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ELEMENTS OF FINITE VARIATION

Suppose we are given two linear lattices L°, L1 (L1 c 1L9)
and two linear operations: a derivative S: L’l—*-Lo {onto)
and an integral T: L° —L' such that ST = idjo (see papers
[2], [3]). This paper deals with the relations between a
partial-order in L° and a partial-order in the set Incr (see
Definition 2.1) of elements x, such that Sx > O. There are
considered (o)-convergence and regular (r)-convergénce of x,
in Var (see Seotion 4), which are determined by such conver-
gences of an.

1. Introduction

Let X be a linear space.

Definition 1.1. A set WcX is said to be a
wedge, when its elements satisfy the following conditions

1) if x,ye W, then X + yeW,

(2) if xeW, A >0, then Ax e W,

A wedge W will be called a cone, when its elements satisfy
moreover the condition

(3) if xeW (x # 0), then ~-x¢ W.

Let KcX be a cone. We define in the linear space X a re-
lation of partial-order < by

(4) xy<y-xck.

A cone KcX will be called reproducal, if every element
xe¢X ocan be written as the difference of elements of the
cone K.
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Definition 1.2. The linear partially ordered
space X, such that every two-element subset of the space
has a supremum and an infimum, will be called linear lattice.

Let X be a linear lattice. For every element xe¢X we
introduce

(5) x, = sup(x,0), x_ = sup(-x,0), x= sup(x,~x).

Definition 1.5. An operation A: X — X will
be called positive, if AKcK, where KcX is a cone.

Let L° be a linear lattice in which the relation of
partial order is induced by a cone K¢ L°, Suppose we are
given a linear lattice L° and a sublattice L' and two
linear operations S 11— 1° (onto e 1°) and T: 1° — 1!
(into) such that Stf = f for f¢ 1°, The operation S will
be called a derivative, the operation T will be called an
integral.

The elements ¢ ¢ Ker S such that Sc¢ = 0 will be called
c¢onstant. The operation s from L1 into the set of constant
(sx = x-TSx, x€eL') is linear (see (2], [3]). A partial-order
in L'1 is induced by the partial-order'in L°.

2. The properties of the operations m snd u
Definition 2.1. Let Incr denote the set of
values of the operation m

(6) m(x) = x + T(Sx)_ for xeL,

and let Decr denote the set of values of the operation
1

(7) M) = x - 1‘(Sx)l+ for xeL'.

The elements of the set Incr (Decr) will be called increasing
(decreasing) elements.
Definition 2.2

8) Ker)S:{xeL1 : Sx > O],
(9) Ker, S = {x e IV 1 Sx < 0].
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Theoremn 2.7

(10) Incr = Ker, S
11) Decr = Ker  S.

Proof.

1° Let m = n(x) = x + T(Sx)_. We get

Sm(x) = Sx + ST(Sx)_ = (Sx)+ - (sx)_ + (sx)_

that is Sm(x) = (Sx),, but (Sx), >0, hence m,¢Ker, S
or Incr c Ker, S. .
2° Let m, ¢ Ker, S. We have Sm,> O, hence (Sm,;)_=0,
but m(my) = m, + T(Smy )= my, hence Ker> S c Incr.

The proof of (11) is analogous.

The operations m and p havé certain dual properties so
that the proofs of the theorems for operations m and u are

similar.
Theorem 2.2. If the integral T 1is a positive

operation, then the operation m is convex and the operation

4 1is concave. _
Proof. We will show that for ag+dy = 1, Ayy Ay >0

we have

(12) m(aqxy + oc2x2) < oc,]m(x1 )+ oc-am(x2 ).
Since (x+y)_< x_+3y_ (see [7]), we have
m(a,lx,] + a2x2) = oqXg + AoXp + ’1‘|:S(ot,lx,I + 0%, }]_g
Sogxq +ay¥X, + T(oeySx, )_ + T 8%,)_ =
= X, + 0%y + or,IT(Sx1 )_ o+ aZT(SXZ)-’
hence we get (12). From definition (7) we have
Mgz + aoxy) > ay u(xy) +apulx,)
for oAy +&p = 1, d‘l’ cx2> 0.
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Theorem 2.3. The operations m and u have for
X€ L1 the following properties

(13) m(m(x)) = m(x),
(14) alp(x)) = plx),
(15) w(uex)) = plmlx)) = sx .
If the integral T is positive, then
(1e) n(x+y) < m(x) + m(y),
(17) ux+y) > plx) + p) .

If o>0, then

(18)
(19)

If a<0, then

m(ax) =amn(x),

plax) = aulx) .

(20) mlx) = aulx),

(21) pex) =am(x) .
Moreover, we have

(22) m(0) = O,

(23) #(0) = 0,

(24) n{-x) = -p(x),
(25) M(=x) = -m(x),
(26) m(x) + m(-x) = T|sx|,
(27) p(x) + y(—x) = -T|sxl.

The proofs can easily be obtained from definitions (6) and
(7) and from the properties of elements of the linear lattice
.

Theorem 2.4, Any element xe€¢L
ed in the form
(28) X = =X, + n(x) - m(-x) ,

1 can be represent-

where x,€ Ker S and m(x), m(-x) € Incr.
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Proof., If xeLq, then vaeL~°. We have
8x = (Sx)+ - (sx)_ and TSx = T(Sx)+ - T(8x)_.
From definitions (6) and (7) we have
(29) x = =x, + u(x) + n(x).
From (24) we obtain (28).
3. The properties of the Incr. Quasi-order in !

It is easy to prove the following theorems.
Theoren 31

(30) If x € Incr, then n{x) = x.

Theorem 3.2, A set Incr is a wedge.
Definition 3.1, Let x,,%eL'. We define in
L1 a relation { in tne following manner

(31) x99 %, <> x,-%, ¢ Incr i.e. S(x-%4) >0

*®> X, = Xq+1, m.,leIncr.

Theorem 3.3. The relation q defined by formula
(31) is reflexive and transitive i.e. is a quasi-order.
Proof.
1° x4 x,<> S(x4-%4) = 0, O¢ Inocr.

20 If x44 %, and x2<x3, then S(xa-x,]) >0 and S(x3-x2)>o.
But
S(xa-x1+x2-x2) = S(xz-x,l) + S(x3~x2) > 0,
hence S(x;-x,l) >0 i.e. x4 <q Xz -
The space L1 is quasi-ordered by the set Inecr.

4. The properties of the set of classes Var

Let x,ye¢L'. We say that

(32) fe¢[x]e> ¥ = x + ¢, where o ¢KerS.
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We define
(33) [x] + [7] = [x#],
(34) - A[x] = [Ax], A-scalar.

So ﬁe have
(35) ce[0] <> ceKer 5.

The set of classes [x], xeL‘], will be denoted by Var and
its elements will be called elements of finite variation. The
set Var is a linear space.

We define an operation

(36) S, Var —1°
in the following manner
(37) Sp[x] = 8%, x evl.

Let us introduce a set Ku1 in the space Var defined as
follows

(38) K = {[x] : x eIncr}.

Theorem 4.,7. The set Km is a cone in the space Var.

Prooft.

If [my] ek, and [m5] eKys  then %m,]:' [mz] € Km'
because m, +m, e Incr. Similarly if [m,l eX and A >
then 7L[m1] = [Zm,]] K. If [m,]:] K (m,l # c), then Sm,]/O.
If —[m,]] K,» then -Sm,> 0 i.e. Sm, < 0. Hence Sm, =0
i.e. my = C.

Given a cone Ign we define in the space Var a partial-
-order fn by

G9) [x]4 [s]es [7] - [x] e
0y (x]4 [3] <> x4 3.
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Definition 4.1. A linear lattice with the
partial-order < 1is called an archimedean lattice, if

a>0 and na<b fori=1,2,... implies a = O,

Let L° be an archimedean lattice.

Theorem 4.2, The cone K  is an archimedean cone
in Var.

Proof. We would like to show that if

(1) [mq] € Ky and [mz] -n[m,]] e X, (1=1,2,...),
then

) [21] = [°]-

From (41) we have Sm, > O and Sm, - nSm, > O. Since 1°
is an archimedean lattice we have

Sm,] = O i.eo m,] = C i'eo {:m,‘] = [0].
In Theorem 2.4 there was a decomposition

43) . x = =x_ + m(x) + u(x) = =x

o + m(x) - m(-=x)

o

(44) [x] = [mx)] - [m(=x)],
where [m(x ), [m(-x ):l €K .

Hence we have the following theorem.

Theorem 4,3, Every element of the space Var can
be written as the difference of elements of the Km cone i.e.
the cone K  is reproducal.

Theorem 4&4.4.
(45) [2] = sy ([x], [x])
iff m
(46) Splz] = sup (Sm[X], Sm[yD-
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From the definition (37) we can write (46) as follows
(47) Sz = sup(Sx,Sy).
Proof. From definition (39) and from (40) we have
x4z, y<z|.
=>3z4u

x4u, y<u

i.e.

Sz > 8x, Sz > 8y

(48) —= Su > Sz i.e. (47)
Su > Sx, Su> Sy

From (47) and from the definition of supremum in L° we have

Sx < 8z, Sy < Sz
== 52z < Su
Sx < Su, Sy < Bu

and
S(z-x) > 0, S(z=y) >0
==8(u~z) >0
S(u-x) >0, S(u-y)=>0
i.e.
x<2, Y<z
(49) ) ==z 4 u,
x<4u, Jy<u

From the definition of the relation < we obtain (45).
Theorem 4,5,

(50) [v] = w2 ([x), [v])
iff n
(51) s,0] = tnt(s,[x], 8,05))

From the definition (37) of S, we can write (51) as follows
(52) Sw = sup(Sx,Sy).

The proof is analogous to the proof of Theorem 4.4.
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. Elements of finite variation 9

The linear space Var with supremum and infimum is a linear
lattice.
For each element [x|e Var we define

(53) [x]+ = suP’([x]o [0])’
(54? [x]_ = sup(~[x],[0] ),
55) =) = mup -], [<)

and we call them the positive part, the negative part and the
module of the element [x], respectively.
From Theorem 4.4. we have the following corollary.
Corollaczy.

(56) sup([x], [0]) = [x], [m(x)],
(57) sup(-(x], [0]) = [x]_ =[m(x)],
(58) sup(-[x], [x]) = I[x]l = [m(x) + m(-—x)].

Proof. From The 4.4. we have

(59) _ Sm(x) = 8(x+T(8x)_) = (8x)_,

because sup(Sx,0) = (Sx), in L° Similarly we obtain (57)
and (58). ' _ '

A linear latticé is called a K-space, if every non-empty
subset 1s bounded from above and has a supremum. In the K-space
we can Introduce a convergence based on partial-order which we
call (o)=-convergence.

Let ' and I° be a K-space. Let x, (n=1,2,...) be a

sequence of elements from L1. If the sequence X, is in-
creasing i.e, Xy € Xpoqo thenn]ilixn = sgp‘ Xpe By the

superior limit and the inferior limit of the sequence x, we
mean the elements '

60 lim = inf s yoee)],s
(60) JHo x = infsup(xy,xse0 )]
(61) nErl X, = sgp[inf(xn,:&l”,...):l.
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We say that a sequence X, is (o)-convergent to an element
x, 1if '
(62) lim x, = lm x =x.

n —=—ce n—=oco

The element x will be called a (o)-limit and we write
(o)-lim x, = x. If the sequence x, 1is inoreasing, then

n -=co

af
lim [xn] = [ lim xn]. Let a sequence x, be bounded. Then
n —=oe N —=co

in the space Var there exist supremum and infimum

(63) [sup(}&l,:&lm,.,. )] & lim SEP([xn]’ [xn_m] yeoe)s

af

(64) [inf(xn,xn_'_,‘,...)] = lin iﬁf( xn],[:gm],...).
By definition we have

(65) 115?%3 [xn] = [inf sup(xn,xn+1,...)],

(66) n% xn] =-[sup inf(xn,xnm,...)].

We have the following géneral definition of a (o)-convergence
in the K-space.
Definition 4.2. A sequence [xn] is (o)-con-

vergent to a class [x], if
(e7) lim [x.} = Lim [x 7.

» Jlim [x) = o [x)]
The common value of limit superior and limit inferior will be
called (o)=-limit and we write

(68) (0)-lim [xn]

N ~=co

(]
—

"
—

Theoremn 4,6.

(69) (o)-lim [xn]

Il —=oc0

]
—
™
| —
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iff
(70) 1im Sx_ = lim S

or
(0)-lim th = Sx.,

.N~eco
Proof.

1° 1f (o)—nli.ri[%] =[x], then

(71) i [x] = Un [x,] = [x].
7 0[] - (o] ma s 5] - [s].

From (46), (47), by passing to limit, we obtain

(73) SmI:G] =nffli Sm[xn = [inf sup(an,S:&,LM,...,)],

—o

(7)  8yfe] = lim 8;[x] = [sup inf(an,SJ(n+1,...):l.

n-eoeo
The equalities (73) and (74) are equivalent to the following
equalities

(75) SG = 1im 8x ,

n-=oco

(76) Sg = lim Sx .

N -—e=oco

From (72) we have

[6]=[g] i.e. G =g +c and SG = Sg,

hence

lim an=]ﬂ an.

2° 1f (o)-lim Sx, = Sx or 8G = Sg i.e. S(G-g) = O, then

n—eco
G=g+0 and [G] = [s] .
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From (65) we have

Ha [x]= Lin [x,].

n-—=ceo n—»w

We have proved in Th, 4.2 that a cone Km in the space
Var is an archimedean cone.

S0, by the general definition, we can introduce in this
archimedean lattice the notion of a regular convergence.

Definition 4.4, The sequence [xn] is
(r)-convergent to an element [x], if

ML 2 Yy ] - gl

and we then write

(78) (I‘);l_.ili [Xn] = [x].
Theorem 4,7.
(79) (r).x-ll_.ii [xn] = [;x],
ifr
(80) (r)-lim Sx = Sx.
n-—=oco :

Proof.

1° If (r)-lim [x,] = [x], then (77),

n-eoco

i.e.
-efe] § [xa] - [x] 3 <[e]-

From the definition (39) of the relation 4 we have
: m

—¢f 4 x, - X qef
i.e.
-¢8f < 8(xy-x) < €8f ,
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13

hence

Ith - le < £SP,

2° I (r)-lim Bx, = 8x, then [Bx, - 8x| < 8¢

n-—oa

i.e.

| t-eSt]s [sxn-s::]s[esr],
®) [~es2] + [Bmy] = [85 - 8x]
(82) ‘ [an - Sx:l = [es:t] - [Bmz].

From (81) we obtain
Sal[-e] + [m] - [xx]) = [0]
or [’11 - x] = [-sf + m.i], where m,,m, ¢ Inor i.e.

X, - Xp-tf
end .
(1] 4 [3, - 2.
Similarly from (82) we obtain
C [m-x] g [e]

hence
=l - =] g e=]
This ends the proof of Theorem 4,7. |
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