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PRINCIPE DE MAXIMUM DE CERTAINES SOLUTIONS D’INEGALITE
AUX DERIVEES PARTIELLES DE TYPE PARABOLIQUE
DANS UN CYLINDRE £ > ]J-o0,T)

Kotations et hypothéses

Boient 2 un ouvert de l?’espace euclidien Rn, T un réel
pouvant étre égal & plus 1'infini, S 1le cylindre §1x] —oo,T)
(c?est-d-dire (=] —=co,T] si T est fini, %] -0, +o0[si T =
= + o ), Nous noterons x = (x,],...,x) un élément de

R, |x| la quantité Vil + oeee + xn2 et t un élément de

]‘°°’ T).

81 B représente la boule ouverte de centre l'origine
de rayon @ dans R% et Sq la sphére de centre l’origine
de rayon Q dans Rn, on note par:

@ 1l’ensemble B, NQ,

6o 1’ensemble Sp N Q,

I 1la frontiére de & dans RP.

Si f est une fonction différentiable, définie dans S,
nous notons par D;f 1la dérivée partielle de la fonction £
par rapport a la variable X4 th la dérivée partielle de
la fonction f par rapport a la variable t. Soient

= (uq, ceey ') et v = (v1, ceos W) des applications
définies dans S 4 vdleurs dans R, nous notons par:

u*v la fonction définie par L LR quN
D;u 1l'application définie par (Diu1, cees Diu )y
D;u 1’application définie par (Dtu1, cesy Dtu ).
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2 : J. Chabrowski, G. Reynaud

Par la suite, L désignera l'opérateur défini par

Iﬂ(u1)

.

Lp(up)

Lu

m
A

\ IN(uN).

ol LP est un opérateur de type paraboligue défini par
P Pl _ 1Y P
Lp(u) E D[ Du] B(u)+Dt[pu],

B (uP) est un opérateur du premier ordre ne dépendant que

de (x,t) appartenant & S et de Dj uP; afj " et a«,. sont
des fonctions définies dans S. Nous notons par fP des
fonctions définies pour tout (x,t) appartenant & S et tout

u appartenant & RN. Nous notons par ¢ et y des fonctions
poids définies dans R x[a,b], ol [a,b] représente un
segment de. R, . et on leur associe de nouvelles fonctions que
nous notons toujours par ¢ et y définies dans R% x[a,b]

par (x t)—>qﬂx t) = ¢(|x[,t), ol x appartieut & R? et

t appartient & [a b] (de méme pour y ). Pour simplifier,
nous notons par ¢|XI’ 951 94 »-+ les fonctions Dlxly' D9y

Dyg e-s

Introduction

Les résultats que nous obtenons ici sont du méme type que
ceux de [4], mais le cylindre 2'x[0, T] est remplacé ici
par $ XJ-OO, T).

Dans le paragraphe 1, h;, h;, et h3 étant des fonctions
définies sur |-oo, T1} (T1 fini T, < T), nous cherchons a
obtenir des solutions de l’inéquation de Riccati

da

It hz - h



Principe de maximum 3

qui vérifie la propriété suivante o(t) > m,
ou de 1?inéquation de Riccati

da 2

qui vérifie la propriété suivante
i .
a(t)> m +vf h3(r) dr, pour t< Tz< Ty
t

oi m et v sont des constantes positives, v < 1.
Les résultats ainsi obtenus sont utilisés dans le para-
graphe 2 pour obtenir un principe de maximum du type suivant:
L, £P, u-v vérifiant certaines conditions,
si pour tout 1p:

IP(uP) < £P(x,t,u), IP(WP) > £P(x,t,v),
uP(x,t) < vP(x,t) sur I"x] -0, T),

alors pour tout ks uk(x,t) < vk(x,t) sur Qx| -oco, T).

l.Lemme 1.7, Soient h, et h, deux fonctions
continues intégrables sur | oo, T,]» (by non négative).
Soit m un nombre positif donné. Si les quatre constantes
K,B,¢, T, (K, B, ¢ positives, T,< T,) vérifient:

1) Kp+ (K+1)e g 1,
2) Kp- (KE+1)e > m(K+¢),

3) pour tout (r,l, r5), T, <7T,< T, ona:

T,
f?hz(r)dr
4

(La condition 3) est réalisable car h, et h, sont inté-
grables, les conditioms 1) et 2) sont vraies, par exemple,

R 1 m :
si pf=2m; K = m+ €< m s alors la fonction

<€ < 1 et < g < 1.

2
[ nq(r)ar
4
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t %
alt) = EK |:,3+ %f hy(r) (K +f h2(s)ds)dz’]
K+ [ hy(r)ar ® 4
t

vérifie o(t)>m pour t < T, et est solution de 1'inéqua-
tion de Riccati '
(a) % - h2a2 -h, > 0 pour t<T,.

Démonstration: Remarquons que, d'aprés le
choix de TZ’

/) )7
fn1(r)[f h2(s)ds]dr
¢ T

et d’aprés les hypothéses faites sur les constantes K,f, ¢, T,

<€2< €

. T
fh2(r){fb’l (s)ds}d’(
t

't

t T,
K[/}+ %f h,](f)[K + fhz(s)ds]df}zKB - Ke -¢e> 0,
T T
on a donc
alt) > IS%&I{T"'l&;m, d?aprés la condition (2).

De 'plus od a

] |
da(s) _ Tz(” —ea(t) + b (5).

K+ [ h, (7)ar
t

Donc a(t) sera solution de (a) si T L >alt),

K +f b, (r)dr
%

inégalité qui est vérifide si 1 > Kf+ (K+1)¢ qui n’est autre
que la condition (1) imposée aux constantes.

Lenmne 1.2. Solent h2 et h deux fonctions non
néga‘biwé'es définies continues sur |=-eo, Tu], hy(t) et

4
h, (%) f h,(7)dr intégrables sur ]-oo, T). Soient m et
2 b 3 4
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Principe de maximum 5

deux constantes positives v<1. Alors on peut choisir les
trois constantes g, T,, TB(T3< T, < Tq_) telles que la fonc-
tion

| T2 h, (1)
a(t) = y(t) /3+f _}IITGTdT définie pour t < T,,
t

1 Ts
w(t) = expf h, (7)) A +f n5(s)dstr R
T2 T

T
.
vérifie a(t) >m +v f hB(f)dr pour t < T3 et soit solu~-
t
tion de 1?inéquation de Riccati
2
() U ha +hy> 0 pour t<T,.

Démonstration. Onas
T

2
%: ha(t)[,h%f hB(r)dt}a.(t) - by (t);

T
done a(t) sera solution de (b) si §S +_[2 h5(r)dr> a(t)

” s ’ R +
pour t < T,, inegalite qul est evidente si on remarque gque

y}(t) <1 pour t < T2 et que v g £1 pour t <7 '1‘2 .
m,; ~log Vq B
Prenons 3 =,-31— et ¢ = T et Vv, étant deux

constantes positives, v < ‘)’I < 1. 81 on choisit T2 de tell
sorte que '

T2 To T, |

[hy(ar<e et J ny(e)[ by(s)as|ar<e,

H 2 £ 2 b 3

on a
T

2
alt) > + 9 h, (t)dr
() > my + v, [ bg(0)
t
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1er cass si 'hB est intégrable sur ] -0, T,], 11 suffit de
prendre
T ' T
4 4
m, = m + y f hz(z)dr, pour avoir a(t)>m+v f h, (z)dr.
1 3 4 3
~o0

2me cast si h3 ntest pas intégrable, alors 1l existe
T3< T, tel que pour tout t < T5 on alt:

T2 T4
(v -\))f b, (7)dT> v f h,(r)dr, et si on prend m, =m,
1 3 7 3 ~ 1
K 2
on a
T,
«(t) >m+y [ by(riac.
]

Nous donnons deux lemmes dont nous aurons besoin dans la
suite (démonstration damns [6]). :

Lemme 1.3, Soit f wune fonction définie dans
Q x [t4s t5]s localement lipschitzienne, nulle sur I"x?;,l ,ta].
Alors nous avons, pour tout t appartenant & [t,l, t2

Xy
fDif ax -.-ff- -
Wp 6p

Lemme 1.4, Soit £ une fonction appartenant a
¢! (Q), soit f,(x) = max(£(x),0). On a les résultats suivants:
1) la fonction f+ “admet presque partout dans  des dé-
rivées partielles et si on appelle Q,1 l?ensemble des points
x de Q tel que f(x)> 0O et Q, 1l'ensemble des points x
de @ tel que f(x)< O, on at

les restrictions & 29 de Dyf et Dyf sont égales,

la restriction & Q, de-D;f  est nulle presque partout,

2) la fonction £ est lipschitzieune sur tout berné de Q
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Principe de maximum 7

2. Principe de maximum

Définition 2.1. Nous disons que 1ltapplication
4 définie dans S & valeurs dans RV appartient &
[01’2(S)JN, si u appartient & [b1(S) N, et si, pour tout
couple (i,3), [Di Dju] est une application continue dans S
(c?est-a~dire: peut. se prolonger en une application continue
dans S).

Définition 2.2: Soit u une forction définie
dans S, 4a valeurs dans R, mnous noterons u, et u_ les
fonctions définles par:

u+(x,t) = max [O, u(x,t)]; u_(x,t) = max [0, -u(x,t)],

(x,t) appartenant & S.
Siv = (v1, ...;‘VN), est une application définie dans S
a valeurs dans R°, nous noterons

o)

'V+ = (Vj_, se oy vi]’) et V_ = (V:]., soey v

Hypothése 2.1.
I) les aijp appartiennent & ¢l(s) et vérifient

IDJ aigl < Fpy ol F, appartient & C(S).
(f4) eppartenant & R%,

II) Pour tous § = (fi), B =
é..Qx:l—Oo,T) on a

pour tout (x,t) appartenant

%aﬁd ¢4 Ay < xF}i:gf ¥ %%ai’j By By (@ =1,2y ooe, M),

et ceci pour tout A réel strictement positif, oi F appar—
tient & C(S). -

III) Pour tout  (u,v) appartenant & [01’2(8)]N on a,
pour tout p,

2 (uWP—vP )[pp (uP )-8, (vP )]<c1 (uP-vP )2+}1 iZj ta%_’:jDi (uP=vP). D, (uP~vP),

ol C, appartient & C(©) et u est une constante vérifiant
o< u<2,
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IV) Les « sont localement lipschitziennes dans S et
vérifient presque partout dams Q=x]-oe, T)

G<a <6y, -H<Da,

ol G, Gr,l et H sont trois fonctions positives appartenant'
a c(s).

V) Les fonctions f£P vérifient la propriété suivante:
sius= (uq, ceesy uN), v = (v1, ...,vN) sont telles gque
WesvE et u? =vP en un point (x,t) appartenant a S,
alors ' '

£P(x,t,u) < £P(x,t,v).

VI) Pour tous u, v appartenant a RN, on a

N
Sgn(uP-vP) [fp(x,t;.u)-fp(x,t,v)] <L g Iuk-vkl - I, lup-vp, R

ol L et L, sont deux fonctions positives appartenant &
c(S) (sgnx =1 sl x>0, Sgnx=-1 si x <O0).

Définition 2.,3. Solemt u et v appartenant
a l—c1 '2(S):|N, nous dirons que le couple (u,v) est solution
du probléme 1, si

1) ulx,t) < v(x,t) pour tout (x,t) appartenant &
I‘x] ~o0y T)
2) pour tout p

L (w?) < £P(x,5,0), T (vP) > 22 (x,t,v).

Définition 2,4, Solent u et v appartenant
a |—01 ’Z(S)]N, nous dirons que le couple (u,v) vérifie la
propriété 1 sur 2x]-oo, T) si, pour tout p et pour
tout (x,t) appartenant & Qx| -, T), ona

uP(x,t) < vP(x,t).

Définition 2.5, BSoit y une fonction définie

dans anx]-oo, T) & valeurs dans R+. On note K"‘V 1’en~
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Principe de maximum - 9

semble des applications v appartenant & 5[01 ’2(8)]‘1\I véri-
fiant la propriété suivante: pour tout T, fini (E[‘1 T),
la limite, quand tend vers moins 1?infini, de la fonction

[‘[y v dx]dt
est nulle.

Définition 2.6, Soit A une fonction continue,
strictement positive, définie sur le segment [-1, +e[, on
pote part A - la fonction définie par

’ 8
-—J% = dar .
5 (s) !1 o)

¥y - la fonction définie dans Rnx] -c0, T) par
(x,) = y, (x,8) = exp[= 3 my(8) A3(1x])],

ol m, est une fonction définie positive continue sur ]-eo,T).

Hypothése 2.2, Nous diroms que A vérifie 1’hypothése
2.2, 8’1l existe deux constantes M, et EK; positives telles
que, pour tout s> 0 -

8 exp{-, [4(s)] ?kfs K,

(cette propriété entraine en particulier que A(+w) = +oo).
Hypothése 2.3.A. La fonction A étant donnée, vérifiant

1*hypothése 2.2, nous dirons que l'opérateur L vérifie

1’hypothése 2.3.A si, pour tout (x,t) appartenant a S,

1) 6y(xy) < Ky expmo(6) A2(1x )],
H+ 01+2 NL- 2L

2) 1< n1£2(lxl).
3) £<Zfn, A(x)),

W) g <5 em(ny(6)4202D)],

<
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ol G,y G, ¥;, F, L, Iy, H, C; sont les fonctions qui inter-
viennent dans l’hypothése 2.1, K,(t), K,(t), h (t), hy(t),
mo(t), mq(t) sont des fonctions positives définies et conti-
nues sur J-oco, T).

Théoréme 2.1. Soit A une fonction donnée, vé-
rifiant 1l'hypothése 2.2; on suppose que l'opérateur L vérifie
les hypothéses 2.1 et 2.3.A, que les fonctions h, et h, sont
intégrables sur | -co, T, (T1 fini inférieur & T) et que
my et m, sont bornées sur ]-eo, T;]. Si

1) u et v appartiennent a [01,2(8)}N’
2) u - v appartient a K,

] o, 1)
s 147 .
3) (u, v) est solution du probleme 1 (Définition 2.3),

A b ’
VA’ ou m, est bornee sur

alors (u,v) vérifie la propriété 1 sur Qx| -oo, T).

Démonstration., Soit ¢ une fonction définie
sur R x] -oo, T] a valeurs sur R, (I,< T, T, fini que
l'on déterminera ultérieurement). On suppose que ¢y est né-
gative. Comme par hypothése (u,v) est solution du probléme 1,
nous avons l'inégalité suivante (démonstration identique

a 4], 8 1)

2 2 2
(2.1.1) [—2¢¢tG-q [C1+H+2NL—2Lq]—16l F ¢lxﬁl(w+) +

2(2—u- 1 P P P
+ ¢ (2=u 7 g%% a3y DyWw, Dyw. <

N

S 2 p P D 2 P42
D [? ¢ wt ai. D.w } -D [w Y _a (wB) |,
i,;j,pi_ + 13 3 t pp+J
oi w = u-v.

Choisissons A de telle sorte que 2 - u - %;> 0, par
exemple A = é%—q et utilisons 1’hypothése 2.3 A. L’inégalité
(2.1.1) entrdine 1'inégalité suivante:
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(2.1.2)  [-2p05-20,9%42(1x1)= T npa(lx 1), 6w, ) +

+534¢% 3 aBy nyu? pyu?

ijp

2
<Y _ Di[thsz agj DJ.WPJ - D, [cngap(wf) ].

ijr

Posons ¢(x,t) = exp{- oc(t)./lz(lxl)} , oi- a(t) est la
fonction déterminée dans le lemme 4.1, les constantes qui ser-
vent & déterminer o seront choisies de telle sorte que
a(t) >m (m nombre positif que 1%on déterminera). Ainsi la
constante T2 gui intervient au début de la démonstration
est fixée en fonction de m. On remarque de plus que G =
= dy Aa(ikl)q) . On a alors

(2.1.3)112[%% - b,- ha ] -2¢26(w, )%+ ¢2 2—&2 oD, wPD WP <

<22 P|_ p, g2 Pa}.
5 i["’ w ai;]D w:I Dt[ Y a (w+)

D?aprés le choix de oc(t), nous avons 1l?inégalité sui-
vante

(2.1.4) 0< D~ Di[:2 ¢ wP a 1 Dy wPJ - Dt[cpzzap(wf)z}.
» P

ijp
Intégrons cette inégalité sur le domaine [T,], '.[‘2]
avec 7, < T, <T,, on a (on utilise le lemme 'l 3)
x (]
i 2 2
(215)o<f f?acpwp DijTdsdt-[f(pde(wf)de.
'l’1 6 JP (Jr p r’
Montrons que si w appartient & K y, et si
A
a(t) > m = sup max[M +m (t)+m1(t)+m2(t), M +m (t)+m2(t)]

—-oo<ts T 1

alors ¢ et w vérifient la condition
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[ Pour tout (z*,‘, z’a) ('r et 7, finis 7,<1; < Ta),
11 existe une suite (r )qu tendant vers l’infini

(2.1.86) | et suite (Rq)qu tendant vers zéro, telles cue

2 Y 2 g2 4P &P p 1
Tff 29 w+ai3Daw + ds dt< R
1

3 q.
1
6'qu

Pour démontrer ce résultat, considérons l?intégrale

S" 2w el padx

1(x) ¥ e P I ]

"
~
~

dx dt.

I(r) D [2 o, x (wp)z]dxd:t -
I 3 &g X4\

I}
_;ﬁ"’mﬁ
€ '\a
o

X, X
6y 4 = 4a(t) A 17J|p%eP . (wP)%axat -
e |1 - s 2D s MJ«» P (v0)2ax

._\PI (ﬁ mﬁ
£ =

]
¢ xi(wp) D [ ia]dxdt = f f (By+By+B; )axat ,

1:lp A

s
HE%

ol ;4 est le symbole de Kronecker. Considérons

)
f f_132 dxdt .

Tq wp

8i VA(Ix|) > 4na(t) A(]x]|)-|x]| en un point de
x [1’1, ra] , alors nous avons

2
-B,> )_ |4 [ij 1 i—g—}ai’j(wf) .

ijr % x|
- 170 -



Principe de maximum 13

Introduisons la forme quadratique
= 3 = P (aP)2
?} = E::‘dijliaj’ ol dij _Ei:aij(w+) .
1,3 P
D?aprés l'hypothése 2.1 (ii), la forme ?H est positive. De plus

X, X.
T, = A ]#P
2 E[“ xS

est aussl une forme quadratigue positive. Alors il est bien
connu que

1 *3% s
izjdij [51;1 -2 mg] >0, clest-d-dire B,<O0.
’

Si VA(lx|)< 4na(t) A(|x]|) en un point de R% x[f1, Té},

alors nous avons

By< 2 nkyhalx | A(|x WA x]) ¢ 2exp [y (6) £2(1x1)] ()2,

By < (2-pn’Kohpa® (1) [A (1x1)]21x1? ¢Pexp[mg (£)4 (1x])] (w, )2

Comme 7, e% 1, sont fixés et finis, alors «(t), K;(t),
hz(t) sont bornés sur [Tﬁofé]- Nous avons done dans tous les
cas

B, < Kz [4(]x])] 1 x12¢%exn[mg (6342 (1x])] (8,5,
ol K3 est une constante positive indépendante de (x?t)' ap-

partenant a s?x[ra, ré]. _
Remarquons que l?hypothése 2.2 étant vérifiée, alors

A2(1x]) exp[-M., AQ(IXI)]

tend vers zéro quand |x| tend vers 1?infini et que
|x|? exp[-24, A(Ix1)] < KF.
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On a donc
T2
f f B, dxdt <
T,] Wp
‘t‘2 )
‘K#f f exP[(-a(t) + 3, + mo(t))/lz(lxl)] (w, )“axdt ,
Ty Wp

ol Kq_ est une constante positive., Comme w appartient a

K+W , alors si of(t) > M, + mo(t) + m,(t) on a pour tout r:
A

T
2
f f B, dxdt < R4 (R’I constante positive).
Ty Wy
2
Considérons f f B3 dxdt. On a:
tq Op
T2
f f By dxdt <
Ty wp
T2
< f f exp [(-a(t)+1Sll.l+mo(t)+m,l (t))v‘la(lxl)J(w_l_)zdxdt .
T’l “Yn

Donc, si a(t)> My+my(t)+m, (t)+my(t), on a
2
f ‘/'}35 dxdt < R',] (R',] constante positive).
T op '

T2
Considérons f ‘/']3,| dxdt. On a
- Tq wp
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T2
f fB,l axdt <
’[',] wr

2
Kgr Alz) {1 éexp [ca(t) + mo(6)) 42 (2)] w2 asat = 3(x),

oi K. est une constante positive indépendante de r. Soit
r, donné et supposons que J(r) > R, pour tout r >r,,
(R, constante strictement positive donnée ); on a donc pour
tout r > T4

T2

R

A—(i—)éxsr exp[—3M,]ﬂ2(r)] f f exp[(-a(t)+mo(t)+3M4)ﬂ2(r)](w_l_)zdsdt,
Tq 6p

—

VR2
VA(r)

ol K5 et K6 sont des constantes positives indépendantes
de r, Intégrons cette inégalité sur [r,], 9] (g >r,) et
utilisons 1?inégalité de Hblder, nous avons:

<kg oxp|-t, 47 (r) f exp (<t )omo(6)+3M S ()] (w, )2 asat
6.

r

-\ﬁgﬁro

2 Ry .f [ 5 } 1/2
: ir < -2M, A<(r) x
I!; NS r K6 4 exp M1 r)jdr
1/2

[ [ [exp[(ateremg(e)ezm;) £2()]n? asasar
1 19 O

Si1 on suppose que af(t) > M, + mo(t) + my (t), en utilisant

1’hypothése 2.2 et le falt que W appartient & K*V’ on ob-

tient A

f Vs = Vs [409) - Ate)] <
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R3 étant constante positive indépendante de ¢ . Ceci est
impossible, car gquand ¢ tend vers 1'infini, le premier membre
de 1'inégalité tend vers 1’infini. Domc il existe une suite
(r'q) geN tendant vers 1?infini, telle que si

a(t) > max [M1+mo (t )+m,] (t J+my (%), 3M.,+mo(t )+m2(1: )] ,

on ait I(r.) < R (R~ constante strictement positive indépen—
dante de gq).
Montrons que pour tout r:l il existe r_» r' tel que

a” g
2
Iy(zg) = f f 2242 w, ab; Dy wP x; dsdt < R.
idp
Ty 6y

En effet, si céci était faux, alors, pour tout r, > r,
on aurait

q ’
I(ry) > I(rq) + (r) - r;;)-R ’
qul tendrait vers 1'infini quand r, tendralt vers 1'’infini,
ce gqul est impossible. Ce qui termine la démonstration de
(2.1.6) (la suite r_ est celle qui vient d’etre déterminée
_R
et Rq =3 R

q v
Considérons 1l’inégalité (2.1.5) dans la quelle on remplace

r par I et si on considére que

alt) > sg.o;; max [M1+m (£ )4+m, (€ )+my (t), 3M+m, (t)+m2(t)]
-eo< 1

q

ce qul est possible, car oy, Ly, o, sont bornées sur

]-oo T,]] et que, d'aprés le lemme 1.1, il est possible de
choisir les constantes K, 8, ¢, T, qul servent & déterminer
a(t), de telle sorte gue

a(t) >m pour te]-o=, Tp],
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alors on a si ‘l’1 < Ty < Ta,

7.

2

(24147) o<y - |[ ¢ )y B ax | .
. (:.)r T
Tq 1

Fn faisant tendre q vers l'infini on obtient

[ J qZ;aP(wf-)a dx]t=r2< [ ,,f éagap(wf)zax}tzq

inégalité vraie pour tout ( Ty Tp) vérifiant Ty <Tr& Ty
Supposons que W, ne solt pas ldentiquement nul sur
Qx]=eo, Ta], alors 11 existe une valeur Ts telle que

2 2
[fcp Zap(wf) dx}t-t>,a>0.
Q P 3
Donc, pour tout t < r3, on a
2 P2
f‘P de(w+) dx >ﬂ ]
Q P

et par suite pour t <0, t< T3
ff (p22ap(wp)2 dxdr;ﬁ'r + flt],

contraire & 1’hypothése que w appartient a K _ .
a

On a done démontré que (u,v) vérifie la propriété 1 sur
@x] —eoy Tp]. Il reste & démontrer que (u,v) vérifie la
propriété 1 sur 2x[T,, T), ce qui est équivalent & démon-
trer que (u,v) vérifie la propriété 1 sur Q«x [TZ' 3] pour
tout T3 fini inférieur a T. Soit T5 f£ixé; il faut mon-
trer le résultat suivant. Si
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Y

1) u et v appartiennent a [01'2(S):|N,
2) u-v appartient a K_Hp ,

3) (u,v) solution du probléme 1,
4) ulx, T,) < vix, T,),
alors (u,v) vérifie la propriété 1 sur Q «x [T2’ T3].

En faisant une translation de l'axe des %, 1la nouvelle
variable de temps t étant donnée par T = t—TZ, on remarque
‘que ce résultat est donné dans [4], corollaire 2.1. Ce qui
termine la démonstration du théoréme 2.1.

Hypothése 2.4.A. La fonctien A étant donnée, vérifiant
1l’hypothése 2.2, nous dirons que l'opérateur I vérifie
lthypothése 2.4.A, s?il existe T, fini (T, < T) tel que
pour (x,t)efzx]-oo, ’I‘q_] on ait

H+C,]+2NL-2L1 2
— gt < -2m3 4% Ux 1)~ 28, (6)

ol h3 et h, sont des fonctions non négatives définies con-
tinues sur J-oo, Tq_].

Théoréme 2,2, Soit A une fonction donnée, vé-
rifiant 1’hypothése 2.2, on suppose que l'opérateur L véri-
fie leg hypothéses 2.3.A, 2.4.A et 2.1, que hy(t) et

m
he(t)th(r)dz‘ sont intégrables sur ]-—oo, T4], et que my(t),

t
m,(t)y my(t) vérifient pour < T,

T,

max I:M1+m6(t )+, (t)4+m, (1), 3M,+mg (6 )+m, (% )] < m+\)f hB('L’)dT ,
' t

oi m et v sont deux constamtes positives, v inférieure & 1. Si
1) u et v appartiennent a [01’2(8)]N,

. . 1 _ . : 1 _
2) u~-v appartient a K+W1' ou Y, =y, sit>2T et y, =

Ty A

=y, exp[f h4(r)dTJ pour t < T,,
t

3) (u,v) solution du probléme 1 (Définition 2.3),

alors (u.v) vérifie la propriété 1 (Définition 2.4 ).
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Démonstration., Soit ¢ une fonction définie
sur R, x] -oo,".[‘z] & valeurs dans R_ (T, < T, que l’on
déterminera ultérieurement ).

Comme par hypothése (u,v) est solution du probléme 1,
nous avons l'inégalité suivante (démonstration identique &

[4], § 1)

(w, )2

- 16 AF ¢5 ——t

2
Za oy P)¢ Z“P( ")

2 1 P
+ ¢ (2-p - ) %a{a Dy w. Dy f_’
Y

< ZDi [2 qaa wp afa D, WPJ - D, [qzzap (W_I:)ZJ,
: )%

ijp

oi w=u-v. Prenons A= 22# et utilisons les hypothéses
faites sur les coefficients, 1'inégalité (2.2. ']) entraine
1%inégalité suivante,

[—2(,7 q),c+2h3 qnafla (I1x] )+2h4<p2- % h2A(|i| )q)2|x]} Zap (wf_’)2 +
Y

+ 2 P
ijp

ZD1|:2¢? wp D wp}-Dt[;cpa

a (Wp)a].
P+
ijp .P

Posons

R 2
o(x,) = exp(- %f by (t)dr + a(t) A% (1x[) (),
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oi a(t) est la fonction déterminde dans le lemme 1.2 (la va-

leur de T, gqui sert a4 définir o(t) sera définie ultérieu-
rement ). On a alors

(2.2.2) [-n4 +A2(1x)) 824

+ by By A2(1x)-hpa® A% (1x ]2 Y ot (WB)?

_ZE‘P Zaﬁd Dy wp D;] w£<

ijr ‘
2 WP &P 2 2
< ZDi[ZLP wy by Dy WPJ - Dtl:q: Zap(wf) ]
ijp P
D'’aprés le choix de «, nous avons
N SN T DR R
P P

Intégrons'cette inégalité sur le domaine W, ['l’,], ’L'a]
(t1< T5 < T2), on a

(22.4) O< fsz«p wPa D, wp—dsdt [f‘PZ,“ () defz,.

T4 6, L3P T4

Par une démonstration identique & celle faite dans le
théoréme 2.1, on démontre que si

T,
al(t)>m +vf h3(1’)dt’,

pour t < T; (Ty < T,), alors ¢y et w vérifient la condition:

Pour tout (2’1, T5) ('r,] et 1, finis 1 <1, <T3), i1
existe une suite (r )q N tendant vers 1l?infini et une suite
¢:) )q.e N tendant vers zédro telles que
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Y2 ¢ WP aB, Dy wpij dsdt < R, .
o6, 1
1 Ty Jp
Mais d’aprés le lemme 1.2, on peut choisir 8, T, et T5
qui servent a définir a(t) de telle sorte que pour t < T3,
on ait,
T

4
o(t) > m+0f h3(r)d7 .
t

Si on considére l’indgalité (2.2.4) (T, et T, étant ainsi
choisis) dans laquelle on remplace r par rq’, et ol 7 et
(N vérifient Ty << TB’ alors on a

T2
(2.2.5) 0 <Ry - [fq,iEde(wg)de]r .
Wp P 1

En faisant tendre ¢q vers 1l'infini, on obtient

2 P2 2
[J‘P ;ap(w+) dx]t:r:[s-!q, };ap(wf)zdx]

=IH
et ceci pour tout 17, t, finis, vérifiant 7, < 7, < 5 .

La suite de la démonstration est identique & celle du
théoréme 2.1.

Remarque: Les conditions imposées aux coefficients peu-
vent étre modifiées; on obtiendrait de nouveaux théorémes qui
se démontreraient de la méme maniére; par exemple le théoréme
sulvant.

Théoreme 2.,3: Soit A donnée, vérifiant 1l’hypo-

thése 2.2, on suppose gue l’opératet(zr) L vérifie les hypo~
t ’
théses 2.3.A, 2.4.A et 2.1, que 2 tend vers zéro quand
h3it5

u==—oo, QuUe My, My, Dy soient bornées sur ]-oo, Tq_], alors
on a les mémes conclusions que dans le théoreme précédent.
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*

La démonstration est identique & celle du théoréme précé-
dent, la fonction poids ¢ étant définie par

Ty
¢(x,t) = exp jj,h4(r)df + maia(lxl) ’
t

m étant choisi suffisamment grand.
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