in Th. 4.2 that a oone Km in the spaoe 
Var is an arohimedean cone. 

So, by the general definition, we can introduce in this 
arohimedean latt ice the notion of a regular convergence. 

D e f i n i t i o n 4.4. The sequence ^ x j is 
(r)-convergent to an element [x ] , i f 

(77) V [ f ] > [0], A V A - [x]| e [ f ] 

m £ > 0 N n > N | L ^ J 1 m 

and we then write 

(78) (r ) - l im fx l = [ x ] . 
T h e o r e m 4.7. 

(79) (r ) - l im f x l = [ x ] , n L j 

i f f 

(80) (r ) - l im Sx^ = Sx . 
E, -•oo 

P r o o f . 

1° I f ( r ) - l im [ x j = [ x ] , then (77), 
n—-«» 

i . e . 

<! w - H H £ W * m L J m 

From the definition (39) of the relation <J we have 

m 

-£f <j x^ - x <> ef 

i . e . 

-¿Sf 4 S(x a-x) ^ eSf , 
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henoe 

| Sx^ - Sx | < £ Sf. 

2° If (r)-iim Sx n = Sx, then |Sxn - Sxl < eSt 

i.e. 

[- eSf] < [Sx^ - Sx] C [iSf], 

henoe 

(81) [- £ S f] + [ S al] s [ S x n " S x ] 

and 

(82) [Sxn - Sx] » [eSf] - [SmJ. 

From (81) we obtain 

V M ^ W - M J - M 

or - xj a £-£f + atjJ, where ntpiiig ^ 1 0 0 1 i»®« 

and 

Similarly from (82) we obtain 

henoe 

h - « ] i M • 

I M - M l i « [ * ] m 

This ends the proof of Theorem 4.7. 
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