

Wanda Sznitko

PROPERTIES OF A CERTAIN SINGULAR INTEGRAL
 AND THEIR APPLICATIONS TO SOLUTION
 OF HILBERT PROBLEM IN THE SPACE

1. Introduction

Let S be a closed Ljapunov surface which is the boundary of a domain D^+ in the space E_3 . The complement of the set $D^+ \cup S$ (in E_3) we denote by D^- .

We shall use the following notation (cf. [1], p. 168):

$$D(X, Y, Z) = \begin{vmatrix} 0 & X & Y & Z \\ X & 0 & -Z & Y \\ Y & Z & 0 & -X \\ Z & -Y & X & 0 \end{vmatrix}, \quad D^*(X, Y, Z) = \begin{vmatrix} 0 & X & Y & Z \\ X & 0 & Z & -Y \\ Y & -Z & 0 & X \\ Z & Y & -X & 0 \end{vmatrix},$$

and

$$(1) \quad M(A, Q) = -D^* \left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \zeta} \right) \frac{1}{|A-Q|} \cdot D(\alpha, \beta, \gamma),$$

where $|A - Q|$ is the Euclidean distance of $A(x, y, z) \in D^+ \cup D^-$, $Q(\xi, \eta, \zeta) \in S$ and $N(\alpha, \beta, \gamma)$ is a unit vector orthogonal to the surface S at the point Q , directed outside the domain D^+ .

Let the elements $q_i(Q)$, $i = 1, 2, 3, 4$, of the column-vector

$$(2) \quad q(Q) = \begin{vmatrix} q_1(Q) \\ q_2(Q) \\ q_3(Q) \\ q_4(Q) \end{vmatrix}$$

be defined and continuous on S . The surface integral

$$\frac{1}{4\pi} \int_S M(A, Q) q(Q) dS_Q ,$$

(Cauchy integral) is defined for every $A \in D^+ \cup D^-$.

It is known [1] that

1° The column-vector

$$(3) \quad F(A) = \frac{1}{4\pi} \int_S M(A, Q) q(Q) dS_Q$$

is holomorphic in $D^+ \cup D^-$, i.e. it satisfies in this set the elliptic system of equations

$$D\left(\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}, \frac{\partial}{\partial \zeta}\right) F(A) = 0.$$

2° If the elements of (2) satisfy the Hölder condition on S , then for every $P \in S$ there exists a singular integral (Cauchy principal value)

$$(4) \quad \frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q$$

defined by the equality

$$(5) \quad \frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q = \frac{1}{4\pi} \int_S M(P, Q) [q(Q) - q(P)] dS_Q + \frac{1}{2} q(P);$$

besides, the formulae (corresponding to Plemelj formulae)

$$(6) \quad \begin{aligned} F^+(P) &= \frac{1}{2} q(P) + \frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q , \\ F^-(P) &= -\frac{1}{2} q(P) + \frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q \end{aligned}$$

hold, where $F^+(P)$ and $F^-(P)$ are boundary values of the column-vector $F(A)$ defined by the equalities

$$F^+(P) = \lim_{\substack{A \rightarrow P \in S \\ (A \in D^+)}} F(A), \quad F^-(P) = \lim_{\substack{A \rightarrow P \in S \\ (A \in D^-)}} F(A).$$

Moreover (cf. [2], p. 43) the following theorem of Źakowski holds.

If the elements $q_i(Q)$, $i = 1, 2, 3, 4$, of the column-vector (2) satisfy on S the conditions

$$|q_i(Q)| \leq K, \quad |q_i(Q) - q_i(Q_1)| \leq K |Q - Q_1|^h, \quad 0 < h < 1,$$

where K is a positive constant, then the elements $F_i(P)$, $i = 1, 2, 3, 4$, of the column-vector $F(P) = \frac{1}{4\pi} \int_S M(P, Q) q(Q) dS_Q$ satisfy the inequalities

$$|F_i(P)| \leq CK, \quad |F_i(P) - F_i(P_1)| \leq CK |P - P_1|^h,$$

for $P \in S$, $P_1 \in S$, where C is a positive constant independent of $q(Q)$.

This theorem is an analogue of the theorem of Privalov in the theory of one-dimensional singular Cauchy integral.

2. Investigation of a certain singular Cauchy integral in the space E_3 .

Let Σ denote the plane $z = 0$ in the space E_3 of variables x, y, z and D^+ and D^- be the upper ($z > 0$) and lower ($z < 0$) half-space, respectively. Suppose that the elements $g_i(Q)$, $i = 1, 2, 3, 4$, of the column-vector $g(Q)$ are defined and continuous in the plane Σ and satisfy the inequalities

$$(7) \quad \begin{aligned} & |g_i(Q_1) - g_i(Q_2)| \leq C |Q_1 - Q_2|^h \quad (\text{in every bounded subset} \\ & \text{of } \Sigma), \\ & |g_i(Q)| \leq \frac{C}{|Q|^h}, \quad \text{for } |Q| > R_0, \end{aligned}$$

where R_0 , h , C are arbitrary positive constant.

The integral

$$(8) \quad \phi(A) = \frac{1}{4\pi} \int_{\Sigma} M(A, Q) g(Q) dQ, \quad A(x, y, z) \in E_3 - \Sigma, \quad Q(\xi, \eta, \zeta) \in \Sigma$$

we define as a limit

$$(9) \quad \frac{1}{4\pi} \int_{\Sigma} M(A, Q) g(Q) dQ = \lim_{\varphi \rightarrow \infty} \frac{1}{4\pi} \int_{\Omega} M(A, Q) g(Q) dQ,$$

where Ω is a simply connected domain in Σ containing the origin 0 of coordinates, boundary of which is a piecewise smooth curve, and φ is the least distance of 0 to the points of the boundary of Ω . Because the elements $M_{i,k}(A, Q)$ ($i = 1, 2, 3, 4$; $k = 1, 2, 3, 4$) of the matrix $M(A, Q)$ have the estimation

$$(10) \quad |M_{i,k}(A, Q)| \leq \frac{1}{|A-Q|^2},$$

the inequality (7) is sufficient for the existence of the integral (8) defined by (9).

We write the integral (9) in the following way

$$(11) \quad \begin{aligned} & \frac{1}{4\pi} \int_{\Sigma} M(A, Q) g(Q) dQ = \\ & = \lim_{\varphi \rightarrow \infty} \left[\frac{1}{4\pi} \int_{K(P,R)} M(A, Q) [g(Q) - g(P)] dQ + \frac{1}{4\pi} \int_{K(P,R)} M(A, Q) g(P) dQ + \right. \\ & \quad \left. + \frac{1}{4\pi} \int_{\Omega - K(P,R)} M(A, Q) g(Q) dQ \right] = \frac{1}{4\pi} \int_{K(P,R)} M(A, Q) [g(Q) - g(P)] dQ + \\ & \quad + \frac{1}{4\pi} \int_{K(P,R)} M(A, Q) g(P) dQ + \frac{1}{4\pi} \int_{\Sigma - K(P,R)} M(A, Q) g(Q) dQ, \end{aligned}$$

where $P(x, y)$ is an arbitrary point of the domain Ω and $K(P, R)$ is a circle with centre in P and radius R such that $K(P, R) \subset \Omega$. We suppose that $\Omega \subset K(0, R_0)$. In particular, for

$$g(P) = \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix}$$

we have

$$\frac{1}{4\pi} \int_{K(P,R)} M(A, Q) g(P) dQ = \begin{vmatrix} \frac{1}{4\pi} \int_{K(P,R)} \frac{z}{(\sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2})^3} d\xi d\eta \\ \frac{1}{4\pi} \int_{K(P,R)} \frac{-(y-\eta)}{(\sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2})^3} d\xi d\eta \\ \frac{1}{4\pi} \int_{K(P,R)} \frac{x-\xi}{(\sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2})^3} d\xi d\eta \\ 0 \end{vmatrix}.$$

Introducing the polar coordinates by the formulae $x - \xi = r \cos \varphi$, $y - \eta = r \sin \varphi$, we obtain

$$(12) \quad \frac{1}{4\pi} \int_{K(P,R)} \frac{z}{(\sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2})^3} d\xi d\eta = \\ = \frac{z}{4\pi} \iint_0^{2\pi} \frac{r}{(\sqrt{r^2 + z^2})^3} dr d\varphi = \frac{1}{2} \left(\frac{z}{|z|} - \frac{z}{\sqrt{R^2 + z^2}} \right).$$

Similarly,

$$(13) \quad \frac{1}{4\pi} \int_{K(P,R)} \frac{-(y-\eta)}{(\sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2})^3} d\xi d\eta = 0$$

and

$$(14) \quad \frac{1}{4\pi} \int_{K(P,R)} \frac{x-\xi}{(\sqrt{(x-\xi)^2 + (y-\eta)^2 + z^2})^3} d\xi d\eta = 0.$$

In virtue of (12), (13) and (14), we obtain

$$(15) \quad \frac{1}{4\pi} \int_{K(P,R)} M(A,Q) dQ = \begin{cases} \frac{1}{2} \left(1 - \frac{z}{\sqrt{R^2 + z^2}} \right) E & \text{for } A \in D^+ \\ -\frac{1}{2} \left(1 - \frac{z}{\sqrt{R^2 + z^2}} \right) E & \text{for } A \in D^- \end{cases}$$

where E is the identity matrix.

Let $P(x,y)$ be the orthogonal projection of the point $A(x,y,z)$ onto the plane Σ . Then we define the integral (9) by the formula

$$(16) \quad \frac{1}{4\pi} \int_{\Sigma} M(P,Q) g(Q) dQ = \lim_{\eta \rightarrow \infty} \lim_{\delta \rightarrow 0} \left[\frac{1}{4\pi} \int_{Q - K(P,\delta)} M(P,Q) g(Q) dQ \right] =$$

$$= \lim_{\eta \rightarrow \infty} \lim_{\delta \rightarrow 0} \left[\frac{1}{4\pi} \int_{K(P,R)} M(P,Q) [g(Q) - g(P)] dQ + \right.$$

$$+ \left. \frac{1}{4\pi} \int_{K(P,R) - K(P,\delta)} M(P,Q) g(P) dQ + \frac{1}{4\pi} \int_{Q - K(P,R)} M(P,Q) g(Q) dQ \right],$$

where $0 < \delta < R$.

In particular, for $g(P) = \begin{vmatrix} 1 \\ 0 \\ 0 \\ 0 \end{vmatrix}$ we have

$$\frac{1}{4\pi} \int_{K(P,R)-K(P,\delta)} M(P,Q)g(Q)dQ = \begin{vmatrix} 0 \\ \frac{1}{4\pi} \int_{K(P,R)-K(P,\delta)} \frac{-(y-\eta)}{\left(\sqrt{(x-\xi)^2 + (y-\eta)^2}\right)^3} d\xi d\eta \\ \frac{1}{4\pi} \int_{K(P,R)-K(P,\delta)} \frac{x-\xi}{\left(\sqrt{(x-\xi)^2 + (y-\eta)^2}\right)^3} d\xi d\eta \\ 0 \end{vmatrix}$$

Analogously as in the proof of (12), we obtain

$$(17) \quad \frac{1}{4\pi} \int_{K(P,R)-K(P,\delta)} \frac{x-\xi}{\left(\sqrt{(x-\xi)^2 + (y-\eta)^2}\right)^3} d\xi d\eta = \int_0^{2\pi} \int_{\delta}^R \frac{r^2 \sin \varphi}{r^3} dr d\varphi = 0$$

and

$$(18) \quad \frac{1}{4\pi} \int_{K(P,R)-K(P,\delta)} \frac{-(y-\eta)}{\left(\sqrt{(x-\xi)^2 + (y-\eta)^2}\right)^3} d\xi d\eta = 0.$$

In virtue of (17) and (18), we may write

$$(19) \quad \frac{1}{4\pi} \int_{K(P,R)-K(P,\delta)} M(P,Q)dQ = \|0\|,$$

where $\|0\|$ is the zero matrix.

Thus we can write the singular integral (16) in the form

$$(20) \quad \frac{1}{4\pi} \sum_{K(P,R)} M(P,Q)g(Q)dQ = \frac{1}{4\pi} \int_{K(P,R)} M(P,Q) [g(Q) - g(P)] dQ + \\ + \frac{1}{4\pi} \int_{\sum_{-K(P,R)}} M(P,Q)g(Q)dQ.$$

By a simple calculation we can verify that the column-vector $\phi(A)$ defined by (8) is holomorphic separately in D^+ and D^- .

$$\text{Let } \phi^+(P) = \lim_{\substack{A \rightarrow P \\ (A \in D^+)}} \phi(A), \quad \phi^-(P) = \lim_{\substack{A \rightarrow P \\ (A \in D^-)}} \phi(A).$$

L e m m a. If elements $g_i(Q)$, $i = 1, 2, 3, 4$, of the column-vector $g(Q)$ satisfy the Hölder condition, then for the integral (8) the Plemelj formulae are satisfied

$$(21) \quad \begin{cases} \phi^+(P) = \frac{1}{2} g(P) + \frac{1}{4\pi} \sum M(P, Q)g(Q)dQ, \\ \phi^-(P) = -\frac{1}{2} g(P) + \frac{1}{4\pi} \sum M(P, Q)g(Q)dQ. \end{cases}$$

P r o o f. We write the integral (8) in the form (11) and, by (15), we obtain

$$(22) \quad \phi(A) = \begin{cases} \frac{1}{4\pi} \int \limits_{K(P,R)} M(A, Q) [g(Q) - g(P)] dQ + \frac{1}{4\pi} \int \limits_{\sum -K(P,R)} M(A, Q)g(Q)dQ + \\ \quad + \frac{1}{2} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right) g(P), \quad A \in D^+, \\ \frac{1}{4\pi} \int \limits_{K(P,R)} M(A, Q) [g(Q) - g(P)] dQ + \frac{1}{4\pi} \int \limits_{\sum -K(P,R)} M(A, Q)g(Q)dQ + \\ \quad - \frac{1}{2} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right) g(P), \quad A \in D^-. \end{cases}$$

Since

$$\lim_{A \rightarrow P} \frac{1}{4\pi} \int \limits_{K(P,R)} M(A, Q) [g(Q) - g(P)] dQ = \frac{1}{4\pi} \int \limits_{K(P,R)} M(P, Q) [g(Q) - g(P)] dQ$$

and

$$\lim_{A \rightarrow P} \frac{1}{4\pi} \int_{\sum -K(P, R)} M(A, Q) g(Q) dQ = \frac{1}{4\pi} \int_{\sum -K(P, R)} M(P, Q) g(Q) dQ,$$

we have, in virtue of (22),

$$(23) \quad \left\{ \begin{array}{l} \phi^+(P) = \frac{1}{2} g(P) + \frac{1}{4\pi} \int_{K(P, R)} M(P, Q) [g(Q) - g(P)] dQ + \\ \quad + \frac{1}{4\pi} \int_{\sum -K(P, R)} M(P, Q) g(Q) dQ, \\ \phi^-(P) = -\frac{1}{2} g(P) + \frac{1}{4\pi} \int_{K(P, R)} M(P, Q) [g(Q) - g(P)] dQ + \\ \quad + \frac{1}{4\pi} \int_{\sum -K(P, R)} M(P, Q) g(Q) dQ. \end{array} \right.$$

Then, making use of (20), we obtain (21).

Remark. Formulae (21) have been proved under the supposition that the point $A(x, y, z) \in D^+ \cup D^-$ tends to $P(x, y)$ in parallel to the z -axis. The truth of the Plemelj formulae, when A tends to P arbitrarily, follows from the fact that $\phi(A)$ uniformly tends to $\phi^\pm(P)$ along the parallels to the z -axis and from the continuity of boundary values $\phi^\pm(P)$.

3. The Hilbert problem

Problem. Find a vector function $\phi(A)$ holomorphic in D^+ and in D^- separately, bounded in whole space E_3 , such that the boundary values $\phi^+(P)$ and $\phi^-(P)$ satisfy in every point $P \in \Sigma$ the condition

$$(24) \quad \phi^+(P) = G \phi^-(P) + g(P).$$

We suppose that G is a matrix with constant elements of the form

$$G = \begin{vmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ -\beta_2 & \beta_1 & -\beta_4 & \beta_3 \\ -\beta_3 & \beta_4 & \beta_1 & -\beta_2 \\ -\beta_4 & -\beta_3 & \beta_2 & \beta_1 \end{vmatrix}$$

and the elements $g_i(P)$, $i = 1, 2, 3, 4$, of the column-vector $g(P)$ satisfy conditions (7).

In virtue of the Plemelj formulae (21), we infer that the solution of the problem (24) is the column-vector

$$(25) \quad \phi(A) = \frac{X(A)}{4\pi} \int_{\Sigma} M(A, Q) (X^+)^{-1} g(Q) dQ + X(A) C,$$

where

$$X(A) = \begin{cases} X^+(A) = G, & \text{for } A \in D^+ \\ X^-(A) = E, & \text{for } A \in D^- \end{cases}$$

is a solution of corresponding homogeneous problem

$$X^+(P) = GX^-(P), \quad P \in \Sigma,$$

C is an arbitrary constant column-vector and E is the identity matrix.

REFERENCES

- [1] А.Б. Б и ц а д з е: Краевые задачи для эллиптических уравнений второго порядка, Москва 1966.
- [2] W. Żakowski: On some properties of the Cauchy type integral in the Euclidean space E_3 , Demonstratio Math. 1 (1969) 175-185.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received February 17, 1975.