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PRINCIPE DE MAXIMUM DE CERTAINES SOLUTIONS D'INEGALITE 
AUX DERIVEES PARTIELLES DE TYPE PARABOLIQUE 

DANS UN CYLINDRE SI - ]-oo , T) 

Nota t ions e t hypothèses 
Soient fi un ouver t de l ' e s p a c e e u c l i d i e n E11, T un r é e l 

pouvant ê t r e éga l à p lu s l ' i n f i n i , S l e cy l ind re fi*]-o°,T) 
( c ' e s t - à - d i r e Â » ] - « > , T ] s i T es t f i n i , Â*] - « , + «> [ s i T = 
a + » ) . Nous no te rons x = ( x ^ , . . . , x n ) un élément de 

E n , | x | l a q u a n t i t é ^ / x ^ + . . . + e t t un élément de 
, T) . 
Si Bç r e p r é s e n t e l a "boule ouver te de c e n t r e l ' o r i g i n e 

de rayon q dans E a e t Sç l a sphère de cen t r e l ' o r i g i n e 
de rayon ç dans E n , on note p a r : 

cjç l ' ensemble Bç D fi , 
6ç l ' ensemble S? D i î , 
f l a f r o n t i è r e de fi dans Bn . 
S i f e s t une f o n c t i o n d i f f é r e n t i a b l e , d é f i n i e dans S, 

nous notons par Djf l a dé r ivée p a r t i e l l e de l a f o n c t i o n f 
pa r r appor t à l a v a r i a b l e x^ , D^f l a dér ivée p a r t i e l l e de 
l a f o n c t i o n f par r appor t à l a v a r i a b l e t . Soient 
u = (u 1 , uN) e t v = (v 1 , v N ) des a p p l i c a t i o n s 
d é f i n i e s dans S à v a l e u r s dans E N , nous notons pars 

U'V l a fonct ion d é f i n i e par u 1 v + . . . + u V \ 

DjU l ' a p p l i c a t i o n d é f i n i e par D±UN) 

V l ' a p p l i c a t i o n d é f i n i e par (D tu 1 , . D tuN) 
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2 J. Chabrowski, G. Reynaud 

Par la suite, L désignera l'opérateur défini par 

V u 1 ) 

Lu s 

où Lp est un opérateur de type parabolique défini par 

= - ± ^[a î j . D. uP] - Bp(uP) + D t ft «P]f 

i=1 
Bp(uP) est un opérateur du premier ordre ne dépendant que 
de (x,t) appartenant à S et de D. upj a!?. et et sont 

' " " n P des fonctions defimes dans S. Nous notons par des 
fonctions définies pour tout (x,t) appartenant à S et tout 
u appartenant à R^. Nous notons par (j> et ifj des fonctions 
poids définies dans R+*[a,b], où [a,b] représente un 
segment de; H, • et on leur associe de nouvelles fonctions que 
nous notons toujours par cp et y définies dans Rnx[a,b] 
par (x,t) —-cj)(x,t) = cp(|x|,t), où x appartient à E11 et 
t appartient à [a,b] (de même pour y). Pour simplifier, 
nous notons par cpj x j, cpt 
Dt f • • • 

les fonctions D, i<P. Di<Pi 

Introduction 
Les résultats que nous obtenons ici sont du même type que 

ceux de [^J, mais le cylindre [0, T] est remplacé ici 
par Çi * ] - oo, T). 

Dans le paragraphe 1, h^, hg et h^ étant des fonctions 
définies sur ] - « , T^] (T̂  fini T^ < T), nous cherchons à 
obtenir des solutions de l'inéquation de Riccati 
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Pr inc ipe de maximum 3 

qui v é r i f i e l a p r o p r i é t é su ivan te ex(t) > m, 
ou de l ' i n é q u a t i o n de R i c c a t i 

h 2 a 2 + h 3 > 0 

qui v é r i f i e l a p r o p r i é t é su ivan te 

oc ( t ) ^ m + ^ J h j (r ) d r , pour t < T^ T^ , 
t 

où m e t ^ sont des cons t an t e s p o s i t i v e s , \) < 1. 
Les r é s u l t a t s a i n s i obtenus sont u t i l i s é s dans l e p a r a -

graphe 2 pour o b t e n i r un p r i n c i p e de maximum du type s u i v a n t : 
L, f p , u-v v é r i f i a n t c e r t a i n e s c o n d i t i o n s , 
s i pour t ou t p j 

I ? ( u p ) < f p ( x , t , u ) , I ? ( v p ) è f p ( x , t , v ) , 

u p ( x , t ) < v p ( x , t ) sur r» ] T) , 

a l o r s pour t o u t k : u k ( x , t ) < v k ( x , t ) sur í 2 * ] - o o , T). 

1. L e m m e 1 . 1 . Soient h^ e t h 2 deux f o n c t i o n s 
con t inues i n t é g r a b l e s sur J -«= , T^J , (h2 non n é g a t i v e ) . 
So i t m un nombre p o s i t i f donné. Si l e s quat re cons t an te s 
K, jS , e , T2 (K, JS , e p o s i t i v e s , < ^ ) v é r i f i e n t : 

1) KJ3+ (K+Dc < 1, 

2) Kj8 - (K+1 ^ m(K+ e), 

3 ) pour t o u t ( r 1 t r 2 ) , t^ < t 2 ¿Z T 2 , on a : 

t» 
? r2 

j h2(r)âr < e < 1 e t J h ^ t O d r < e < 1 . 

^La cond i t ion 3) e s t r é a l i s a b l e car e t h 2 sont i n t é -
g r a b l e s , l e s cond i t i ons 1) e t 2) sont v r a i e s , par exemple, 
s i fi = 2mj K = e< m p^l, a l o r s l a f o n c t i o n 
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J . Chati row s k i , G, Reynaud 

cc(t) = K 

k + f h2(r)ar 

l >2 

v é r i f i e oc(t) > m pour t T2 ^ e s ' t so lu t ion de l ' i n é q u a -
t i o n de R icca t i 

(a) | | - h2ct2 - h1 > O pour t < Tg. 

D é m o n s t r a t i o n s Remarquons que, d ' ap rè s l e 
choix de Tg, 

' 5 I } r 1 
J V r ) J h 2 ( s ) d s dr = \ j h 2 ( t ) J h^(s)ds dr 
t X I t -í 

2 < £ < £ 

et d ' ap rè s l e s hypothèses f a i t e s sur l e s constantes £ , T2 

i A 
K [j3+ J - / ^ ( r ) K + J h 2 ( s ) d s dr ^ KJ3 - Ke - £ > 0, 

on a donc 

a ( t ) > K/g g ^ d ' ap rès l a condi t ion (2). 

De p lus on a : 

g + / h 2 ( r ) d r 
t 

Donc a ( t ) se ra so lu t ion de (a) s i ->oc( t ) , 

K + J h 2 ( r ) d f 
t 

i n é g a l i t é qui e s t v é r i f i é e s i 1 > K/¡ + (K+1)ê qui n ' e s t autre 
que l a condi t ion (1) imposée aux cons tantes . 

L e m m e 1 .2 . Soient h2 e t h^ deux fonc t i ons non 
négat ives d é f i n i e s continues sur T^J, h 2 ( t ) e t 

h 2 ( t ) f h , ( f ) d t i n t é g r a b l e s sur 1 - « , T^. Soient m e t s 
't 

- 1 6 2 -



Princ ipe de maximum 5 

deux constantes p o s i t i v e s <)<1. Alors on peut cho i s i r l e s 
t r o i s constantes fi t T2 , T 2 < T^) t e l l e s que la f o n c -
t i o n 

ct(t) = y ( t ) 
2 h , ( r ) 

d é f i n i e pour t < T^, 

ou 

tfi(t ) = e x p 

' t 
/ M r ) 

Te 
ß+f h 3 ( s ) d s dr 

T„ 
v é r i f i e tf(t) > m + 0 f h j ( r ) d r pour t « et so i t so lu -

t i o n de l ' i n é q u a t i o n de E i c c a t i 

(b ) - h 2 a 2 + O pour t < T2 

D é m o n s t r a t i o n . On a 

dtf 
dt = h Q ( t ) 

T. 
ß + J h , ( r ) a r oc(t) - h j (t ) ; 

donc a ( t ) se ra so lu t ion de (b) s i ji + J h , ( r ) d r > oc(t) 

pour t < T 2 , i n é g a l i t é qui e s t évidente s i on remarque que 
|f/(t) < 1 pour t < T2 e t que j j ^ j < 1 pour t < V < T2 . 

-Log 
e t -J.. é t an t deux Prenons Ji s e t e - + 1 •» m̂  e t 

cons tantes p o s i t i v e s , < ^ < 1. Si on c h o i s i t T2 de t ô l L 
so r t e que 

t 2 T 2 

/ h 2 ( r ) d r < e e t £ h 2 ( r ) 
t 

T. 
f h , ( s ) d s d r < £ , 

on a 
-C. 

ct( t ) > ni, + / h 5 ( r ) d r 
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1er cas» si h^ est intégrable sur ] -<», ̂ 4]» H suffit de 
prendre 

m^ s m + >} J* hj(r)dr, pour avoir + ̂  J hj(r)dr. 
-00 t 

2me cas» si hj n'est pas intégrable, alors il existe 

^ h (>) _ g ) J h,(r)dri= \) J h,(r)dr, et si on prend n^ = m, 
t T2 

on a 

S 
P1 

oc(t) > m + <) J h3(r)dr. 
t 

Nous donnons deux lemmes dont nous aurons besoin dans la 
suite (démonstration dans [6]). 

L e m m e 1.3. Soit f une fonction définie dans 
Î2 x[t-]» "kg]"» localement lipschitzienne, nulle sur f" * 
Alors nous avons, pour tout t appartenant à [t^, tg 

/ D j Lf d x - / f - ^ d s - . 

L e m m e 1.4-. Soit f une fonction appartenant à /] 
C (Q), soit f +(x) = max(f(x),0). On a les résultats suivants: 

1) la fonction f admet presque partout dans £2 des dé-
rivées partielles et si on appelle fy l'ensemble des points 
x de Q tel que f(x) > 0 et Qg l'ensemble des points x 
de Q tel que f(x)< 0, on ai 

les restrictions à £L| de et D^f sont égales, 

la restriction à £22 â e " e s t n u l l e presque partout, 

2) la fonction f est lipschitzienne sur tout borné de fl 
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Principe de maximum 7 

2. Principe, de maximum 
D é f i n i t i o n 2 .1 . Nous disons que l ' a p p l i c a t i o n 

ù d é f i n i e dans S a va leurs dans appar t ien t a 
[ c 1 , 2 ( S ) ] W , s i u appar t ien t à [c 1 (S) ] N , e t s i , pour tou t 
couple ( i » J ) i [D^ DJUJ es t une app l ica t ion continue dans S 
( c ' e s t - à - d i r e s peut, se prolonger en une app l ica t ion continue 
dans S). 

D é f i n i t i o n 2.2s Soit u une fonc t ion dé f in i e 
dans S, à va leu r s dans R, nous noterons u+ et u l e s 
fonc t ions d é f i n i e s par : 

u + ( x , t ) = max [o, u ( x , t ) ] j u_ (x , t ) = max [o, - u ( x , t ) ] , 

( x , t ) appartenant à S. 
A W 

Si v = (v , . . . . v ). es t une app l ica t ion d é f i n i e dans S 
» N a va leurs dans R , nous noterons 

% = . . . » v j ) e t v_ = (v2, . . . , v » ) . 

Hypothèse 2 .1 . 
I ) l e s appart iennent à C^CS) et v é r i f i e n t 

4 P 1 f où appar t ien t à C(S). 

I I ) Pour tous l = /? = (fl^) appartenant à R n , 
pour tout ( x , t ) appartenant à Q xj t ) on a 

Ç a i d + = 

e t ceci pour tout À r é e l s t r ic tement p o s i t i f , où F appar-
t i e n t à C(S). 

I I I ) Pour tout (u,v) appartenant à [c ' l»2(S)] l î on a , 
ppur tout p , 

2 ( u p - v p ) [ / î p ( u p ) - / 3 p ( v p ) ] c C 1 ( u p - v p ) V l Z a P d D i ( u P - v P ) - D . ( u P - v I ) ) , 

où Ĉ  appar t i en t à C(,S) et fi es t une constante v é r i f i a n t 
O < /i < 2. 
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8 J . Chafrrowskl, G. Reynaud 

IV) Les oCp sont localement l i p s c h i t z i e n n e s dans S e t 
v é r i f i e n t presque pa r tou t dans fl«]-», T) 

G < a p < G1 , -H < D t a p , 

où G, Ĝ  e t H sont t r o i s fonc t ions p o s i t i v e s appartenant 
à C(S). 

V) Les fonc t i ons f p v é r i f i e n t l a p r o p r i é t é suivantes /I *r 1 M 
s i u = (u , . . . , u ) , v = (v , . . . , v ) sont t e l l e s que 
u k < v k e t up = v p en un point ( x , t ) appartenant à S, 
a l o r s 

f p ( x , t , u ) < f p ( x , t , v ) . 
. • » N 

VI) Pour tous u, v appartenant a R , on a 

N 
S g n ( u p - v p ) [ f p ( x , t : . u ) - f p ( x , t , v ) ] < L H u k - v k - L. u p -v p , J k=1 1 1 1 

où L e t Lxj sont deux fonc t i ons p o s i t i v e s appartenant à 
C(S) (Sgn x = 1 s i x > 0 , Sgn x = -1 s i x < 0 ) . 

D é f i n i t i o n 2 .3 . Soient u e t v appartenant 
à [c 1 ' 2(s)] \ nous d i rons que le couple (u ,v) e s t so lu t ion 
du problème 1 , s i 

1) u ( x , t ) < v ( x , t ) pour tou t ( x , t ) appartenant à 
r«]—, T) 

2) pour tou t p 

Lp(up) < f p ( x , t , u ) , Lp(vp) > f p ( x , t , v ) . 

D é f i n i t i o n 2 .4 . Soient u e t v appartenant 
nous d i rons que l e couple (u ,v) v é r i f i e l a 

p r o p r i é t é 1 sur Î2 * ] - « > , T) s i , pour t ou t p e t pour 
t ou t ( x , t ) appartenant a Q * ] - « » , T) , on a 

u p ( x , t ) < v p ( x , t ) . 

D é f i n i t i o n 2 .5 . Soi t y une fonc t i on d é f i n i e 
dans R n x ] - o o , T) à va l eu r s dans R+ . On note K • l ' e n -
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Principe de maximum 9 

semble des applications v appartenant a [c1»2(s)]N vér i -
f iant la propriété suivante» pour tout T̂  f i n i (T^ < T) f 

la l imite, quand t tend vers moins l ' i n f i n i , de la fonction 
T 1 

î / [ ¡ v 2 

est nulle. 
D é f i n i t i o n 2 .6 . Soit A une fonction continue, 

strictement posit ive, définie sur le segment [ - 1 , on 
note pari A - la fonction définie par 

. - ¿ e w -¡M*. 

^ - la fonction définie dans R n x] -«>, T) par 

(xtf) - y/A(x,t) = exp[- \ m 2 ( t ) ^ 2 ( | x | ) ] , 

où mg est une fonction définie positive continue sur ]-«>, T). 

Hypothèse 2 .2 . Nous dirons que A v é r i f i e l'hypothèse 
2 . 2 , s ' i l existe deux constantes M̂  et JLj positives t e l l e s 
que, pour tout s > 0 

exp|- ^ [ ¿ ( s ) ] 2 ^ fc, 

(cette propriété entraîne en part icul ier que A(+o») = + «>). 
Hypothèse 2.3,.A. La fonction A étant donnée, véri f iant 

l'hypothèse 2 . 2 , nous dirons que l 'opérateur L vér i f i e 
l'hypothèse 2 . 3 . 1 s i , pour tout ( x , t ) appartenant à S, 

1 ) G ^ x . t ) < K2 exp[m 0 ( t )^ 2 (|x|)] , 

H+ C- + 2 NL- 2L. q 
2) 1 £ — 1 < 2 h ^ d x l ) , 

5 ) f A(|x|), 
F 

4 ) exp[m1(t)^2(|x|)], 
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10 J. Chabrowski, G. Reynaud 

où G ĵ, G, ïVj, F, L, L^, H, Ĉ  sont les fonctions qui inter-
viennent dans l'hypothèse 2.1, Kg(t ) , K^(t ) , h^ (t ) , hg ( t ) , 
mQ(t), m̂j ("t ) sont des fonctions positives définies et conti-
nues sur ] -oo ( T). 

T h é o r è m e 2.1. Soit A une fonction donnée, vé-
r i f iant l'hypothèse 2.2; on suppose que l'opérateur L vér i f i e 
les hypothèses 2.1 et 2.3.A, que les fonctions ĥ  et hg sont 
intégrables sur ] - < » , T̂  (T^ f in i inférieur à T) et que 
hIq et m̂ j sont bornées sur T^]. Si 

1) u et v appartiennent à 

2) u - v appartient à K „ , où est bornée sur + !Pa ¿ 
] -00, T ^ , 

3) (u, v ) est solution du problème 1 (Définition 2.3) , 

alors (u,v) vér i f i e la propriété 1 sur Í2x]-oo, T). 

D é m o n s t r a t i o n . Soit cp une fonction définie 
sur R + * ] Tg] a v a l e u r s s u r (To ^ t2 f i n i 3ue 

l 'on déterminera ultérieurement). On suppose que cpt est né-
gative. Comme par hypothèse (u,v) est solution du problème 1, 
nous avons l ' inéga l i té suivante (démonstration identique 
à [4 ] , § 1) 

(2.1.1) [-2(p(ptG-cp2[cl+H+2NL-2L1]-16À F c ^ J ( w + ) 2 + 

où w = u-v. 
'I 

Choisissons X de te l l e sorte que 2 - /i - -=¡->0, par 
exemple X = gf ^ , et utilisons l'hypothèse 2.3 A. L ' inégalité 
(2.1.1) entrâine l ' inéga l i té suivante: 
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(2.1.2) [-2f h-2h^ 2A 2(\xn- 1 H2A(|x|)<pfx|]G(w+r 

idp 
aid Di w; 

D i h 2 w ï v p ] -

Posons <p(x,t) = exp[- a(t)</£2(|x|)} , où - oc(t) est la 
fonction déterminée dans le lemme 1.1, les constantes qui ser-
vent à déterminer oc seront choisies de telle sorte que 
cc(t) > m (m nombre positif que l'on déterminera). Ainsi la 
constante Tg intervient au début de la démonstration 
est fixée en fonction de m. On remarque de plus que = 
= oĉ  A 2 ( | k | ) cp . On a alors 

(2.1.3) - W 2 ] - 2 < P 2 G ( W + ) 2
+ C f 2 aîjD^DjwJ < 

2<p2 afd D.wP]- D j ^ E a p i w J ) 
iJP 

D'après le choix de oc(t), nous avons l'inégalité sui-
vante 

(2.1.4) 0 < X Z D, [2 <p2 w? af, D, wp - D+|cp2X> (w?) 
idP i k à d -I tL p p + 

Intégrons cette inégalité sur le domaine ur * [T^, T2] 
avec T̂  < r2 < T2, o u a u t i l i se le lemme 1.3) 

(2.1.5) O < f f S Z 2 if2 ^ afj D. ̂  ^ ds dt - / /£> p(^) 2dx 

Montrons que si w appartient à K . et si + VA 
a(t) > m = sup̂ max[M1 + mo(t)+m1(t) + m2(t), 3M1 + mo(t) + m2(t)] , 

alors (p et w vérifient la condition 
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(2 .1 .6) 

Pour tou t ( r^ , r 2 ) (r^ et r 2 f i n i s r 2 « T 2 ) , 
i l ex i s t e une su i t e ( r g ) q 6 u tendant vers l ' i n f i n i 
et su i t e (®q)q£u "tendant vers zéro, t e l l e s cue 

J { & * * * * ds dt < Eg . 

Pour démontrer ce r é s u l t a t , considérons l ' i n t é g r a l e 
r2 

I ( r ) = / / S 2 ^ a i o V P x i d t -r1 w r 

On a 

r1 r 

dxdt -

- u . 
r1 " r idP 

- t a i t ) A (| x | ) - ^ y/Âïûn 
1 . x i x j <p2ajd (wP)2dxdt -

- f f E ^ ( w ^ ^ f a f .]dxdt = f f (B1 +B2 +B3)dxdt, 
r , « r « P r i " r 

où tf^ es t le symbole de Kronecker. Considérons 

/ / " a 
r^j w r 

B0 dxdt 

Si V a ( | x | ) > 4noc(t) ^ ( | x | ) - | x | en un point de 
RQ * jY^, r 2 ] , a lo r s nous avons 

^ id? u n ï i r 
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Introduisons l a forme quadratique 

- . f ^ V i V o û d id = Ç a ? d ( w ï ) 2 -
1 l<J p 

D'après l 'hypothèse 2.1 ( i i ) , l a forme T̂  est positive. De plus 
J 2 = H 1 XiX3 

V d 

est aussi une forme quadratique pos i t ive . Alors i l est bien 
connu que 

i.3 S Tl 
> 0, e»est -à-d i re 0 . 

Si VA(| x| )' < 4n <x(t ) A ( |x | ) en un point de Rn * , r ^ , 
a lors nous avons 

B 2 < ^ n K 2 h 2 A | x | A ( | x | )VA(| X | ) 'if2exp [mQ(t ) A2 (| x | ) ] (w+)2 , 

B2 < (2-/i)n\h2a2(t)[A(\x\)]2\x\2 cp2exp|m0(t)A2 (|x|.)] (w+)2. 

Comme r^ et r^ sont f i x é s et f i n i s , a lors cc(t), KgCt), 
h 2 ( t ) sont bornés sur [ ^ i ^ ] * ïïous avons donc dans tous l e s 
oas 

Bg « K 3 [ ^ (|x| ) ] 2 |x|Vexp [m 0 ( t )^ 2 (|x| ) ] (w+)2, 

où Kj est une constante posit ive indépendante de (x,t") ap-
partenant à n * [t^ , r 2 J . 

Remarquons que l'hypothèse 2.2 étant v é r i f i é e , a lors 

¿ 2 ( | x | ) exp[-M1^2(|x| )] 

tend vers zéro quand |x| tend vers l ' i n f i n i et que 

>[-2M1 ¿ (|x| )] < K2 . x|2 expl 
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14 J » C h a b r o w s k i , G . R e y n a u d 

O n a d o n c 

d x d t ^ 

r1 wr 
r 2 

< H J f e x p [ ( - a ( t ) + 3 « , + m 0 ( t ) ) > î 2 ( l x t ) J ( w ^ ) 2 d x d " b , + ' 

1 r 

o ù K ^ e s t u n e c o n s t a n t e p o s i t i v e . Comme w a p p a r t i e n t a 

K , a l o r s s i c t ( t ) > 3 M - + m 0 ( t ) + m 2 ( t ) o n a p o u r t o u t r : 

' A 

r2 

J J ^ ^ ^ E / i c o n s t a n t e p o s i t i v e ) . 

r 1 w r 

r 2 

C o n s i d é r o n s J J B^ d x d t . O n a : 

r 1 " r 

r2 

/ / B 3 < 

r 1 " r 

r 2 
J f e x p [ ( - a ( t ) + M 1 + n i 0 ( t ) + m 1 ( t ) ) ^ 2 ( | x | ) ] ( w + ) 2 d x d t . 

r 1 " r 

D o n c , s i < x ( t ) > M^+mQCtJ+m^ ( t ) + m 2 ( t ) , o n a 

r2 
J J B j d x d t < R!^ ( i C j c o n s t a n t e p o s i t i v e ) . 

r 2 

C o n s i d é r o n s J J B^ d x d t . O n a 
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c. 

f f Bi < 

«r 
l 2 

K^r A(r) / / exp[(-<x(t) + m ^ t ) ) j£2(r)] w2 dsdt = j ( r ) , 
r 1 V 

où K^ est une constante p o s i t i v e indépendante de r . Soit 
r̂ j donné et supposons que J ( r ) > E2 pour tout r > r^ , 
(¿2 constante strictement p o s i t i v e donnée)} on a donc pour 
tout r > v^ 

r2 R n 
exp[-3M1^2(r)] J J exp [(-«(tJ+BQÎtJ+SM,,) A 2(r)] (w+)2dsdt, 

rA 6r 

VaÜ) 

«Kg exp[-K^Â2(r)]\jj J exp [(-ö(t)+m0(t)+3M^K 2(r)] (w+)2 dsdt, 

Ty, 6 1 r 

oû K̂  et K^ sont des constantes p o s i t i v e s indépendantes 
de r . Intégrons cet te inégal i té ' ;sur [r^, 9] (ç > r^ ) et 
u t i l i s o n s l ' i n é g a l i t é de Hôlder, nous avons: 

J expj-2M^ ,/t2(r)Jdr 
S V®2 

J . - 7 = ; d r * H 
1/2 

9 r2 

J J J exp [(-oí (t)+m0(t ) ./î2(r)]w2 dsdtdr 

r 1 r1 ffr 

1/2 

Si on suppose que <x(t) > + mQ(t) + m 2 ( t ) , en u t i l i s a n t 
l 'hypothèse 2.2 et le f a i t que w appartient à K, , on ob-

\ t i e n t A 

Ç ,—, 
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16 J. Chabrowski, G. Reynaud 

R^ étant constante positive indépendante de 9 . Ceci est 
impossible, car quand ç tend vers l'infini, le premier membre 
de l'inégalité tend vers l'infini. Donc il existe une suite 
(r'g) ^ tendant vers l'infini, telle que si 

a(t) ̂  max [l̂  +hiq (t J+m̂  (t )+m2 (t ), Jlij +mQ (t )+m2 (t )j , 

on ait < E (R - constante strictement positive indépen-
dante de qj. 

Montrons que pour tout r' il existe r > r' tel que H • SL H 
r2 

I1(3?q) » / / £ 2 aid Dj) W P *1 d S d t 
6r  3P  

En effet, si céci était faux, alors, pour tout ^â > rq ' 
on aurait 

l(r'B)> I(rq> + (r'g-r^.R, 

qui tendrait vers l'infini quand r'g tendrait vers l'infini, 
ce qui est impossible. Ce qui termine la démonstration de 
(2.1.6)i (la suite r^ est celle qui vient d'etre déterminée 
et Rq = A ) . 

Considérons l'inégalité' (2.1.5) dans la quelle on remplace 
r par r^, et si on considère que 

a(t) > sup^max [^M1+m0(t)+m^ (t)+m2(t), 3M1+m0(t)+m2(t)J = m 

ce qui est possible, car mQ, m^, m2 sont bornées sur 
J-00, T̂ j 1 et que, d'après le lemme 1.1, il est possible de 
choisir les constantes K, fi ,• e , T2 qui servent à déterminer 
ct(t), de telle sorte que 

ait) > m. pour te]-<=°, T2], 
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Principe de maximum 17 

alors on a si T. < r p < T», 

(2.1.7) 0 < E q - / < p 2 E s ( w ï ) 2 tof2 

w, tv, 

En faisant tendre q vers 1*infini on obtient 

t=r„ 

inégalité vraie pour tout (r^, r 2) vérifiant r^ < r 2 < T 2 < 

Supposons que w + ne soit pas identiquement nul sur 
flx]_oot TgJ f alors il existe une valeur r^ telle que 

.2 1 
> fl>0. 

Lq p Jt«r^ 

Donc, pour tout t < fj, on a 

/ ? 2 X > P (
W Ï ) 2 

fl p 

et par suite pour t < 0 t t < t^ 

r3 

/ / ? 2 E a p ( w ï ) 2 +y3|t|, 
t G p 

contraire à l'hypothèse que w appartient à K . 
fi 

On a donc démontré'que (u,v) vérifie la propriété 1 sur 
Q«1 -m, T2]. Il reste à démontrer que (u,v) vérifie la 
propriété 1 sur Si x [t2, T), ce qui est équivalent à démon-
trer que (u,v) vérifie la propriété 1 sur fîx [Tg, T^J pour 
tout Tj fini inférieur à T. Soit T^ fixé; il faut mon-
trer le résultat suivant. Si 
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18 J. Chabrowski, G. Re.ynaud 

1) u et v appartiennent à [c1,2(S)]N, 
2) u-v appartient à K , 

A % 
3) (u,v) solution du problème 1, 
4) u(x, T 2) < v(x, T2), 
alors (u,v) vérifie la propriété 1 sur Q * T^]. 

En faisant une translation de l'axe des t, la nouvelle 
variable de temps t étant donnée par T = t-T2, on remarque 
qjue ce résultat est donné dans [4], corollaire 2.1. Ce qui 
termine la démonstration du théorème 2.1. 

Hypothèse 2 . A . La fonction A étant donnée, vérifiant 
l'hypothèse 2.2, nous dirons que l'opérateur L vérifie 
l'hypothèse 2.4.A, s'il existe T^ fini (T^ < T) tel que 
pour (x,t) e S2 T^] on ait 

H+C.+2KL-2L. p 
3-g- 1 < -2h3^¿(|x|)-2h4(t) , 

où hj et h^ sont des fonctions non négatives définies con-
tinues sur J -<», T^J. 

T h é o r è m e 2.2. Soit A une fonction donnée, vé-
rifiant l'hypothèse 2.2, on suppose que l'opérateur L véri-
fie les hypothèses 2.3.A, 2.4.A et 2.1, que hP(t) et m £ 

h2(t) J h^(r)dr sont intégrateles sur ]-<*>, T^], et que m0(t), 
t 

m^(t), m2(t) vérifient, pour t < T^ 
T4 

max |li|+mo ̂  )+mi ̂  )+m2 ̂  ) » 3Mi+mo ̂  )+m2 ̂  ** m+,í J à^(r)dt , 
t 

où m et nI sont deux constantes positives, ^ inférieure à 1. Si 
1) u et v appartiennent à [c1'2(S)]N, 
2) u-v appartient à = ^A s i ^ ̂  T4 ^A = 

= YA
 exP 

T 4 

f h^(r)dr 
A 
pour t < T^, 

Lt 
3) (u,v) solution du problème 1 (Définition 2.3), 
alors (u.v) vérifie la propriété 1 (Définition 2.4). 
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Principe de maximum 19 

D é m o n s t r a t i o n . Soit <p une fonction définie 
sur R + * ] Tg] à valeurs dans R + (Œ^ < T^ que l'on 
déterminera ultérieurement). 

Comme par hypothèse (u,v) est solution du problème 1, 
nous avons l'inégalité suivante (démonstration identique à 
i>] , § 1 ) 

2 /„ . TT . _ „T , (2.2.1) 2 <f(ft- + H + 2NL - 2Iv,) 

2 (»+) - 16 q»|X 1-

P 
p 

idp 

a?d Di VÏ < 

<X>i 
idp 

2 cp2 wP aPd D. - D+ 

où w = u - v. Prenons A = ^Z^f e-t: utilisons les hypothèses 
faites sur les coefficients, l'inégalité (2.2.1) entraine 
l'inégalité suivante, 

-2(f>q>t+2h3<f2A2 (¡x\)+2h^- \ h2A(|x|)cp .2 1 Ds (wï)2 + p 

+ ^ , 2 ^ a P d D, wP Dd wP 

idp 

< 

<LX 
idp 

2<f2 wP aP d D. wl 
"<p2£>p ("îr 
l .p 

Posons 

£p(x,t) = exf ('- / h^(r)dr + a(t) A2(\x\) 
_ iî 

- 177 -



20 J . Chabrowski, G. Reynaud 

où a ( t ) e s t l a fonc t ion déterminée dans le lemme 1.2 ( l a va-
leur de T2

 s e r f c à d é f i n i r a ( t ) se ra d é f i n i e u l t é r i e u -
rement). On a a l o r s 

( 2 .2 .2 ) [ - h 4 + 4 2 ( | x | ) f | + 

+ h 3 ^ 2 ( | x | ) - h 2 a 2 ^ 2 ( | x | ) ] 2 < F
2 £ a p ( w P ) 2 + 

idp 

idp 
-

p 

D'après le choix de a , nous avons 

(2 .2 .3 ) 0 < X l 0 ! ^ 2 a i j Do w P 

idP 
- D, < p 2 X > p ( w P ) i 

In tégrons c e t t e i n é g a l i t é sur l e domaine 6Jr x , r 2 J 
( ^ < r 2 < T 2 ) , on a 

r2 
(2 .2 .4 ) 0 f Y j f Y® D. W* dsdt J J<p*£<Xp (w*)2cbc 

r 1 ^r i 3 p u P r 

Par une démonstration ident ique à c e l l e f a i t e dans le 
théorème 2 . 1 , on démontre que s i 

c t ( t ) > m + v J h^ ( r )d r , 
t 

pour t < (Tj < T^), a l o r s </> e t w v é r i f i e n t l a condi t ion: 
Pour tou t (t^, t2) (T.1 e t r 2 f i n i s ^ < f 2 < T j ) , i l 

e x i s t e une s u i t e ( r q ) q e j j tendant ve r s l ' i n f i n i e t une s u i t e 
JJ tendant vers zéro t e l l e s que 
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/ / X > <P2*Î a ? d
 Dd dsdt < Eg . 

c. idp q 

Mais d ' a p r è s l e lemme 1 . 2 , 011 peut c h o i s i r fi , T2
 e'b 

qui se rven t à d é f i n i r a ( t ) de t e l l e s o r t e que pour t < 
on a i t , 

a ( t ) > m+<)J h j ( r ) d r . 

S i on cons idè re l ' i n é g a l i t é ( 2 . 2 . 4 ) (T2 e t T j é t a n t a i n s i 
c h o i s i s ) dans l a q u e l l e on remplace r pa r r ^ , e t où T.^ e t 
r 2 v é r i f i e n t V̂  < r 2 < T j , a l o r s on a 

( 2 . 2 . 5 ) 0 < R q - / c p 2 ^ a p ( w P ) 2 d x 
Ur, P 

En f a i s a n t t e n d r e q v e r s l ' i n f i n i , on o b t i e n t 

/ ^ a p ) 2 tel < [ / („P 
t=ît , 

e t c e c i pour t o u t r ^ , r 2 f i n i s , v é r i f i a n t r^ < f 2 si . 
La s u i t e de l a démons t ra t ion e s t i d e n t i q u e à c e l l e du 

théorème 2 . 1 . 
Remarque? Les c o n d i t i o n s imposées aux c o e f f i c i e n t s peu-

vent ê t r e m o d i f i é e s ; on o b t i e n d r a i t de nouveaux théorèmes qui 
se démont re ra ien t de l a même manière ; pa r exemple l e théorème 
s u i v a n t . 

T h é o r e m e 2 . 3 : So i t A donnée, v é r i f i a n t l ' h y p o -
t h è s e 2 . 2 , on suppose que l ' o p é r a t e u r L v é r i f i e l e s hypo-

h o ( t ) 
t h e s e s 2 .3 .A , 2 .4 .A e t 2 . 1 , que h ) tend, v e r s zero quand 

que mQ, m^, m2 s o i e n t bornées sur ] - » , alo 'rs 
on a l e s mêmes conc lus ions que dans l e théorème p récéden t . 
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22 J. Chabrowski, G. Reynaud 

La démonstration est identique à celle du théorème précé-
dent, la fonction poids <p étant définie par 

(p(x,t) = exp 

m étant choisi suffisamment grand. 

- J h4(r)dr + m^2(|x| ) 
t 
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